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Abstract: This paper investigated a new speed regulator using an adaptive transitioning policy
iteration learning technique for the variable reluctance motor (VRM) drive. A transitioning strategy is
used in this unique scheme to handle the nonlinear behavior of the VRM by using a series of learning
centers, each of which is an individual local learning controller at linear operational location that
grows throughout the system’s nonlinear domain. This improved control technique based on an
adaptive dynamic programming algorithm is developed to derive the prime solution of the infinite
horizon linear quadratic tracker (LQT) issue for an unidentified dynamical configuration with a
VRM drive. By formulating a policy iteration algorithm for VRM applications, the speed of the
motor shows inside the machine model, and therefore the local centers are directly affected by the
speed. Hence, when the speed of the rotor changes, the parameters of the local centers grid would be
updated and tuned. Additionally, a multivariate transition algorithm has been adopted to provide a
seamless transition between the Q-centers. Finally, simulation and experimental results are presented
to confirm the suggested control scheme’s efficacy.

Keywords: machine learning method; variable reluctance motor; optimization problems; adaptive
control systems

1. Introduction

Variable reluctance motors (VRMs) are adaptable machines that can be utilized in
various industrial applications due to their inherent resilience, simplicity, competitive price,
and high efficiency. VRMs are currently used in high-performance applications, including
hybrid electric vehicles (HEVs) and aircraft systems [1–4]. The most notable disadvantage
of VRMs is their extreme nonlinearity, which creates a significant ripple in amperage [5,6].
This factor could contribute to vibration and acoustic noise during machine operation.
Therefore, decreasing ripples is necessary to improve machine performance.

Two main strategies are used to mitigate current ripples: machine design optimization
and dynamic current controller adoption to minimize current ripples without employing
a high switching frequency. Such a current control method should generate an optimal
phase voltage to achieve a rapid current response while preserving low current ripple [7].
Variations within the machine inductance cause back EMF, necessitating a high DC voltage
from the voltage source. However, this can create substantial current ripples in traditional
frequency-bounded switching methods, including delta-modulation and PI-based con-
trollers. VRM control techniques can be classified into two categories. The first category
comprises simple, standard techniques like hysteresis control, delta modulation, sliding
mode methods, and fast PID controllers. The second category uses optimal techniques,
including artificial neural networks, model predictive control (MPC), and neuro-fuzzy con-
troller (NFC), to generate a duty cycle based on the back EMF of the machine [7–14]. There
are multiple sophisticated approaches to appraise the inductance contour and achieve local
linearization of the system, either through interpolation or advanced learning techniques.
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One notable method involves applying Fourier series expansion to the inductance contour.
This technique appraises the rotor positions: aligned, centrally located, and misaligned
by determining the connection between the Fourier inductance profile factors and the
rotor position angle. The Fourier analysis may be conducted using finite element analysis
(FEA), providing a detailed mathematical representation of the inductance variation with
rotor position and current. Another method for estimating the inductance contour entails
enabling the controller to iteratively approximate the parameters of the model and monitor
errors during each iteration. This adaptive approach requires the controller to actively learn
the system’s behavior, refining its model based on real-time feedback and error correction.
Such an estimator is essential in updating the model, ensuring an accurate representation
of the system’s dynamics. This updated model can subsequently be employed in a model
predictive controller (MPC), which is crucial for achieving precise tracking control. The
policy iteration algorithm, a reinforcement learning technique, combines the adaptation
and control tasks into a single cohesive framework. It enables the system to learn optimal
control policies through interaction with the environment, making it well-suited for sys-
tems with nonlinearities. To leverage policy iteration while addressing the complexities
of nonlinear systems, a scheduled local learning approach is proposed. This involves
partitioning the state-space into manageable regions and applying policy iteration within
each region to achieve effective current tracking control for VRMs. This method ensures
robust performance across varying operating conditions, providing a comprehensive so-
lution for current control in VRMs. The Q-learning transitioning controller is among the
adaptive optimal control methods [15–17]. It employs reinforcement learning as a form of
machine learning to tackle tracking problems. The infinite-horizon linear quadratic tracker
(LQT) method was incorporated into the Q-learning algorithm to produce a controller that
tracks the reference path. Since Q-learning only applies to linear systems, it cannot be
applied directly to a nonlinear model, including a VRM. To resolve this limitation [16],
the controller was incorporated into a transitioning strategy to enable nonlinear VRM
control by transitioning linear Q controllers over the nonlinear VRM domain. A family of
Q-cores is introduced on the system domain, each positioned at a local linear operational
point where the Q-learning algorithm can be executed. Eventually, a Q-matrix grid should
be trained for each iteration using data observed along the system trajectory to achieve
tracking performance. The system can use locally affine Q-learning controllers to control a
nonlinear system by traversing a path on this Q-grid.

This paper describes a speed regulator by transitioning policy iteration along with
tridimensional Q-grid for a VRM. Unfortunately, using a bidimensional lookup grid does
not include motor speed variations within the planned domain; thus, when a rotational
speed is changed by adding mechanical load torque, the local nodes employed in the
bidimensional Q-grid must be retrained to accommodate the speed change. Despite linear
speed variations and Q-learning remaining stable throughout this adaptive process, a
slow speed change response is observed due to this learning process. In other learning
approaches [7], model-predictive control only learned the inductance profile. It did not
require re-learning in response to the speed change since the speed can be fed into the model
externally. This paper proposes a new speed regulator by presenting a tridimensional array
containing rotor position, speed, and phase current, enabling the controller to train the Q
parameters for any given speed. Additionally, a tridimensional interpolation mechanism is
shown to manage the controller transitions over this tridimensional grid. Section 2 describes
the Q-learning algorithm and illustrates the speed regulator of the VRM. Sections 3 and 4
demonstrate the speed regulator by offering simulation and experimental results.

2. Materials and Methods

Figure 1 depicts the suggested controller’s principal layout, where an adaptive online
policy iteration structure of variable reluctance motor regulates the speed level of variable
switched reluctance motor. The next part goes into further detail on the internal structure
of the introduced model.



World Electr. Veh. J. 2024, 15, 421 3 of 14

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 3 of 15 
 

 

2. Materials and Methods 
Figure 1 depicts the suggested controller’s principal layout, where an adaptive online 

policy iteration structure of variable reluctance motor regulates the speed level of variable 
switched reluctance motor. The next part goes into further detail on the internal structure 
of the introduced model. 

 
Figure 1. Block diagram of a tridimensional Q-grid learning control. 𝜔∗ and 𝑖∗ represents the 
optimal trajectory for the speed and the current respectively.  

2.1. Reinforcement Tracking Structure of VRM 
The linear quadratic tracker (LQT) has become an increasingly vital design tool for 

tracking controls. Obtaining the optimal LQT solution enables the tracking of a predeter-
mined reference signal by minimizing the cost function and the difference between the 
reference and output currents [18]. Typically, LQT solutions are derived by independently 
acquiring the solutions for the feedforward and feedback sections. The primary disad-
vantage of this solution is that it is computed offline in conjunction with the model’s pa-
rameters [19]. In this context, the Reinforcement Q-learning technique, which is a type of 
adaptive dynamic programming, provides an online solution to LQT problems without 
using VRM model information. This section presents the derivation of the LQT-aug-
mented system. Additionally, the optimal solutions for LQT using the Bellman equation 
and Q-learning are included. 

2.1.1. Cost Function Formulation of VRM 
The primary purpose of VRM tracking control is to identify the optimal phase voltage 

to enable the VRM drive current to follow the trajectory of the reference current. To reduce 
the controller’s computing load and cost, the VRM model is developed without consider-
ing mutual coupling between phases. In order to develop such a controller, an initial as-
sumption was made for the LQT problem involving the generation of a reference current 
from an independent generator model, as shown in [20]: 𝑟௞ାଵ = 𝐹𝑟௞ (1)

Figure 1. Block diagram of a tridimensional Q-grid learning control. ω∗ and i∗ represents the optimal
trajectory for the speed and the current respectively.

2.1. Reinforcement Tracking Structure of VRM

The linear quadratic tracker (LQT) has become an increasingly vital design tool for
tracking controls. Obtaining the optimal LQT solution enables the tracking of a prede-
termined reference signal by minimizing the cost function and the difference between
the reference and output currents [18]. Typically, LQT solutions are derived by indepen-
dently acquiring the solutions for the feedforward and feedback sections. The primary
disadvantage of this solution is that it is computed offline in conjunction with the model’s
parameters [19]. In this context, the Reinforcement Q-learning technique, which is a type of
adaptive dynamic programming, provides an online solution to LQT problems without
using VRM model information. This section presents the derivation of the LQT-augmented
system. Additionally, the optimal solutions for LQT using the Bellman equation and
Q-learning are included.

2.1.1. Cost Function Formulation of VRM

The primary purpose of VRM tracking control is to identify the optimal phase voltage
to enable the VRM drive current to follow the trajectory of the reference current. To
reduce the controller’s computing load and cost, the VRM model is developed without
considering mutual coupling between phases. In order to develop such a controller, an
initial assumption was made for the LQT problem involving the generation of a reference
current from an independent generator model, as shown in [20]:

rk+1 = Frk (1)

where rk donates to the ideal current track, and F is the ideal current source that capable
to produce a smooth train of pulses, which is the desired waveform for the VRM drive
current. The generator model is integrated into the VRM model. The DC voltage supplied
to the coil in the per-phase model combines the resistive voltage drop and the flux linkage
across the coils over time. Therefore, the augmented VRM drive model can be formulated
as follows:

Xk+1 =

[
A 0
0 F

][
xk
rk

]
+

[
B
0

]
uk ≡ AaXk + Bbuk
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Yk =
[
C 0

]
xk ≡ CcXk (2)

where A = 1 − TR/Lk, B = T/Lk, xk is the current injected each phase, uk is the control
input per phase, R is the internal resistance of the winding, and Yk is the output current per
phase. Lk is the inductance that varies regarding the stator current injected and rotor angle.
T indicates to the switching time sample. Similar to the conventional performance index of
LQR, the developed augmented model’s cost function can be generated as follows:

V(xk) =
1
2

∞

∑
i=k

γi−k[XT
i QqXi + uT

i Rui] (3)

where Qq = [C −I]TQ[C −I] and Q and R are weight matrices that have been specified
for the stator winding current and the applied DC voltage of the VRM drive, respectively,
whereas 0 < γ ≤ 1 donates to a discount factor. For a fixed control input, the cost function
may be rewritten in a quadratic style for a symmetric P matrix as V(xk) =

1
2 XT

k PXk. The
complete quadratic form derivation of the LQT cost function has been provided in [21]. By
adopting a fixed policy, the infinite sum in Equation (3) of the augmented system can be
expressed as:

V(Xk) =
1
2

[(
Xk)

TQq(Xk) + uT
k Ruk

]
+ γV(Xk+1) (4)

2.1.2. Reinforcement of Policy Iteration Structure for Solving the Problem

Before designing the algorithm for addressing LQT problems, it is essential to derive
the Bellman equation of the LQT. The Bellman equation can be used to solve problems
involving voltage stabilization. In order to accomplish this, the policy iteration is applied to
the LQT Lyapunov equation. However, this approach requires the system model’s complete
information [22]. The reference for the Bellman equation of LQT, which is dependent on
the augmented model, is as follows:

XT
k PXk = xT

i Qqxi + uT
k Ruk + γXT

k+1PXk+1 (5)

where P is the Algebraic Riccati equation solution, which fulfilled the optimal solution of
LQT. By satisfying the stationary condition and utilizing the Hamiltonian equation, the
tracking problem’s optimal P matrix can be derived as follows:

P = Qq + γAT
a PAa − γ2 AT

a PBb

(
R + γBT

b PBb)
−1BT

b PAa (6)

At this stage, the Bellman equation employing the policy iteration approach and the
existence of the machine’s model parameters can be implemented so that the numbers of the
P matrix converge to their optimal values. On the other hand, training the Q function that
comprises the cost function and the augmented system in addition to the reference current
model yields impressive results. Moreover, it solves the ARE online without needing
knowledge of the machine’s model [23]. The Q-function might be formulated as a matrix
using substitutions and definitions as follows:

Q(Xk, uk) =
1
2

[
Xk
uk

]T[Qq + γAT
a PAa γAT

a PBb
γBT

b PAa R + γBT
b PBb

][
Xk
uk

]
(7)

Also, this could be defined as

Q(Xk, uk) =
1
2

[
Xk
uk

]T[GXX GXu
GuX Guu

][
Xk
uk

]
(8)

The Q-grid algorithm can be trained via either policy or value iteration RL techniques.
The proposed algorithm consists of two processes, i.e., (i) Policy Evaluation and (ii) Policy
Improvement. In the policy evaluation process, the Q-matrix is trained using the machine
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operation data, which includes the state of the current value, the upcoming current state
and the reference current (xk, xk+1 and rk) [23]. In this initial step, either the standard or
recursive least square approaches may be employed. Furthermore, the applied voltage that
achieves tracking performance is adjusted in the policy improvement stage. M is denoted
as M = [Xk uk]

T . These two processes are reiterated until the online Q-grid training
algorithm used to track the VRM drive’s current is as shown in Algorithm 1:

Algorithm 1: Online Training of Q-matrix by adopting voltage iteration scheme

Initialization: Start the algorithm with a steady voltage input. Reiterate and refine the subsequent
pair of processes up to the point of confluence:
(i) Policy Evaluation:

MT
k Gi+1 Mk =

(
XT

k

)
Qq(Xk) +

(
ui

k)
T R

(
uk)

i + γMT
k+1Gi+1 Mk+1 (9)

(ii) Policy Improvement:

ui+1
k = −

(
G−1

uu )
i+1Gi+1

uX Xk (10)

2.2. Regulating the Speed of the VRM Drive Using Reinforcement Structure

VRM is a type of salient machine in which the stator and rotor have a different number
of poles. The value of the magnetic flux’s reluctance varies due to the VRM’s rotor rotation.
Reluctance is lowest when the stator and rotor are perfectly aligned [24,25]. This causes
the machine’s inductance profile to have its maximum inductance value. When the stator
position and rotor angle are entirely misaligned, the reluctance is at its highest value,
resulting in the lowest inductance on the inductance profile. High magnetic saturation
levels should be incorporated into the VRM’s design to enable adequate electromechanical
energy conversion. Since the magnetic nature of VRM changes between the aligned and
unaligned positions of the stator and rotor, the inductance per phase can be varied at any
instant current. The small air gap between the stator and rotor causes a substantial variation
in the inductance of the aligned position with respect to the current value [26]. On the other
hand, a large air gap in the unaligned position produces a slight variation in inductance.
For the ideal case, the inductance profile resembles the trapezoidal waveforms. However,
in reality, the trapezoidal wave is rounded at the corners due to saturation, resulting in a
sinusoid with a slightly changing frequency. As shown in Figure 2, the current and rotor
position influence the actual 12/8 VRM’s inductance profile [27].

The traditional VRM drive current controllers, such as the hysteresis controller, enable
the motor speed to be independent of the primary model. Motor speed can be accessed and
injected into the model in this type of controller. Therefore, such controllers’ VRM drive
control system consists of a current and speed controller. The speed controller observes the
actual motor speed and subtracts it from the reference speed to inject the desired current
into the current controller [28,29]. By determining the rotor position and converting it to
speed ω = dθ/dt, it is possible to observe the rotational speed. Additionally, the current
controller does not require the speed information as it is model-independent [30]. In this
study, the Q-node on the inductance surface is used to regulate the current of the VRM drive.
Due to the machine’s nonlinearity, LQT Q-learning is insufficient to control the current.
Therefore, it is necessary to supplement the proposed method with crucial transitioning
techniques to use Q-learning in nonlinear equations. The nonlinearity surface is subdivided
into a sufficient number of Q-cores, with each Q-core functioning as a locally linearized
region where the linear quadratic equation can be applied. Each cycle uses data tuples
collected along the system trajectory to train the grid of Q-matrices positioned upon the
system domain to its optimal values [29]. In order to apply the Q-grid after training all
Q-matrices, the algorithm will detect the current and rotor angle value to determine the
interpolative Q-matrix to be transmitted to the policy improvement step.
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Furthermore, this approach necessitates knowledge of the four nearest Q-matrices for
computation of the transitioned Q-matrix, which will be utilized to update the policy during
policy improvement. It implies that only the Q-grid matrices used to model the system’s
operational state will be trained and utilized. Since the reference current is injected into the
Q-grid, the Q-matrices must be retrained whenever the reference current changes. However,
the speed is not considered in this method as a component of the nonlinearity. Although the
model is not nonlinear in terms of speed, speed does exist in the model. Therefore, adopting
a bidimensional Q-grid will necessitate retraining of the local Q-cores as the motor speed
varies. A bidimensional grid requires substantially less memory than a tridimensional
grid that contains speed as an axis. However, the tridimensional grid presented in this
research will result in considerably faster dynamics and a better response. Designing speed
regulator can be explored using two- and three-dimensional Q-grid techniques by using
the policy iteration Q-grid learning algorithm.

2.2.1. Speed Regulator for the VRM Drive Using a Bidimensional Q-Grid

The stator current and rotor position constitute this approach’s only two dimensions
of the Q-grid. A three-phase 12/8 VRM is examined to demonstrate the bidimensional
Q-grid for simulation outcomes. As shown in Figure 3, the phase shift between the phases
is 30◦, and the inductance configuration of the motor is periodic for every 22.5◦. In the
Q-grid, the rotor angle dimension is sampled every 2.5◦, resulting in a total of 10 registered
rotor positions and a sequence of stator current values with 2 A time steps on the current
dimension. The angular velocity is not introduced as a dimension to the Q-grid by using
the bidimensional Q-grid transitioning approach. The speed is not accessible as the Q-grid
does not include knowledge about the speed. When all Q-matrices have been trained, the
motor speed will finally adapt to the desired value. It indicates that altering the speed at
any cycle forces the Q-grid to restart learning, which will create a transitory response due
to the system’s learning process.
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2.2.2. Speed Regulator for the VRM Drive Using a Tridimensional Q-Grid

The previous section described the bidimensional Q-grid problem, i.e., the forced
retraining of the Q matrices whenever the rotational speed changes. To address this
problem, a tridimensional Q-grid has been created using the bidimensional Q-grid and
the motor speed axis. Accordingly, the rotor position, phase current, and speed are the
axes of the tridimensional Q-grid. Using a tridimensional Q-grid will make it possible
to access the motor speed, allowing for a quicker response to changes in speed without
the previously mentioned retraining process. The tridimensional Q-grid method includes
three processes: partitioning, extraction, and transitioning. Firstly, the VRM’s nonlinear
surface domain must be partitioned and filled with sufficient sample points to create the
tridimensional Q-grid. As shown in Figure 4, the tridimensional Q-grid is created by an
equal step sampling along each Q-core surface axis. In order to extract the eight Q-matrices
situated at the closest phase current, the extraction method aims to locate the Q-matrix
at a predetermined speed level. Finally, the interpolative Q-matrix is computed during
transitioning using the input phase current, speed signal, and eight extracted Q-matrices.
Figure 4 depicts the steps necessary to apply the tridimensional Q-grid.
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Now, in order to ensure a smooth transition over the surface of this quantized tridi-
mensional domain, the tridimensional interpolation mechanism must be introduced to
this grid. The tridimensional grid’s transitioning function for obtaining the interpolative
Q-matrix (Qs) can be expressed as follows:

Qs = QTHTM (11)

where Q is the eight nearest Q-matrices to the Qs,

Q =
[
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

]
(12)

H is a predefined constant matrix,

H =



1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0
−1 0 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
1 0 −1 0 −1 0 1 0
1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0
−1 1 1 −1 1 −1 −1 1


(13)

and M is the vector of distances related to the three axes,

M =
[
1 ∆i ∆θ ∆ω ∆i∆θ ∆θ∆ω ∆ω∆i ∆i∆θ ∆ω

]
, (14)

where ∆i = (i − i0/i1 − i0), ∆θ = (θ − θ0 / θ1 − θ0), and ∆ω = (ω − ω0 / ω1 − ω0). The
parameters of tridimensional grid transitioning are illustrated in Figure 5.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 5. The definition of tridimensional transitioning parameters. 

3. Simulation Results 
The speed change responsiveness of the VRM drive has been demonstrated using a 

simulation of the introduced control algorithm. Figure 1 illustrates the block scheme of 
the controller. 𝜔∗ and 𝑖∗ represents the optimal trajectory for the speed and the current 
respectively. There are two primary components of the controller. The first component 
trains the Q-matrices to evaluate the policy, while the second modifies the control input 
to improve the policy. Table 1 below shows the simulation results based on the machine’s 
specifications. The equivalent model of the VRM may be expressed as V = 𝑅௦𝑖 + 𝑑𝜆(𝜃, 𝑖)𝑑𝑡  (15)

T = 12 𝑖ଶ 𝑑𝐿(𝜃, 𝑖)𝑑𝜃  (16)

where 𝑅௦ represents the internal resistance of the winding and 𝜆 represents leakage flux 
for each phase derived by 𝜆 = 𝐿(𝜃, 𝑖)𝑖 . 𝐿  donates the inductance variations which de-
pends on the rotor angle (𝜃) and the stator current (𝑖). The control’s sampling period has 
been set at 100 µs. A stabilizing voltage signal is used to initialize the algorithm. The initial 
augmented state and voltage gains are denoted as 𝑋଴ = [0 0]் and 𝐾଴ = [1 −1]், re-
spectively. The performance index is calculated with Q determined to be 100 and R deter-
mined to be 0.001 as the parameters. The discount factor is chosen to be 0.9. The reference 
current model generates a series of pulses having a maximum amplitude of 4 A. The al-
gorithm gathers 10 data tuples from the system trajectory at each Q-core in order to train 
the Q-matrix. The algorithms have been evaluated for both bidimensional and tridimen-
sional Q-grids to illustrate the distinctions between the two. 

Table 1. The specification of the VRM. 

Parameters Amount 
Phase 3 

Stator-poles/Rotor-poles 12/8 
Rated power 0.7 HP 

Stator resistance 2 Ω 
Maximum inductance 16.6 mH 
Minimum inductance 6 mH 

  

Figure 5. The definition of tridimensional transitioning parameters.

3. Simulation Results

The speed change responsiveness of the VRM drive has been demonstrated using a
simulation of the introduced control algorithm. Figure 1 illustrates the block scheme of
the controller. ω∗ and i∗ represents the optimal trajectory for the speed and the current
respectively. There are two primary components of the controller. The first component
trains the Q-matrices to evaluate the policy, while the second modifies the control input
to improve the policy. Table 1 below shows the simulation results based on the machine’s
specifications. The equivalent model of the VRM may be expressed as
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V = Rsi +
dλ(θ, i)

dt
(15)

T =
1
2

i2
dL(θ, i)

dθ
(16)

where Rs represents the internal resistance of the winding and λ represents leakage flux for
each phase derived by λ = L(θ, i)i. L donates the inductance variations which depends on
the rotor angle ( θ) and the stator current ( i). The control’s sampling period has been set at
100 µs. A stabilizing voltage signal is used to initialize the algorithm. The initial augmented
state and voltage gains are denoted as X0 = [0 0]T and K0 = [1 −1]T , respectively. The
performance index is calculated with Q determined to be 100 and R determined to be 0.001
as the parameters. The discount factor is chosen to be 0.9. The reference current model
generates a series of pulses having a maximum amplitude of 4 A. The algorithm gathers
10 data tuples from the system trajectory at each Q-core in order to train the Q-matrix.
The algorithms have been evaluated for both bidimensional and tridimensional Q-grids to
illustrate the distinctions between the two.

Table 1. The specification of the VRM.

Parameters Amount

Phase 3

Stator-poles/Rotor-poles 12/8

Rated power 0.7 HP

Stator resistance 2 Ω

Maximum inductance 16.6 mH

Minimum inductance 6 mH

3.1. Speed Regulator of Tridimensional Q-Grid Algorithm

The current control was initially tested to ensure the output current traced the reference
current (Figure 6). The speed was set to 60 RPM and exhibited a transient response until it
reached the appropriate level due to the learning process. Moreover, the speed was altered
to 100 RPM at 0.55 s after a specific cycle. As a result, the Q-matrices must be retrained
in reaction to that change. Figure 7 exhibits the behavior of the stator current during the
speed change.
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3.2. Speed Regulator Using Tridimensional Q-Grid Learning Algorithm

The tridimensional Q-grid is implemented in this test. During training, when the rotational
speed is increased from 60 to 100 RPM, the speed responds quickly and remains stable. Figure 8
depicts the conduct of the current at the moment that the motor speed modified. Due to the
presence of the speed axis in the Q-grid, it is unnecessary to retrain the Q-matrices when the
speed changes every 0.6 s. After the algorithm has been initialized and the Q-grid has adapted
to the plant, the controller will use the plane corresponding to the recorded speed. Consequently,
at any given speed, the controller will use the optimal Q values with no requirement of re-
adaptation. Figure 9 depicts the behavior of the input voltage as the speed varies.
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4. Experimental Results

In this section, an experiment to study the proposed speed regulator while using the
policy iteration learning control method is presented. The structure and the components of
the experiment are shown in Figure 10. After the algorithm’s code is tested, it is connected
to the control board, which contains a reliable microcontroller to handle the rapid switching
frequency. The parameters of SRM used in the experiment are the same as used in the
simulation results (Table 1) with a DC voltage of 100 V. An asymmetric bridge topology,
which involves two transistor and two diodes per phase, has been designed for this
experiment. In addition, the DC machine is connected to the SRM as a mechanical load. In
this test, initially, when the rotational speed has been changed, the speed regulator using
the bidimensional method along with current was not stable because of training procedure
(Figure 11a). When the Q-matrices are completely trained after certain time steps, the speed
is considered “learned” and becomes stable at a constant value. The zoomed version of the
proposed algorithm, which uses the tridimensional scheme, is illustrated in Figure 11b. The
policy iteration learning algorithm along with tridimensional lookup grid includes motor
speed variations within the planned domain; thus, when a rotational speed is changed by
adding mechanical load torque, the speed responds very fast compared to bidimensional
algorithm, since it does not need further steps of learning to do so. For the purpose of
demonstrating the speed regulator between the policy iteration learning transitioning
regulator and the conventional regulator, hysteresis control has been added to this test. To
showcase the uniqueness of the proposed method, a model-free policy iteration control
can effectively adjust the speed in merely four cycles, typically under 15 milliseconds.
This rapid response highlights the efficiency of the method. Furthermore, the technique
significantly reduces pulsations compared to the traditional hysteresis method, ensuring
smoother operation. It also eliminates the need for retraining when speed changes, which
enhances its practicality in dynamic environments. Additionally, the controller requires no
tuning, even if the VRM parameters change due to factors such as aging or variations in air
gaps. The continuous online training ensures that the system remains adaptive and robust,
maintaining optimal performance without manual adjustments.
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5. Conclusions

This research introduced a novel speed regulator using an adaptive online transitioned
policy iteration technique for the variable reluctance motor drive. After presenting the
learning algorithm, a novel interpolation transitioning technique has been incorporated
into the proposed controller to implement a linear controller in a highly nonlinear system.
This control technique gives exceptional tracking performance for the VRM. The primary
disadvantage of employing a bidimensional algorithm for the proposed controller was
its response to speed changes. Since the controller’s motor speed was not included in
the inductance surface model of the machine, any change in speed necessitated a forced
retraining of the local Q-cores. In this research, a three-dimensional grid has been used to
address this issue. The tridimensional algorithm enables access to the motor speed and
its modification without retraining. In addition, a tridimensional interpolation was added
to this tridimensional grid to smooth out the transitions of the controller across the local
learning centers. Lastly, the simulation and experimental results illustrated the behavior of
the VRM’s speed when employing tridimensional policy iteration learning algorithm. The
proposed algorithm successfully regulated the machine’s speed and significantly reduced
current oscillations without the need for additional procedures to handle the model’s
inherent nonlinearity. By eliminating the necessity for complex compensatory mechanisms,
the algorithm demonstrates a streamlined and efficient approach to speed control. This
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innovation simplifies the control process, making it more robust and adaptable to varying
operational conditions.

Funding: This research was funded by the Qassim University, under grant number QU-APC-2024-9/1.

Data Availability Statement: The original data presented in the study are included in the article,
further inquiries can be directed to the corresponding author.

Acknowledgments: The Researchers would like to thank the Deanship of Graduate Studies and
Scientific Research at Qassim University for financial support (QU-APC-2024-9/1). The researcher
would also like to express gratitude to the colleagues at the G2 Power Lab, Department of Electrical
Engineering, Missouri University of Science and Technology, for their assistance in preparing the
experimental setup for this paper.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Valdivia, V.; Todd, R.; Bryan, F.J.; Barrado, A.; Lázaro, A.; Forsyth, A.J. Behavioral Modeling of a Switched Reluctance Generator

for Aircraft Power Systems. IEEE Trans. Ind. Electron. 2013, 61, 2690–2699. [CrossRef]
2. Kawa, M.; Kiyota, K.; Furqani, J.; Chiba, A. Acoustic Noise Reduction of a High-Efficiency Switched Reluctance Motor for Hybrid

Electric Vehicles with Novel Current Waveform. IEEE Trans. Ind. Appl. 2018, 55, 2519–2528. [CrossRef]
3. Chen, H.; Yan, W.; Gu, J.J.; Sun, M. Multiobjective Optimization Design of a Switched Reluctance Motor for Low-Speed Electric

Vehicles with a Taguchi–CSO Algorithm. IEEE/ASME Trans. Mechatron. 2018, 23, 1762–1774. [CrossRef]
4. Kiyota, K.; Chiba, A. Design of Switched Reluctance Motor Competitive to 60-KW IPMSM in Third-Generation Hybrid Electric

Vehicle. IEEE Trans. Ind. Appl. 2012, 48, 2303–2309. [CrossRef]
5. Yan, N.; Cao, X.; Deng, Z. Direct Torque Control for Switched Reluctance Motor to Obtain High Torque–Ampere Ratio. IEEE

Trans. Ind. Electron. 2019, 66, 5144–5152. [CrossRef]
6. Isfahani, A.H.; Fahimi, B. Comparison of Mechanical Vibration between a Double-Stator Switched Reluctance Machine and a

Conventional Switched Reluctance Machine. IEEE Trans. Magn. 2014, 50, 293–296. [CrossRef]
7. Jia, C.; He, H.; Zhou, J.; Li, J.; Wei, Z.; Li, K. Learning-Based Model Predictive Energy Management for Fuel Cell Hybrid Electric

Bus with Health-Aware Control. Appl. Energy 2024, 355, 122228. [CrossRef]
8. Gobbi, R.; Ramar, K. Optimisation Techniques for a Hysteresis Current Controller to Minimise Torque Ripple in Switched

Reluctance Motors. IET Electr. Power Appl. 2009, 3, 453. [CrossRef]
9. Shao, B.; Emadi, A. A Digital PWM Control for Switched Reluctance Motor Drives. In Proceedings of the 2010 IEEE Vehicle

Power and Propulsion Conference, Lille, France, 1–3 September 2010; pp. 1–6.
10. Schulz, S.E.; Rahman, K.M. High-Performance Digital PI Current Regulator for EV Switched Reluctance Motor Drives. IEEE

Trans. Ind. Appl. 2003, 39, 1118–1126. [CrossRef]
11. Ye, J.; Malysz, P.; Emadi, A. A Fixed-Switching-Frequency Integral Sliding Mode Current Controller for Switched Reluctance

Motor Drives. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 3, 381–394. [CrossRef]
12. Lukic, S.M.; Emadi, A. State-Switching Control Technique for Switched Reluctance Motor Drives: Theory and Implementation.

IEEE Trans. Ind. Electron. 2010, 57, 2932–2938. [CrossRef]
13. Lin, Z.; Reay, D.; Williams, B.; He, X. High-Performance Current Control for Switched Reluctance Motors Based on on-Line

Estimated Parameters. IET Electr. Power Appl. 2010, 4, 67–74. [CrossRef]
14. Akcayol, M.A. Application of Adaptive Neuro-Fuzzy Controller for VRM. Adv. Eng. Softw. 2004, 35, 129–137. [CrossRef]
15. Alharkan, H.; Shamsi, P.; Saadatmand, S.; Ferdowsi, M. Q-Learning Scheduling for Tracking Current Control of Switched

Reluctance Motor Drives. In Proceedings of the 2020 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA,
27–28 February 2020; pp. 1–6.

16. Alharkan, H.; Saadatmand, S.; Ferdowsi, M.; Shamsi, P. Optimal Tracking Current Control of Switched Reluctance Motor Drives
Using Reinforcement Q-Learning Scheduling. IEEE Access 2021, 9, 9926–9936. [CrossRef]

17. Alharkan, H. Adaptive Dynamic Programming Methods for Tracking Current Control of Switched Reluctance Motor Drive; Scholars Mine:
Rolla, MI, USA, 2021.

18. Lewis, F.L.; Vrabie, D.; Syrmos, V.L. Optimal Control; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 1118122720.
19. Kiumarsi, B.; Lewis, F.L.; Modares, H.; Karimpour, A.; Naghibi-Sistani, M.-B. Reinforcement Q-Learning for Optimal Tracking

Control of Linear Discrete-Time Systems with Unknown Dynamics. Automatica 2014, 50, 1167–1175. [CrossRef]
20. Kiumarsi-Khomartash, B.; Lewis, F.L.; Naghibi-Sistani, M.-B.; Karimpour, A. Optimal Tracking Control for Linear Discrete-Time

Systems Using Reinforcement Learning. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy,
10–13 December 2013; pp. 3845–3850.

21. Lewis, F.L.; Vrabie, D. Reinforcement Learning and Adaptive Dynamic Programming for Feedback Control. IEEE Circuits Syst.
Mag. 2009, 9, 32–50. [CrossRef]

https://doi.org/10.1109/TIE.2013.2276768
https://doi.org/10.1109/TIA.2018.2888847
https://doi.org/10.1109/TMECH.2018.2839619
https://doi.org/10.1109/TIA.2012.2227091
https://doi.org/10.1109/TIE.2018.2870355
https://doi.org/10.1109/TMAG.2013.2286569
https://doi.org/10.1016/j.apenergy.2023.122228
https://doi.org/10.1049/iet-epa.2008.0191
https://doi.org/10.1109/TIA.2003.814580
https://doi.org/10.1109/JESTPE.2014.2357717
https://doi.org/10.1109/TIE.2009.2038942
https://doi.org/10.1049/iet-epa.2009.0016
https://doi.org/10.1016/j.advengsoft.2004.03.005
https://doi.org/10.1109/ACCESS.2021.3050167
https://doi.org/10.1016/j.automatica.2014.02.015
https://doi.org/10.1109/MCAS.2009.933854


World Electr. Veh. J. 2024, 15, 421 14 of 14

22. Reinforcement Learning and Feedback Control: Using Natural Decision Methods to Design Optimal Adaptive Controllers. IEEE
Control Syst. 2012, 32, 76–105. [CrossRef]

23. Werbos, P.J.; Miller, W.T.; Sutton, R.S. A Menu of Designs for Reinforcement Learning over Time. In Neural Networks of Control;
MIT Press: Cambridge, MA, USA, 1995; pp. 67–95.

24. Liu, D.; Lewis, F.L.; Wei, Q. Editorial Special Issue on Adaptive Dynamic Programming and Reinforcement Learning. IEEE Trans.
Syst. Man. Cybern. Syst. 2020, 50, 3944–3947. [CrossRef]

25. Matwankar, C.S.; Pramanick, S.; Singh, B. Position Sensorless Torque Ripple Control of Switched Reluctance Motor Drive Using
B-Spline Neural Network. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society,
Toronto, ON, Canada, 13–16 October 2021; pp. 1–6.

26. Kiumarsi, B.; Lewis, F.L. Actor–Critic-Based Optimal Tracking for Partially Unknown Nonlinear Discrete-Time Systems. IEEE
Trans. Neural Netw. Learn. Syst. 2015, 26, 140–151. [CrossRef]

27. Buriakovskyi, S.; Maslii, A.; Tyshchenko, A. Synthesis of the Speed Controller of the Switched Reluctance Motor. In Systems,
Decision and Control in Energy V; Springer: Berlin/Heidelberg, Germany, 2023; pp. 179–193.

28. Sun, X.; Xiong, Y.; Yao, M.; Tang, X. A Hybrid Control Strategy for Multimode Switched Reluctance Motors. IEEE/ASME Trans.
Mechatron. 2022, 27, 5605–5614. [CrossRef]

29. Feng, L.; Sun, X.; Yang, Z.; Diao, K. Optimal Torque Sharing Function Control for Switched Reluctance Motors Based on Active
Disturbance Rejection Controller. IEEE/ASME Trans. Mechatron. 2023, 28, 2600–2608. [CrossRef]
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