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Abstract: Hybrid electric vehicles (HEVs) are set to play a critical role in the future of the automotive
industry. To operate efficiently, HEVs require a robust energy management strategy (EMS) that
decides whether the vehicle is powered by the engine or electric motors while managing the battery’s
state of charge. The EMS must rapidly adapt to driver demands and optimize energy usage, ideally
predicting battery charge rates and fuel consumption to adjust the powertrain in real time, even under
unpredictable driving conditions. As HEVs become more prevalent, EMS technologies will advance
to improve predictive capabilities. This analysis provides an overview of current EMS systems,
including both rule-based and optimization-based approaches. It explores the evolution of EMS
development through a technology roadmap, highlighting the integration of advanced algorithms
such as reinforcement learning and deep learning. The analysis addresses the technologies that
underly this evolution, including machine learning, cloud computing, computer vision, and swarm
technology. Key advances and challenges in these technologies are discussed, along with their
implications for the next generation of EMS systems for HEVs. The analysis of these technologies
indicates that they will play a key role in the evolution of EMS technology, allowing it to better
optimize driver needs and fuel economy.

Keywords: energy management systems; technology roadmap; deep learning; reinforcement learning;
hybrid electric vehicles

1. Introduction

The automotive industry has been powered by the internal combustion engine for
over a century. However, the industry is moving away from traditional internal combustion
engines due to concerns about climate change and foreign oil dependence [1]. Recently,
many countries have banned the sale of automobiles that use only internal combustion
engines due to harmful emissions [2]. While the end goal is for the entire automotive
sector to transition to electric vehicles (EVs) powered by renewable energy, this shift is
currently limited by the cost of batteries and the associated vehicle range [3]. Meanwhile,
hybrid electric vehicles (HEVs) can achieve many of the advantages of EVs while avoiding
issues related to range. HEVs use both an internal combustion engine and a battery/motor
assembly to power the vehicle [4].

Inherent in HEVs is their energy management strategy (EMS), which sets the condi-
tions for when the vehicle is powered by the engine versus the battery/motor assembly. The
EMS plays a key role in ensuring the vehicle operates under optimal conditions to minimize
fuel consumption. The goal of this review paper is to provide a technology roadmap for
the EMSs used in HEVs. It first discusses the significance and current state of the EMSs in
modern HEVs. It then develops a technology roadmap for future EMSs based on market
trends. This paper then presents a comprehensive review of the technologies driving the
evolution of EMSs, including machine learning, computer vision, cloud computing, and
swarm technology. These technologies are discussed in relation to EMSs, with a particular
focus on how their advances affect overall fuel and energy consumption.
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2. Overview of Energy Management Systems
2.1. Importance of Hybrid Technologies

In theory, EVs offer better performance, lower operating costs, and help achieve carbon
neutrality when compared to traditional vehicles. However, they also come with significant
challenges. One of the biggest issues is the size and cost of the requisite battery pack [5].
Currently, these packs use Li-ion batteries with an energy density of about 220 Whr/kg.
For example, the Tesla Model S has a 120 kWh battery pack weighing roughly 540 kg [6].
At a cost of USD 118 per kWh, this results in a USD 14,160 battery pack for the Model S [7].
The high cost of the battery pack makes EVs prohibitively expensive for many consumers.

Another issue is the weight of the battery pack, which affects the vehicle’s overall
energy consumption since the power required for locomotion scales with vehicle weight [8].
For example, a Toyota Camry weighs 1545 kg [9], whereas a Tesla Model S weighs about
2045 kg [10]. This 32% weight increase leads to an estimated 25% rise in the amount of
power required for locomotion. In traditional vehicles, energy is generated onboard by the
engine. In EVs, energy is produced off-site and stored in the battery, but this introduces
inefficiencies, such as transmission and charging losses, each about 90% efficient [11].
Therefore, a Tesla Model S requires 54% more energy from the grid than what the Toyota
Camry would need from its onboard engine. Although grid energy is generally cleaner
and more efficient, these extra demands can offset some of the environmental benefits of
EVs [11].

HEVs mitigate the cost and weight issues by using smaller battery packs and down-
sized engines. For instance, the Toyota Camry Hybrid weighs only 45 kg more than the
standard Camry since it only has a 1 kWh battery pack [12]. The minimal weight difference
means that the power required by the HEV for locomotion is comparable to the traditional
version. Additionally, the HEV benefits from regenerative braking and uses battery power
when the engine is least efficient. As a result, the fuel economy improves from 28 mpg
city/39 mpg highway to 51 mpg city/53 mpg highway [9,12]. This increase in fuel efficiency
contributes significantly to carbon neutrality goals by 2050 [13].

Assuming a mix of city and highway driving and USD 4 per gallon of gasoline, the
improved fuel economy of the hybrid Camry translates to savings of around USD 4600 over
100,000 miles compared to the non-hybrid variant of the Camry. Although these savings
may not fully offset the hybrid’s higher initial cost at present, rising fuel prices, government
incentives, and decreasing battery costs are expected to make the total cost of ownership for
HEVs lower than that of their non-electrified counterparts in the near future [14]. Moreover,
the increased fuel economy of the HEV results in a significant reduction in fossil fuels used
and carbon emitted when compared to a traditional vehicle.

2.2. Hybrid Topologies

As shown in Figure 1, HEVs typically use parallel, series, or power-split architectures
based on the engine and battery/motor configuration. Even traditional vehicles feature
a degree of hybridization, as the battery/motor starts the engine, though it doesn’t assist
with locomotion.

A series HEV is the simplest, functioning as a battery-powered EV where a generator-
driven engine supplies power to the battery or motor, which propels the wheels. Its
main advantage is weight reduction due to the absence of a mechanical transmission,
and the engine operates at its most efficient points since it is independent of driving
conditions. However, the need for a large battery, engine, and accessories increases cost,
and energy conversion inefficiencies arise from converting mechanical to electrical power
and back [15,16].

In parallel HEVs, both the engine and motor can drive the vehicle, with the EMS
selecting the most efficient power source. The motor typically propels the vehicle at low
speeds, increasing fuel economy. Meanwhile, the engine propels the vehicle at higher
speeds and loads. This architecture requires a smaller battery pack than the series design
and avoids inefficiencies related to energy conversion [17,18].
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Figure 1. The four different hybrid electric vehicle architectures.

Power-split HEVs combine series and parallel architectures for greater efficiency
in mixed driving conditions. The engine, generator, and motor are decoupled, allowing
flexible control, with power merging through mechanical and electrical paths via a planetary
gear set [17,19]. This flexibility enhances engine efficiency and control.

HEVs are further categorized into mild, plug-in, and full hybrids. Mild hybrids use a
parallel architecture, turning off the engine when braking or stopped, but do not provide
electric propulsion. Plug-in and full hybrids, using power-split designs, provide electric
propulsion. Both recharge via an onboard generator, though plug-in hybrids can also use
grid electricity. This paper focuses on EMS in plug-in and full hybrid vehicles, which are
more complex than those in mild hybrids [20,21].

2.3. Importance of Energy Management Strategies

Given that most commercial HEVs use power-split technology, the EMS is critical
because it determines engine and motor conditions to minimize fuel consumption and
emissions while still meeting the driver’s power demands [17]. Furthermore, the EMS
helps ensure that the battery bank maintains the necessary state of charge (SOC). At its most
fundamental level, an EMS takes data from various inputs, such as vehicle speed, battery
SOC, and driver demand. The EMS uses these inputs in an algorithm that determines the
power split between the engine and motor, optimizing overall vehicle performance [22].
The evolution of the EMS involves the use of more powerful algorithms to further improve
vehicle performance, efficiency, and emissions.

The EMS plays a central role in hybrid power architecture, particularly in relation
to fuel efficiency. As illustrated in Figure 2, if the EMS relies too heavily on the internal
combustion engine, the increased weight of the HEV could result in worse fuel consumption
than a comparable standard vehicle. The fuel consumption is typically quantified as miles
traveled per gallon of fuel (MPG). Conversely, if the EMS accurately predicts fuel needs
and limits engine use, the HEV can potentially achieve a better miles per gallon equivalent
(MPGe) than even EVs. Note that MPGe is a measure of how efficiently a vehicle uses
energy, expressed in terms of the distance a vehicle can travel on the amount of energy
equivalent to one gallon of gasoline. It is defined by the equation:

MPGe =
Distance Travelled [miles]
Energy Consumed [kWhr]

× Energy Content of Gasoline [kWhr/gallon].
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The potential higher MPGe for HEV compared to a similar EV is due to the smaller battery
pack of the HEV, which decreases the weight of the vehicle, resulting in a lower power
draw associated with locomotion [23].
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Figure 2. Qualitative depiction of the miles per gallon and miles per gallon equivalent for an internal
combustion engine, electric vehicle, and an HEV.

Developing an optimal EMS is challenging, primarily due to the need to balance
performance with fuel economy. The EMS must quickly respond to driver demands while
optimizing energy use, which becomes difficult in unpredictable driving conditions. Ideally,
it would accurately predict future battery charge rates and fuel consumption to adjust
the powertrain in real time. However, these predictions are complex and often imprecise,
making it hard for the EMS to effectively anticipate future driving conditions and optimize
the power split.

3. Current Energy Management Strategies
3.1. Rule-Based EMS

The most basic EMS is a rule-based EMS, which predetermines the operating states
of a hybrid system using predefined rules to manage how the system functions. These
rules are built from heuristics, intuition, human experience, and mathematical models
tailored to specific scenarios [24]. The EMS distributes power between the engine and
battery, ensuring both operate within their most efficient ranges [25].

There are two primary types of rule-based EMSs. The first is deterministic, which
controls vehicle components based on specific driving demands and system limits. This
method relies on established parameters for each component, combined with engineer-
ing experience and research data. It adjusts power distribution and component status
dynamically, responding to changes in driving conditions and system requirements [26].

The second type is a fuzzy logic-based EMS, which enhances the standard rule-based
system by incorporating fuzzy logic. Instead of focusing solely on state variables like
power demand and vehicle speed, this system also accounts for the rate of change in these
variables, offering a more nuanced approach to decision-making [26].

While rule-based strategies are effective and relatively easy to implement, they are con-
strained by specific operating conditions and lack adaptability to varying driving cycles [26].
These controllers are popular due to their simplicity and real-time application suitability,
but they often rely on basic engineering intuition, such as the charge-depleting/charge-
sustaining strategy, which is less efficient than more advanced approaches [27]. Current
rule-based EMSs struggle to account for variations in trip lengths or traffic conditions
without employing complex driving pattern recognition systems [28].

3.2. Optimization-Based Strategies

The goal of an optimization strategy is to minimize a cost function, which typically
includes emissions, fuel consumption, and torque requirements [1]. Unlike rule-based
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strategies, optimization strategies do not directly manage real-time energy usage. Instead,
they derive real-time control decisions from the vehicle’s cost function.

These algorithms typically calculate the optimal power split between the engine and
motor for a specific drive cycle. However, the solutions they produce are optimal only
for that particular cycle, which is usually represented as a set of vehicle speed points over
time [28]. Consequently, they may not be optimal or even charge-sustaining for other
driving cycles. Without predicting future driving conditions in real time, it is impossible to
directly apply these control laws during vehicle operation [29].

Optimization-based EMS can be classified into two main types. The first is global
optimization, which focuses on minimizing the cost of the entire driving condition and
applies optimal control theory to achieve a global solution. The second is instantaneous
optimization, which aims to minimize fuel consumption and other parameters at each
moment of the drive cycle [26].

For global optimization to perform at its best, it requires extensive data about the
vehicle, such as battery SOC, driving conditions, driver behavior, and route information [1].
However, due to limitations in computational methods like linear programming, dynamic
programming, and genetic algorithms, global optimization is not feasible for real-time
control. Instead, it is typically optimized for a predetermined drive cycle. While dynamic
programming (DP) can compute multi-stage optimization decisions when the entire driving
cycle is known, it is too computationally intensive for real-time application.

Instantaneous optimization strategies, such as model predictive control (MPC) and the
equivalent consumption minimization strategy (ECMS), address some of these limitations.
MPC predicts future power demand using real-time driving data and adjusts the power
distribution between the engine and battery to minimize fuel consumption. ECMS, on the
other hand, simplifies the dynamic optimization problem by minimizing equivalent fuel
consumption at each time step, turning it into an instantaneous optimization problem [30].

An alternative to optimization is a dynamic rule-based strategy, where the rule set
is continuously updated based on changing driving conditions. For example, Basma
et al. studied a dynamic rule-based EMS that incorporated elements of dynamic pro-
gramming. Their study proposed a comprehensive methodology for designing EMS in
HEVs to achieve near-optimal consumption results. They found that, for distances up to
120 km, the dynamic rule-based EMS reduced fuel consumption by 15% compared to a
basic rule-based system [31]. Although the reductions in fuel consumption were small,
even slight improvements can significantly impact overall vehicle performance. The pro-
posed controller balances the optimality of global optimization techniques with real-time
implementation [28].

3.3. Issues

While rule-based and optimization-based strategies are useful for hybrid energy
management, they are primarily based on the state-of-charge of the battery, the vehicle
speed, and the energy demands as shown in Figure 3. The input values for EMSs using
current strategies are responsive in nature, in that they reflect the current demands of the
vehicle. There are a number of parameters that they do not capture. In particular, they
do not account for the future needs of the vehicle. Additionally, they do not account for
variables external to the vehicle—to include traffic and weather—which can also impact
the overall efficiency of the vehicle. Consider the following four cases:

Case 1: A vehicle is cruising on a highway but is about to enter an urban area requiring
frequent braking. Current EMS strategies would increase engine load on the highway
to keep the batteries fully charged. However, upon entering the urban zone, if the bat-
teries are already fully charged, they cannot absorb energy from regenerative braking,
leading to wasted energy. A predictive EMS aware of the transition to urban driving could
optimize the charge level to ensure capacity for regenerative braking energy, improving
overall efficiency.
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Case 2: A vehicle is driven at low speeds over a long distance, which typically favors
electric propulsion. In a power-split or series hybrid, the engine eventually runs to recharge
the battery. However, if the driver is near home and using a plug-in hybrid, running the
engine to recharge the battery would be less efficient than simply plugging into the grid. A
predictive EMS could account for the proximity to a charging station, minimizing inefficient
engine use and saving energy for grid charging.

Case 3: A vehicle operates at medium speed, favoring electric propulsion, but encoun-
ters a significant traffic jam where it will be idling for an extended period. Without foresight,
the batteries may drain during idle time, forcing the engine to compensate. A predictive
EMS, aware of the upcoming congestion, could have prioritized engine use before the jam
to keep the batteries charged, reducing idling emissions and energy consumption.

Case 4: A vehicle is approaching an extended uphill climb. Running the engine in
hybrid mode during the ascent will strain the system, causing inefficient energy usage.
With predictive awareness of the terrain, the EMS could run the engine at a higher load
before reaching the climb to build up energy reserves, allowing the vehicle to tackle the hill
more efficiently using stored battery power.
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In all four cases, increased efficiencies can be realized through an EMS that uses pre-
dictive analysis, understanding driver behavior, and external entities to predict upcoming
power needs.

4. Technology Roadmap

Given the issues discussed in the previous section, the EMS will evolve to better
optimize fuel consumption and vehicle performance. Figure 4 displays a projected roadmap
for the EMS for HEVs based on the evolution of the underlying technologies. In particular,
the current rule-based and optimization-based EMSs will be replaced with more advanced
versions that can adapt to a driver’s habits. Over the long term, EMS will evolve to include
numerous external factors, including traffic and weather. Each of these stages of EMS
technology will be discussed in the subsequent sections.
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“Long-term” in this roadmap is loosely defined as being 20 years out. By the end
of that period, HEVs may become obsolete to fully electric vehicles with new battery
chemistries [32]. These batteries will eliminate the weight and cost issues associated with
lithium-ion batteries. Further, roadmaps past 20 years for a rapidly changing field carry
significant uncertainty.

A summary of each EMS is given in Table 1, including their positive and negative
characteristics. The near- and mid/long-term EMSs are discussed in detail in the follow-
ing sections.

Table 1. Summary of different energy management strategies.

EMS Positives Negatives

Rule-Based
Simple with minimal
computational power.
Uses existing technology.

Does not account for future driver
needs or individual driving habits.

Optimization-Based Improved fuel efficiency
compared to rule-based EMS.

More computationally intensive
than rule-based EMS. Does not
account for future driver needs or
individual driving habits.

Reinforcement-Based
Learning

Improved fuel efficiency from
predicting future states.
Behavior tailored to
individual driver.

Computationally intensive and
difficult to achieve real-time control.
Uncertainty in future driver
need predictions.

Deep Learning-Based

Improved fuel efficiency from
predicting future states with
reducing uncertainty in future
state predictions.

Computationally intensive and
difficult to achieve real-time control.

4.1. Near-Term EMS

Current rule-based and optimization-based EMSs do not account for individual driv-
ing habits. However, in the near term, EMSs will be able to adapt to unique driving
conditions, as shown in Figure 5. In particular, reinforcement learning (RL)-based EMSs
are one of the newest ways to manage energy. This strategy learns from historical data
and uses the previous driving data for learning and application. A RL-based EMS can be
implemented to derive the optimal control policy by using inputs such as vehicle speed,
driver power demand, and SOC to determine the engine power. This approach adapts to
unpredictable driving cycles and achieves lower fuel consumption compared to dynamic
programming [33].

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW  8  of  18 
 

 

Figure 5. State diagram for near‐term EMS for HEV. 

At  its core, an RL system consists of  two main elements: a  learning agent and an 

environment.  The  agent  continuously  interacts with  the  environment,  receiving  com‐

mands and selecting actions based on those inputs. When the agent takes an action, the 

environment shifts to a new state, and a reward corresponding to the transition is calcu‐

lated and sent back to the agent [34]. The goal of RL is for the agent to maximize its total 

reward, or end goal, by  learning how to effectively  interact with the environment [35]. 

This cycle repeats continuously. While RL has many advantages, it also has notable chal‐

lenges. Excessive use of RL can lead to an overload of possible states, diminishing its ef‐

fectiveness. It is also known for being “data‐hungry”, requiring constant data and com‐

putation. Additionally, RL systems often have to learn from a scalar reward signal, which 

can be sparse, noisy, or delayed, making the learning process more difficult [27]. 

A  growing  trend  is  the  combination  of RL with deep  learning  (DL),  a  technique 

known as deep reinforcement learning (DRL). While both DL and RL are forms of machine 

learning, they operate differently; DL involves learning from a training set and applying 

that knowledge to new data, whereas RL focuses on learning through trial and error [36]. 

DL  identifies patterns  in  the data by analyzing current  information and  teaching algo‐

rithms to recognize important features. When combined, DRL systems prevent the over‐

load of states while retaining the adaptability needed for dynamic environments. DRL is 

widely used in areas such as robotics, HVAC control systems, ramp metering, and more. 

In the automotive sector, it has been applied to technologies like lane‐keeping assistance 

and autonomous braking systems. 

4.2. Mid/Long‐Term EMS 

Figure 6 displays the state diagram for the mid/long‐term EMS for HEV. The major 

change from the near‐term systems is that in the long‐term, the EMS will be off‐loaded 

from the vehicle through the use of cloud‐computing. In doing so, the system can take 

multiple complex inputs from external sources, such as traffic and weather. With the pro‐

cessing partially off‐loaded, the EMS can then fuse all of this data with onboard vehicle 

data to account for individual driving behaviors [37]. 

Additionally,  the EMS can  take  in data  from other vehicles  in  the area, especially 

those that are ahead of the current vehicle. In doing so, the EMS can receive data that may 

not necessarily be available through traffic data or from onboard sensors. For example, 

the system would be able to identify the instant that the vehicle in front of it starts to brake. 

Moreover, the EMS could detect when additional, unpredicted loads may be placed on 

the vehicle, such as a wind gust or a change in road grade. The connectivity between the 

vehicles becomes much more useful as other systems, such as autonomous driving, be‐

come more prevalent in vehicles. 

Energy 
Management 

Strategy

On-Board Vehicle

Feedback / Reward

Figure 5. State diagram for near-term EMS for HEV.

At its core, an RL system consists of two main elements: a learning agent and an envi-
ronment. The agent continuously interacts with the environment, receiving commands and
selecting actions based on those inputs. When the agent takes an action, the environment
shifts to a new state, and a reward corresponding to the transition is calculated and sent
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back to the agent [34]. The goal of RL is for the agent to maximize its total reward, or end
goal, by learning how to effectively interact with the environment [35]. This cycle repeats
continuously. While RL has many advantages, it also has notable challenges. Excessive
use of RL can lead to an overload of possible states, diminishing its effectiveness. It is also
known for being “data-hungry”, requiring constant data and computation. Additionally,
RL systems often have to learn from a scalar reward signal, which can be sparse, noisy, or
delayed, making the learning process more difficult [27].

A growing trend is the combination of RL with deep learning (DL), a technique
known as deep reinforcement learning (DRL). While both DL and RL are forms of machine
learning, they operate differently; DL involves learning from a training set and applying
that knowledge to new data, whereas RL focuses on learning through trial and error [36].
DL identifies patterns in the data by analyzing current information and teaching algorithms
to recognize important features. When combined, DRL systems prevent the overload of
states while retaining the adaptability needed for dynamic environments. DRL is widely
used in areas such as robotics, HVAC control systems, ramp metering, and more. In the
automotive sector, it has been applied to technologies like lane-keeping assistance and
autonomous braking systems.

4.2. Mid/Long-Term EMS

Figure 6 displays the state diagram for the mid/long-term EMS for HEV. The major
change from the near-term systems is that in the long-term, the EMS will be off-loaded from
the vehicle through the use of cloud-computing. In doing so, the system can take multiple
complex inputs from external sources, such as traffic and weather. With the processing
partially off-loaded, the EMS can then fuse all of this data with onboard vehicle data to
account for individual driving behaviors [37].
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Additionally, the EMS can take in data from other vehicles in the area, especially those
that are ahead of the current vehicle. In doing so, the EMS can receive data that may not
necessarily be available through traffic data or from onboard sensors. For example, the
system would be able to identify the instant that the vehicle in front of it starts to brake.
Moreover, the EMS could detect when additional, unpredicted loads may be placed on
the vehicle, such as a wind gust or a change in road grade. The connectivity between the
vehicles becomes much more useful as other systems, such as autonomous driving, become
more prevalent in vehicles.

Meanwhile, the onboard sensing systems will leverage improved machine learning
algorithms to include several new sensors. In particular, advances in computer vision will
allow the hybrid EMS to make well informed decisions based on processing images of the
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road. The image can provide real-time traffic data that can be fed into the EMS, allowing it
to adjust the energy strategy accordingly.

4.3. Comparison to Other Studies

Given the critical role of HEVs and their EMS, several comprehensive reviews have
examined both current and future developments in EMS technologies. For example, Saiteja
et al. provided a thorough evaluation of existing rule-based and optimization-based
EMSs, emphasizing the challenge of balancing model robustness with computational
simplicity [38]. Their review highlighted the increasing complexity of future EMSs, which
will need to integrate data from infrastructure, geographic information systems, and other
vehicles to optimize energy management. This integration will demand more sophisticated
predictive models while maintaining computational efficiency.

A similar study by Zhang et al. extended these insights by examining the incorpo-
ration of intelligent transportation systems into the EMS frameworks [39]. Their analysis
predicted that data from infrastructure and other vehicles would significantly enhance
vehicle performance and efficiency. However, they noted that this increased data flow
would also introduce considerable computational complexity, presenting new challenges
for EMS optimization.

Another study by Yang et al. explored conventional and future EMS approaches, focus-
ing on the integration of vehicle-to-vehicle and vehicle-to-infrastructure connections [21].
Their study underscored the value of DRL algorithms, which offer greater flexibility than
traditional rule-based or optimization-based systems. By considering multiple param-
eters simultaneously, DRL allows EMSs to dynamically adapt, improving both vehicle
performance and efficiency.

All of these studies point to a common trend: future EMSs will require the ability to
process vast amounts of external data from vehicles, infrastructure, and geospatial sources
to better predict driving conditions and optimize energy management. This is in line
with the technology roadmap presented in this paper, where the focus is on leveraging
additional information to achieve more comprehensive and accurate EMS predictions.

While the other reviews in the literature provide valuable insights into the evolution
of EMS, this study takes a different approach. Rather than merely focusing on current
EMS challenges and the benefits of future EMS systems, this study explores the natural
progression of EMS as it begins to harness cutting-edge advancements in machine learning,
cloud computing, computer vision, and swarm technologies. These advancements will
enable future EMSs to become more adaptive, capable of real-time optimizations, and
ultimately more effective in balancing performance and energy efficiency. This study not
only looks at the future potential of EMS but also highlights how it will fundamentally
change as new technologies continue to shape its development.

5. Research Advances

The evolution of the EMS for HEVs will leverage advances in a number of technology
fields. Table 2 lists out the relevant technology fields and their impact. These include
machine learning, cloud computing, computer vision, and swarm theory.

Table 2. Different technology fields and the impact that they will have on energy management strategies.

Technology Field Impact

Machine Learning Custom EMS algorithms that evolve with driver behavior
Cloud Computing Processing of large data and combining onboard and off-board sensors
Computer Vision Predictive modeling of driving behavior
Swarm Technology New optimization algorithms for EMS

5.1. Machine Learning

Artificial intelligence (AI) algorithms allow a computer to collect and process infor-
mation similar to human intelligence. Machine learning (ML) is a type of AI that allows
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computers to effectively learn through algorithms that evolve as more data are collected [31].
ML is used in a variety of technology fields, including data analytics and cyber security;
it has the potential to allow the EMS to improve its algorithms based on driver behavior,
traffic patterns, and weather. In particular, ML algorithms underlie DRL-based EMSs.

A research team from UC Riverside attempted to implement a DRL-based EMS into
plug-in hybrid vehicles with limited success [40]. The largest issue was that the algorithms
included a substantial delay time to modify the vehicle behavior. As such, the results from
the study indicated that this EMS worked well in routes that were without variation. While
ideal for public transportation, where vehicles have an identical route every day, this would
cause issues for general automotive usage.

Hu et al. developed a system model for a DRL-based EMS in an HEV [27] to au-
tonomously learn the optimal policy based on data inputs. The study used ADVISOR, a
software that models vehicle powertrains, to model the DRL-based EMS for the HEV [27].
The researchers combined both online and offline learning techniques by training the deep-
reinforced neural network offline under the urban dynamometer driving schedule and then
applying the online learning under the new European driving cycle. The study found an
eight percent improvement in fuel economy for the urban drive cycle and a three percent
improvement for the highway drive cycle. These improvements are due to the DRL-based
EMS being able to optimize the powertrain operations over the large variations seen in the
urban drive cycle; meanwhile, the variations in the highway drive cycle are less substantial.

A number of different research teams are evaluating ML algorithms that can further
support the development of a DRL EMS. In particular, these studies seek to improve the fuel
efficiency of the vehicle through an improved EMS while reducing the computation time,
making the EMS more responsive. Sun et al. used a soft actor–critic scheme that sought to
maximize fuel economy while still maintaining a degree of flexibility such that the algorithm
was adaptable to set operating conditions [41]. Another study by Lin et al. used an adaptive
hierarchical management strategy, which is an advanced data-driven algorithm [42]. This
study found similar fuel consumption to a rule-based EMS, however, with better vehicle
performance. Liu et al. and Zhou et al. used a twin delayed deep deterministic policy
gradient, which optimized the EMS through penalizing irrational actions [43,44]. Both
studies built a number of simulations that found a substantial computational reduction
coupled with approximately a five percent improvement in fuel consumption. Meanwhile,
Tang et al. used a double DRL EMS, which sought to control the engine and transmission
separately, resulting in a significant improvement in computational efficiency and a modest
reduction in fuel consumption [45].

Using ML to support RL and DRL in EMS for HEVs offers clear advantages, but
several significant challenges need to be addressed. One of the primary difficulties is
the requirement for large volumes of high-quality, diverse data to train the ML models
effectively. In the context of HEVs, gathering data that accurately represents the broad range
of driving conditions, weather variations, and vehicle states is a complex task. Incomplete
or biased data can lead to models that underperform or fail to generalize to real-world
scenarios. Moreover, creating comprehensive datasets can be costly and time-consuming,
particularly when simulating rare or extreme driving conditions necessary for training
robust RL and DRL models.

Another challenge lies in the computational complexity of ML-augmented RL and
DRL algorithms. These models often require significant processing power and memory,
which can hinder their ability to operate in real-time within the hardware-constrained
environments typical of vehicles. Ensuring that these systems remain responsive without
compromising on performance or accuracy is difficult. Additionally, safety and robustness
remain concerns, especially in unpredictable or edge case scenarios. RL and DRL models
may behave unpredictably when confronted with conditions they have not encountered
during training, which could lead to unsafe decisions or actions. Balancing exploration and
exploitation, a key challenge in RL, becomes even more critical in real-world applications
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where mistakes can lead to costly or dangerous outcomes, requiring advanced methods to
ensure system safety while maintaining optimal performance.

5.2. Cloud Computing

Cloud computing moves data into the cloud for on-demand processing, decreasing
the onboard processing requirements. It is an efficient method of processing a large amount
of data, especially when compiling data from numerous different sources [46]. Cloud
computing would allow for rapid processing of data for a vehicle to determine how to
optimize the EMS. Further, it also allows for the optimization of a group of vehicles as
opposed to a single vehicle.

A study by Hu et al. proposed that traffic information and cloud computing in
intelligent transportation systems can enhance HEV energy management since vehicles
obtain real-time data through intelligent infrastructures and/or connected vehicles [27].
The study proceeded to develop and assess a series of RL algorithms that incorporate this
external data into an HEV EMS [26]. A study by Du et al. found similar results when
incorporating traffic data through cloud computing [47].

Several other research groups have studied the incorporation of off-board sensors for
a hybrid EMS. A study by Liu et al. integrated cloud computing with RL and DRL for
hybridized tracked vehicles [48]. In their analysis, they used a parallel processing scheme,
where a cloud-based EMS receives real-time data from the vehicle, which in turn generates
artificial data to better train the onboard EMS. Their study found a savings in fuel economy
of approximately 10 percent for their scheme when compared to conventional RL methods.
Zhang et al. identified cloud computing as having the processing power necessary to
determine a global optimization in real-time [49]. Further, they found that cloud computing
could allow the vehicle to optimize fuel economy and battery state of health, which is
difficult to do with localized computing. Another study by Hou and Song used cloud
computing to optimize battery usage and degradation. In their study, they identified that
cloud computing allows for external inputs that can provide for predictive analysis [50].

Leveraging cloud computing to support EMS for HEVs offers significant benefits
but also presents several challenges. Cloud computing can provide virtually unlimited
computational power and storage, allowing EMS to process large datasets, run complex
simulations, and optimize energy management strategies in real-time. This capability can
enhance decision-making, leading to more efficient fuel consumption, improved battery
management, and overall better vehicle performance. Furthermore, the cloud enables
continuous updates and access to external data sources, such as weather forecasts and
traffic patterns, allowing the EMS to dynamically adjust energy strategies based on real-
world conditions. This adaptability can significantly improve energy efficiency and reduce
emissions across varying driving environments.

However, there are notable difficulties in integrating cloud computing with EMS
for HEVs. A primary concern is the reliance on stable, high-bandwidth communication
between the vehicle and the cloud, which may not always be feasible, particularly in
remote or rural areas. Latency issues can also arise, causing delays in real-time decision-
making, which is critical for optimizing energy use on the go. Additionally, ensuring
the security and privacy of data transmitted to and from the cloud is a major challenge,
as vulnerabilities in communication channels could expose sensitive vehicle or driver
information to cyberattacks. Managing data synchronization between cloud and onboard
systems is another difficulty, as any misalignment between cloud-processed decisions and
vehicle operations could lead to inefficiencies or unsafe driving conditions.

5.3. Computer Vision

Computer vision (CV) is a form of AI that allows computers to analyze images to
understand the visual world. Many of the inputs used by drivers are related to visual
cues (e.g., stop lights, heavy traffic, off-ramps). As such, computer vision would allow
for the vehicle to take in similar inputs as a driver and make realistic real-time changes
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to the EMS to accommodate perturbations in driving needs [51]. Similarly, autonomous
driving algorithms coupled with CV are also continuing to improve and provide more
robust accommodations for changes in traffic patterns, weather, and driving needs.

Several studies have looked at incorporating computer vision with the EMS. A study
from Wang et al. found an improvement in fuel economy of 4.3–8.8 percent for DRL
algorithms with the inclusion of visual information based on simulated highway and urban
drive cycles [52]. Their study included traffic as well as stop lights that were assessed
through visual means. A schematic of their study is shown in Figure 7. Other studies on
computer vision have found similar improvements in fuel economy. Research by Chen et al.
identified that a 10 percent reduction in fuel economy is possible, with no processing lag,
by using cameras to identify road types and conditions [51]. Another study by Zhang et al.
uses computer vision to predict future vehicle propulsion needs, including potential traffic
issues, and provides that data to the EMS [53]. A research study by Tang et al. developed
models to analyze the use of computer vision with DRL to support both car following in
addition to feeding traffic data into the EMS [54].
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Figure 7. Schematic of the EMS modeled by Wang et al. [52].

Using computer vision to support EMS for HEVs offers significant advantages but also
presents unique challenges. Computer vision enables the EMS to analyze visual data from
onboard cameras and sensors, providing real-time insights into the vehicle’s surroundings.
This capability allows the EMS to make more informed decisions by detecting road condi-
tions, traffic patterns, and obstacles, helping optimize energy usage based on the driving
environment. For instance, by recognizing stop-and-go traffic or upcoming terrain changes,
the system can adjust power distribution to the electric motor and internal combustion
engine, improving fuel efficiency and battery life. Computer vision also supports advanced
driver-assistance systems, contributing to more efficient energy management by enabling
smoother driving patterns and better control over acceleration and braking.

Despite these benefits, integrating computer vision into EMS for HEVs poses several
challenges. The first challenge is the computational demand required to process high-
resolution images and video streams in real-time, especially in resource-constrained vehicle
environments. Computer vision algorithms, particularly those based on deep learning,
require significant processing power, which can strain the vehicle’s hardware and limit
real-time responsiveness. Additionally, ensuring the reliability of computer vision systems
in diverse and unpredictable conditions, such as low light, heavy rain, or fog, is a critical
concern. Vision-based EMS must be able to handle these variations while maintaining
accurate environmental perception, which is difficult to achieve consistently. Another
challenge is the potential for false positives or misinterpretation of visual data, leading to
incorrect decisions that could negatively impact energy efficiency or vehicle safety.
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5.4. Swarm Technology

Another technological field that will play a role in the long term is swarm technology.
Swarm technology allows for multiple systems to work together. Although swarm technol-
ogy is primarily aimed towards drones, some of the optimization techniques can be applied
to EMS. In particular, swarm technology is tied to vehicle-to-vehicle communication, where
the EMS can optimize globally across a group of vehicles.

Zhang et al. highlighted how swarm-based vehicle-to-vehicle (V2V) communication
can optimize future EMSs for HEVs by allowing vehicles to share real-time data, such as
speed and road conditions, to improve energy management [55]. Using a model predictive
control framework, the study optimized torque split and gearshift in parallel HEVs, en-
hancing fuel economy while minimizing gearshift frequency. By simplifying the gearshift
assumption over prediction horizons, the system achieves computational efficiency close
to traditional methods. The study found that this integration of V2V communication into
swarm-based EMS frameworks shows potential for significant improvements in real-time
energy optimization and vehicle performance.

A similar study by Baker et al. explored the use of V2V communication to develop
a more predictive EMS to improve fuel economy in HEVs [56]. By leveraging swarm
technology, multiple vehicles can share real-time data, such as speed and traffic conditions,
to enhance the accuracy of the speed prediction method, which was based on real-world
driving data and a drive cycle database. This information informed a predictive powertrain
controller to optimize engine operation. Simulations with a high-fidelity Toyota Prius
model found that this approach can improve fuel economy by up to 6% over a baseline
EMS, capturing up to 85% of the benefits of perfect speed prediction, even with real-world
prediction errors. The findings highlight the potential of integrating V2V communication
and swarm technology into predictive EMS, yielding significant gains in fuel economy
compared to strategies that rely solely on local vehicle information.

Furthermore, the optimization of swarms is complex and must account for numerous
factors internal and external to a swarm; these challenges are akin to those for optimizing
an EMS. In particular, particle swarm optimization has been found effective for optimizing
an EMS for fuel consumption [57]. For example, Wu et al. performed work to optimize an
EMS using particle swarm optimization for a plug-in hybrid vehicle [58]. Particle swarm
optimization takes a complex decision space and identifies a number of different solutions;
these solutions then move around the decision space following mathematical algorithms
to identify the optimal solution. The study by Wu et al. used this algorithm to identify
the optimal periods to run the plug-in hybrid off batteries given a broad range of external
factors, finding that this optimization strategy can result in significant fuel savings. More
recent work by Chen et al. used particle swarm optimization to optimize the operating
scheme of the EMS in real-time [57]. Their study simplified the EMS to a series of rule-
based operating conditions and optimized across these rules. Their results indicated that
their scheme could operate in near real-time and showed significant improvement over
traditional rule-based schemes. Similar studies have found particle-swarm optimization to
improve the EMS for fully electric vehicles [59] and hybrid fuel cell vehicles [60].

Swarm technology can greatly enhance EMS for HEVs by enabling vehicles to commu-
nicate and collaborate with each other, optimizing energy use across a network of vehicles.
This collective decision-making allows for more efficient route planning, traffic manage-
ment, and energy distribution, as vehicles can share information about road conditions,
traffic patterns, and available charging infrastructure. By functioning as part of a coordi-
nated system, HEVs can reduce energy consumption and improve battery performance,
particularly in congested urban environments where real-time coordination is essential.

However, implementing swarm technology in EMS also presents challenges. One of
the primary difficulties is maintaining reliable, low-latency communication between vehicles,
especially in high-density traffic or remote areas. Ensuring data synchronization across
multiple vehicles in dynamic environments is also complex, as delays or inconsistencies could
lead to inefficient or conflicting decisions. Additionally, securing the network of interconnected
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vehicles against cyber threats is critical, as a breach in communication protocols could disrupt
the entire swarm, leading to potential safety hazards or energy inefficiencies.

5.5. Summary of Technology Studies

Significant research has been performed on advancing the aforementioned technolo-
gies for incorporation into the EMS of HEVs. Table 3 provides a summary of the studies
discussed in the previous sections.

Table 3. Summary of relevant studies related to each technological field.

Research Ref Summary

Machine Learning
Qi et al. [40] Modeling/testing a DRL-based EMS
Hu et al. [27] Modeling/testing a DRL-based EMS
Sun et al. [41] Improved algorithms for EMS
Lin et al. [42] Improved algorithms for EMS
Liu et al. [43] Improved algorithms for EMS
Zhou et al. [44] Improved algorithms for EMS
Tang et al. [45] Improved algorithms for EMS

Cloud Computing
Hu et al. [27] Cloud computing to incorporate traffic data
Du et al. [47] Cloud computing to incorporate traffic data
Liu et al. [48] On Board / Off Board EMS data fusion
Zhang et al. [49] Cloud computing processing optimization for EMS
Hou and Song [50] Using cloud computing to optimize DRL-based EMS

Computer Vision
Wang et al. [52] Computer vision to predict driver needs
Chen et al. [51] Computer vision to identify road type / conditions
Zhang et al. [54] Computer vision to predict driver needs
Tang et al. [54] Computer vision to support DRL-based EMS

Swarm Technology
Zhang et al. [55] Swarm technology to support V2V integration into EMS
Baker et al. [56] Swarm technology to support V2V integration into EMS
Chen et al. [57] Using particle swarm optimization for DRL-based EMS
Wu et al. [58] Using particle swarm optimization for DRL-based EMS
Kachroudi et al. [59] Using particle swarm optimization for electric vehicles
Sarma et al. [60] Using particle swarm optimization for fuel cell vehicles

The integration of ML, cloud computing, computer vision, and swarm technology will
significantly advance the evolution of EMS for HEVs. ML and cloud computing will play a
crucial role in establishing and enhancing RL and DRL schemes within EMS. ML allows
for adaptive learning based on real-time and historical data, optimizing energy usage and
powertrain control to improve fuel efficiency and performance. Cloud computing, with
its vast computational resources, enables the continuous refinement of these algorithms,
allowing the EMS to adapt dynamically to changing driving conditions by leveraging
real-time data from multiple sources. Together, ML and cloud computing will facilitate
more responsive and intelligent EMS systems capable of optimizing energy management
across diverse driving scenarios.

The addition of computer vision and swarm technology into EMS will further expand
the system’s capabilities. Computer vision will enable vehicles to better understand their
surroundings by processing visual data from onboard sensors, allowing the EMS to adjust
energy strategies based on road conditions, traffic, and obstacles. Swarm technology will
support inter-vehicle communication, enabling coordinated energy management across
a fleet of HEVs. By sharing data on road conditions, traffic patterns, and charging in-
frastructure, the EMS in each vehicle can optimize its performance within a collective
network, reducing overall energy consumption. While implementing these technologies
presents challenges, substantial progress in other sectors, such as autonomous driving and
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networked systems, is paving the way for their integration into HEV EMS, providing new
opportunities for efficiency and performance improvements.

6. Conclusions and Recommendations

HEVs are expected to play a critical role in the future of the automotive industry,
serving as a bridge between current internal combustion engines and fully electric vehicles.
Given the limited readiness of global charging infrastructure and the higher build costs
of EVs, HEVs represent the best option in the near term for certain geographical locations
and user groups. HEVs offer a cleaner alternative to traditional vehicles while mitigat-
ing common issues with electric vehicles, such as range limitations and charging times.
The benefits of HEVs rely heavily on having an effective EMS to optimize the vehicle’s
drive parameters.

This study provided a summary of current and future EMSs for HEVs, highlighting the
reliance on rule-based and optimization-based strategies in existing systems. Future EMSs
are expected to incorporate technologies from emerging fields, including machine learning,
computer vision, cloud computing, and swarm technology. The paper presents a roadmap
for EMS development, predicting advancements that will enhance optimization and decrease
vehicle fuel consumption, potentially approaching the MPGe of electric vehicles.

This study indicates that industry stakeholders should invest in integrating advanced
ML algorithms, computer vision, swarm technology, and cloud computing to enhance
EMS capabilities. Collaboration with technology providers specializing in these areas and
predictive analytics can accelerate the development of next-generation EMSs. Additionally,
companies should advocate for and contribute to the development of charging infrastruc-
ture to support the transition to fully electric vehicles in the longer term. Further research
should include longitudinal studies to assess the real-world performance of advanced EMSs
and their impact on fuel consumption and vehicle efficiency, cross-disciplinary research to
explore synergies between EMS technologies and other automotive innovations, and inves-
tigations into how different driving patterns and user behaviors influence the effectiveness
of various EMS strategies. As EMS technology evolves, HEVs will increasingly bridge the
gap until the automotive industry transitions fully to electric vehicles, achieving greater
fuel efficiency and environmental benefits.
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