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Abstract: Modern power systems present opportunities and challenges when integrating distributed
generation and electric vehicle charging stations into unbalanced distribution networks. The perfor-
mance and efficiency of both Distributed Generation (DG) and Electric Vehicle (EV) infrastructure
are significantly affected by global temperature variation characteristics, which are taken into con-
sideration in this study as it investigates the effects of these integrations. This scenario is further
complicated by the unbalanced structure of distribution networks, which introduces inequalities that
can enhance complexity and adverse effects. This paper analyzes the manner in which temperature
changes influence the network operational voltage profile, power quality, energy losses, greenhouse
harmful emissions, cost factor, and active and reactive power losses using analytical and heuristic
techniques in the IEEE 69 bus network in both three-phase balance and modified unbalanced load
conditions. In order to maximize adaptability and efficiency while minimizing the adverse impacts
on the unbalanced distribution system, the findings demonstrate significant variables to take into
account while locating the optimal location and size of DG and EV charging stations. To figure out the
objective, three-phase distribution load flow is utilized by the particle swarm optimization technique.
Greenhouse gas emissions dropped by 61.4%, 64.5%, and 60.98% in each of the three temperature
case circumstances, while in the modified unbalanced condition, they dropped by 57.55%, 60.39%,
and 62.79%. In balanced conditions, energy loss costs are reduced by 95.96%, 96.01%, and 96.05%,
but in unbalanced conditions, they are reduced by 91.79%, 92.06%, and 92.46%. The outcomes
provide valuable facts that electricity companies, decision-makers, along with other energy sector
stakeholders may utilize to formulate strategies that adapt to the fluctuating patterns of electricity
distribution during fluctuations in global temperature under balanced and unbalanced conditions
of network.

Keywords: integrated renewable distributed generation; balanced and unbalanced distribution
system; electrical vehicles charging corridors; active and reactive power loss; voltage profile;
greenhouse gas emissions; particle swarm optimization

1. Introduction

Integrated EVs and DGs are new technology advancements that were developed to ad-
dress environmental concerns. They reduce air pollution, which accounts for all greenhouse
gas emissions. The number of EVs sold in the US and the UK is increasing at an exponential
rate, with 2 million EVs sold in 2016, 40 million in 2020, and 70 million predicted to be
sold by 2025 [1]. They emphasize interoperability and compliance with global standards,
addressing critical considerations for the development of robust and interoperable EV
charging infrastructure. Kathiravan et al. [2] proposed using the Ant Lion Optimizer algo-
rithm to optimize the location of Electric Vehicle Charging Station (EVCS) while minimizing
line losses. They deliver an innovative approach that considers the technical and financial
aspects of EVCS adoption. The authors in [3] designed an effective energy management
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system for EVCSs and the electricity distribution system. They prioritized the usage of
renewable energy resources while maintaining dependable EV charging infrastructure.
Ahmad et al. [4] reviewed the ideal location of EVCSs and their impact on distribution
networks. Their research sheds light on the problems and opportunities that come with
EVCS adoption, taking into account variables like grid dependability and environmental
sustainability. In [5], a unique AI approach was developed for the efficient deployment of
EV fast charging stations in distribution networks, combining AI approaches with solar-
based distributed generation systems to improve the dependability and efficiency of EV
charging infrastructure. In [6], the authors addressed the topic of increasing the hosting
capacity of unbalanced distribution networks for Distributed Energy resources (DERs) via
efficient load re-phasing. The authors emphasize the necessity of grid flexibility in handling
the growing number of EVs and other Ders. In [7], a novel probabilistic methodology to
plan for EVCs in distribution is presented, taking into account spatiotemporal uncertainty.
Their technique addresses an important part of EV infrastructure development, offering
useful insights into minimizing uncertainty related to EV charging demand and grid inte-
gration. Harish et al. [8] provide a comprehensive overview of power quality challenges
originating from the integration of EV into distribution systems. They offer an informative
study of difficulties such as harmonics, voltage fluctuations, and unbalance, as well as
mitigating approaches to assure grid stability and reliability. Ahmad et al. [9] proposed an
improved method for optimally placing solar-powered electric vehicle charging stations in
distribution networks. Their study provides valuable insights into using renewable energy
sources for sustainable EV infrastructure development and contributes to decarbonizing
transportation. Eid et al. [10] focused on the successful operation of BES devices, electric car
charging stations, and renewable-based energy sources that are linked to Distribution Net-
work (DN). Their research sheds light on the synergistic integration of these components to
improve grid resilience, promote renewable energy utilization, and support EV charging
infrastructure. Islam et al. [11] proposed a coordinated EV charging strategy that takes
into account correlated EV and grid loads, as well as photovoltaic output variability. Their
study introduces a novel probabilistic model, which provides a systematic approach to
optimizing EV charging schedules while ensuring grid stability and maximizing renewable
energy utilization. Jha et al. [12] examined effective active and reactive power scheduling of
Virtual Power Plants while taking phase imbalance and power angle regulation constraints
into account. Their work contributes to improving grid stability and efficiency by optimiz-
ing power generation and consumption. In [13], the authors proposed a multi-objective
optimization approach for charging plug-in EVs in unbalanced distribution networks. This
approach addresses the complex interplay between EV charging demands, grid constraints,
and multiple optimization objectives, providing valuable insights into achieving sustain-
able and efficient EV integration. The authors of [14] developed innovative algorithms for
optimizing EV charging in microgrid situations, paving the path for more effective and
environmentally friendly integration of electric vehicles into the electricity supply. The EV
penetration effect with DG is analyzed in [15] for both balanced and unbalanced condition
of network. Balu et al. [16] presented an efficient allocation technique for radial distribu-
tion systems that include EVCSs and renewable DG with BES. Their research examines
the time sequence characteristics of generation and load demand, providing insights into
the effective integration of EV charging infrastructure with renewable energy sources to
improve grid resilience and sustainability. Ren et al. [17] provided a perspective on the
location of EVCSs using the grey decision-making model. Shivashankar et al. [18] pro-
vided an overview of various types of overhead transmission line conductors. The paper
provides valuable insights into the characteristics, benefits, and applications of various
conductor materials used in overhead transmission lines, thereby contributing to a better
understanding of modern power transmission technologies. Karmakar et al. [19] presented
a new PI controller and artificial neural network controller-based passive cell balancing
technique for battery management systems.
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Burle et al. [20] presented a modified load flow algorithm that is appropriate for
modern power systems operating under fluctuating weather circumstances. Their research
overcomes the issues posed by renewable energy integration and weather-related uncer-
tainty. Xu et al. [21] proposed a novel approach for assessing the state of a power system
that takes into account transmission line temperature. Temperature data must be incor-
porated into state estimation models to improve power system monitoring and control
accuracy, considering the impact of temperature changes on transmission lines. Haldar
et al. [22] undertook a trend examination of long-term meteorological information in a
metropolitan area to examine the effects of global weather climate change. They investigate
the evolution of climatic trends and their consequences for urban areas. By reviewing
historical meteorological data, Albrechtowicz et al. [23] studied how the temperature of
overhead transmission lines affects phase-shifting transformer settings. The work focuses
on optimizing transformer operations in response to temperature fluctuations along trans-
mission lines using temperature-dependent parameters. Cecchi et al. [24] investigated the
impact of temperature fluctuations on transmission line behavior and the implications for
power system performance. The authors give a more realistic picture of system dynam-
ics by combining temperature-dependent models into power flow analysis, allowing for
improved decisions in grid planning and operation. Dong et al. [25] provided a thorough
investigation of power transmission restrictions. The study addresses the issues associ-
ated with thermal restrictions in power transfer capacity by examining the electro-thermal
coupling in the transmission area. The authors suggest an integrated strategy to accu-
rately assess power transfer limits that take into consideration both electrical and thermal
impacts. Burle et al. [26] demonstrate how ambient temperature variations affect the cal-
culation of the vicinity of the voltage collapse point. The study investigates the effect of
temperature on voltage stability analysis, an important part of power system performance,
taking temperature-dependent characteristics into account. Mishra et al. [27] developed
a self-powered temperature monitoring wireless node that uses energy harvesting tech-
niques. The suggested wireless node provides a cost-effective and sustainable solution for
temperature sensing in power networks. Rahman et al. [28] presented a comprehensive
assessment of research on temperature-dependent analysis of electric power transmission
systems. The authors emphasize the need to take temperature impacts into account in
system-level research by reviewing a variety of studies. The review covers a variety of
topics, including thermal modeling, power flow analysis, and stability evaluation, which
provide insight into the intricate interplay between temperature changes and power system
behavior. Rakpenthai et al. [29] proposed a study on power system state estimate and line
conductor temperature valuation. The authors show that correct temperature estimation
is critical for improving the reliability of power system monitoring and control. Koufakis
et al. [30] examined the impact of wildfire incidents on transmission line performance,
specifically conductor temperature rise, by bringing wildfire dynamics into the modeling
framework. Valentina et al. [31] improved the accuracy of power flow analysis and transient
stability assessment. The study emphasizes the need to account for temperature changes in
transmission line modeling to guarantee that power systems operate reliably and efficiently
under a variety of environmental circumstances. Bockarjova et al. [32] studied the signif-
icance of temperature changes on the efficacy of state estimation methods, emphasizing
the importance of precise temperature measurements in power system monitoring, by
assessing the influence of temperature on state estimation accuracy. Du et al. [33] presented
an online estimating method for line parameters, temperature, and sag. The authors created
a real-time estimation strategy that allows for accurate monitoring of transmission line con-
ditions. Leger et al. [34] presented a flexible method for simulating gearbox line behavior
under varied operating conditions. The inclusion of variable parameters allows for a more
accurate depiction of transmission line dynamics, which facilitates exact analogue power
flow computation. Sagiyeva et al. [35] analyzed the temperature on microstrip lines by
examining the effects of temperature changes on microstrip transmission lines; the authors
obtained significant insights into the thermal behavior of high-frequency communication



World Electr. Veh. J. 2024, 15, 425 4 of 30

systems. Du et al. [36] worked on building a real-time monitoring method that employs
online measurements to reliably estimate transmission line status.

Moghassemi et al. [37] addressed the challenges of grid integration of Photovoltaic (PV)
systems and power quality enhancement by incorporating TransZSI-DVR (Trans-Z-source
Inverter with Dynamic Voltage Restorer). The authors present an effective solution for
minimizing power quality concerns such as voltage sags and harmonics in grid-connected
PV systems. Satyanarayana et al. [38] proposed a DC-link fed parallel-VSI DSTATCOM in
a solar DG by using DSTATCOM. Oda et al. [39] investigated stochastic optimum planning
by integrating photovoltaic-based DG and DSTATCOM while accounting for load and
solar irradiance uncertainties. Souza et al. [40] conducted research that sheds light on
the complicated dynamics of power injection in DN with PV generation and investigated
the relationship between active and reactive power. Albuquerque et al. [41] explored
the operation of a PV solar system connected to the electric power grid, acting as both
an active power generator and a reactive power compensator. The authors present a
comprehensive approach for improving grid stability and power quality. Zubo et al. [42]
explored the optimal operation of DN with wind and solar-based energy penetration in
a joint both proactive and reactive distribution market. They provide useful insights to
grid operators and policy makers, assisting in the development of sustainable energy
management policies. Paghdar et al. [43] focused on developing control strategies for
distributed generation systems to ensure grid stability and power quality through active
and reactive power injection optimization. In the context of climate change, Vincze et al. [44]
proposed an inventive ensemble-based experimental investigation on temperature changes.
The methodological rigor of this work and its possible consequences for future climate
research make it noteworthy. The nonlinear statistical properties of daily temperature
changes were investigated by Gyüre et al. [45]. They draw attention to how complex
temperature dynamics are and offer a solid framework for understanding how climate
systems behave statistically. The approach to select the weightage of objectives for multiple
objectives are presented in [46] and the complex multiattribute task based problem is
analysed in [47]. The detailed review with concepts related to the solar powered electric
vehicle charging system are presented in [48]. The optimal renewable based DG planning
in distribution systems considering different objectives and loads effect using distinct
optimization techniques are proposed in [49–51]. The tariff bases analysis of hybrid micro-
grid is explored by [52] to enhance the overall cost economy of the system. In [53], the
analysis of potential and policies for photovoltaic electricity generation of the leading
countries in solar energy are discovered. The detailed about the battery management
system, charging station, traction motors for the electric vehicles are presented in [54]. Three-
phase distribution system components planning parameters [55] and analysis related to the
renewable DG with EV charging station planning in unbalanced distribution network [55]
are reported to find its impact on three phase distribution system. Table 1 illustrates a
comparative study of existing works with objective, methodology, research gap, system
and findings.

Based on a compressive literature review, it is observed that few authors have consid-
ered the balanced and unbalanced distribution system comparative analysis while planning
EV charging stations. Also, it was found that the distribution system performance is ad-
versely effected by temperature variation, which is also ignored by the researcher in the
distribution system planning. Therefore, the study proposed a comparative analysis of
balanced and unbalanced distribution networks with and without EV charging stations
considering the sessional temperature variation. Major research articles presented the
performance analysis in the balanced IEEE system, but we assume that in practice, some
unbalancing load distribution occurs, so our main focus in this paper is to compare the
effect, and how to minimize this issue with the unbalancing effect of all three phases
separately. This paper explains the unbalancing effect in the balanced case; if unbalancing
occurs, then our system knows how to perform and how to improve the voltage, losses,
cost-effective factors, and environmental factors.
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Table 1. Comparative study of existing works with objective, methodology, research gap, system
and findings.

Author (s) Objective Methodology/
Optimization

Bus
System Research Gap Findings

Kathiravan
et al. [2]

Minimize line losses
by optimally placing

EVS

Archimedes
Optimization

Algorithm (AOA)
IEEE 33

Limited focus on
optimization

algorithms for
minimizing line

losses in EVS

The algorithm
reduced line losses

and improved
overall performance

Rajani et al. [3]
Optimize energy

management among
EV charging stations

GPC-RERNN
(Generalized

Predictive
Control-Recurrent

Elman Neural
Network)

IEEE 69
Inadequate

strategies between
EVS

Reducing energy
costs and improving

grid stability

Ahmad et al.
[5]

Optimal deployment
of EV fast charging
stations with solar

DGs

AI approach
integrated with

reliability analysis
IEEE 33

AI-based solutions
that integrate

renewable energy
sources in EVS

Improved the
reliability of the

distribution network

Toghranegar
et al. [6]

Enhance the hosting
capacity for

distributed energy
resources (DERs)

An optimization
technique for load

re-phasing
IEEE 37

Limited research on
DER hosting
capacity in
unbalanced

networks

Enhanced hosting
capacity

Abujubbeh
et al. [7]

Probabilistic
framework for EVS

Probabilistic
framework

incorporating
spatiotemporal data

IEEE 69 Lack of uncertainty
consideration

Provided a robust
approach to the

planning of
uncertainties

Ahmad et al.
[9]

Optimal placing
solar-powered EVS

Enhanced
optimization approach IEEE 33 Need integration of

solar energy in EVS

Effectively
integrating solar

power and reducing
overall network

strain

Islam et al. [11]
Correlated EV and
grid loads and PV

output
Probabilistic model IEEE 33

Limited research on
the correlation

between EV, grid
loads

Reduced peak loads
by effectively

coordinating EV
charging

Jha et al. [12]

Active and reactive
power scheduling in
Virtual Power Plants

(VPPs)

Multi-objective
optimization

algorithm
IEEE 37

Need for address
phase unbalance in

VPPs

Optimized power
scheduling,

improving VPP
efficiency

Esmaili et al.
[13]

Optimize the charging
of plug-in electric
vehicles (PEVs)

PSO IEEE 13
IEEE 34

Lack of methods
addressing the

unbalanced nature

Minimized voltage
deviations in
unbalanced

networks

AbuElrub et al.
[14]

Charging algorithm
for EVs integrated into

microgrids with
photovoltaic (PV)

generation

Heuristic algorithm IEEE 33

Very less
concentration on the

integration of EVs
with renewable
energy sources

EV charging
schedules enhancing
the utilization of PV

Balu et al. [16]

Allocation of EVS with
renewable distributed

generation, and
battery energy storage

Time-sequence-based
optimization IEEE 69

Need for integrated
optimization of EVS
and storage systems.

Reduced power
losses
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Table 1. Cont.

Author (s) Objective Methodology/
Optimization

Bus
System Research Gap Findings

Burle et al. [20]

Develop a modified
load flow algorithm

under variable
weather conditions

Modified
Newton-Raphson load

flow algorithm

IEEE 14
IEEE

33

Need algorithms
that can handle

variable weather
conditions

The algorithm
showed improved

accuracy under
varying weather

conditions

Xu et al. [21]

State estimation
approach considering

transmission line
temperature

State estimation IEEE 14

Limited integration
of temperature in
state estimation

models

Proposed improved
the accuracy of state

estimation in
temperature effects

Cecchi et al.
[24]

Examine the system
impacts of

temperature-
dependent

transmission line
models

Simulation-based
analysis IEEE 30

Limited
consideration of

temperature effects
in traditional

transmission line

Demonstrated that
temperature-

dependent models

Dong et al. [25]

Calculate power
transfer limits

considering the
electro-thermal

coupling

Electro-thermal
coupling model IEEE 39

Insufficient
integration of

electro-thermal
effects

Proposed more
accurate power
transfer limits

Burle et al. [26]
Study the effect of

ambient temperature
variations

Temperature-
dependent voltage
collapse analysis

IEEE 118

Lack of studies
exploring the direct
impact of ambient

temperature on
voltage stability

Identified that
ambient temperature

variations
significantly

influence voltage

Rakpenthai
et al. [29]

To estimate power
system state and

conductor temperature

Joint state and
temperature

estimation model
IEEE 30

Limited methods for
simultaneous state
and temperature

estimation

Improved estimation
in power system

state

Valentina et al.
[31]

To incorporate
temperature variations
into transmission line

models

Temperature-
dependent

transmission line
model development

IEEE 14

Existing models
insufficiently
account for
temperature
variations in

transmission line
performance

Demonstrated
improved accuracy

in power flow
analysis by

incorporating
temperature

variations

Bockarjova
et al. [32]

Impact of transmission
line conductor

temperature on state
estimation accuracy

Temperature-
dependent state

estimation model
IEEE 30

Lack of detailed
analysis on

temperature
influences state

estimation.

Enhances the
precision of state

estimation

Du et al. [33]

To estimate
transmission line

parameters,
temperature

Online estimation
technique using

Phasor Measurement
Units (PMUs)

IEEE 118
Real-time estimation
of temperature and

sag

Estimates line
parameters,

temperature, and sag
in real time

Moghassemi
et al. [37]

Develop a solar
photovoltaic fed
TransZSI-DVR

Design and simulation
of a TransZSI-DVR

system
IEEE 13

Limited research on
using TransZSI-DVR

systems

Improves power
quality, reducing

harmonic distortion
and voltage sag

Satyanarayana
et al. [38] Solar DG integration

DC-link fed
parallel-VSI
DSTATCOM

IEEE 33

Lack of robust
DSTATCOM

solutions for power
quality

Improves voltage
stability and reduces
harmonic distortion
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Table 1. Cont.

Author (s) Objective Methodology/
Optimization

Bus
System Research Gap Findings

Oda et al. [39]

Integrated PV-based
DG and DSTATCOM
under load and solar

irradiance
uncertainties

Stochastic
optimization using

Monte Carlo
simulations.

IEEE 69

Insufficient
consideration of
uncertainties in

PV-based DG and
DSTATCOM

planning

Improves system
reliability and

cost-effectiveness by
accounting for
uncertainties

Souza et al.
[40]

Active and reactive
power injection in

distributed systems
Injection techniques. IEEE 13

Need for a better
understanding of PV

system

PV systems can
effectively inject
both active and
reactive powe

Albuquerque
et al. [41]

Performance of a PV
solar system

connected to the grid

Experimental setup
with grid-connected

PV system
IEEE 33

Limited exploration
of dual-functionality

PV systems

Enhancing grid
reliability

Zubo et al. [42]

To optimize the
operation of

distribution networks
with high wind and

solar power
penetration

Genetic Algorithm
(GA) IEEE 33

Control strategies in
high renewable

penetration

Improves network
efficiency, reducing

power losses

Paghdar et al.
[43]

To control active and
reactive power in a
grid-connected DG

Proportional-Integral
(PI) control strategy IEEE 14

Insufficient focus on
control strategies for

managing power
flow in DG systems

The PI control
manages power flow

operation under
varying load
conditions.

Prasad et al.
[49]

Perform a cost–benefit
analysis for optimal

DG placement

Elephant Herding
Optimization (EHO) IEEE 33

Need for
cost-effective
optimization
techniques

Show cost benefit

Rani et al. [50]
Determine the optimal
size and placement of

renewable DG
PSO algorithm IEEE 33.

Lack of studies on
optimal DG
placement

considering load
variation

Determines optimal
DG size and

placement, reducing
power losses

Bohre et al. [52]

Analyze a
grid-connected hybrid

microgrid under
different utility tariffs

PSO optimization IEEE 14

Insufficient analysis
of hybrid microgrids
under varying utility

tariffs

Demonstrates
impact the economic
operation of hybrid

microgrids

The proposed work has been analyzed in a three-phase IEEE 69 bus distribution
network under day and night global average temperature variation effect in lumped
line parameters. This study was performed in different cases and checks the various
performances like active and reactive power losses, voltage profile, pollutant emission, and
cost of energy loss in both balanced and modified unbalanced load conditions. In this study,
four EV corridors and two DG integrations have been integrated to improve performance
with the PSO optimization technique. This paper is structured in mainly six different
sections with abstract and reference sections. The first section is an introduction, the second
section is the modeling of multi-source renewable integrated DG and EV charging stations,
the third section is the modeling of a three-phase distributed network, the fourth section is
the proposed methodology, the fifth section is the results and discussion and finally, the
conclusion, which is the sixth section.
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2. Modelling of Multi-Source Renewable Integrated DG and EV Charging Station
2.1. Multi-Source Renewable Integrated DG

Multi-source renewable integrated DG is a hybrid system that can deliver a more
steady and dependable power supply; integrating numerous renewable energy sources into
a DG system entails mixing various renewable energy technologies (such as biomass, wind
turbines, and solar PV). The objective is to maximize grid efficiency and stability while
generating, storing, and distributing active and reactive power as efficiently as possible.
The modeling and planning of a multi-source renewable integrated distributed generation
system are given below.

2.1.1. The Solar Model

The solar PV model, in which active power is based on solar irradiance and tempera-
ture, and reactive power in a PV system can be managed using the inverter, which can be
controlled to provide or absorb reactive power as needed. The amount of reactive power
that can be provided is limited by the inverter’s capacity and the amount of active power
being generated [48,49].

Ppv = ηpv × Apv × I × (1 − β(Tcell − Tre f )) (1)

where Ppv is the power output, ηpv is the efficiency, Apv is the area, I is the irradiance,
β is the temperature coefficient, Tcell is the cell temperature, and Tre f is the reference
temperature.

The reactive power Qpv provided by the inverter can be calculated as:

Qpv =
√

S2
i − P2

pv (2)

where Si represents as inverter capacity that is apparent power in (VA)

2.1.2. The Wind Model

The wind turbine model, wind turbine model, active power based on wind speed,
air density, swept area and reactive power can be significant and depends on the type of
generator and control strategies [49,50].

Pwind = 0.5 × ρ × A × v3 × ηwind (3)

where Pwind is the power output, ρ is air density, A is the swept area, v is the wind speed,
and ηwind is the efficiency.

2.1.3. The Biomass Model

The biomass model is a model in which active power depends on biomass availability
and conversion efficiency and reactive power is produced or consumed depending on the
generator type [50–52].

Pbiomass = ηbiomass × Mbiomass × CV (4)

Qbio = Pbiomass × tan θ (5)

where Pbiomass and Qbio are the active and reactive power output, ηbiomass is the efficiency,
Mbiomass is the mass flow rate of biomass, and CV is the calorific value.

2.2. Modelling of the EV Charging Station

EV charging stations are critical for accelerating the transition from traditional auto-
mobiles to more environmentally friendly and sustainable means of public and private
transport. It facilitates grid integration and operation through the development and layout
of charging stations, which would have an impact on the electrical system, making it possi-
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ble to identify both benefits and potential concerns with grid integration. This involves
assessing load control, load ability, and environmental feasibility while using renewable
energy to power DN. In this study, two 19.2 kW EV charging stations and two 50 kW loads
are integrated according to specifications. Several elements influence the operation of an
EV charging station, including the charging station’s power rating, the charging protocol,
the EV battery’s SoC, and any external conditions like temperature or grid demand. Here
is a simplified equation that can be used to represent the charging process of an electric
vehicle [53,54].

Pev(t) = Pev_max × f (t)× Pev(t) (6)

where Pev(t) is the EV power delivered at time t. Pev_max is the charging station maximum
power rating of EV. f (t) is the charging profile.

DC fast charging is normally controlled by altering the voltage and current supplied
by the charger, and (t) may include factors such as battery SoC, temperature, and maximum
power constraints. The layout for planning of distribution network with EV and DG is
given in Figure 1.
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2.2.1. Modelling the State of Charge (SoC)

It is necessary to comprehend the charging characteristics of the EV battery during
fast charging, as well as the charging station’s behavior and the charging protocol in use. A
simplified formula for simulating the SoC during rapid charging is as follows. Charging
and discharging are governed by system conditions and each battery’s state of charge [54].

SoC(t) = SoC(i) +
∫

(ti × Qmax × Icharging(τ))∂τ (7)

where SoC(t) is the state of charge of the battery at time t. SoC(i) is the initial state of charge.
Icharging(τ) is the charging current at time t. Qmax is the maximum capacity of the battery.
ti is the initial time of charging. The SoC limits are, SoC(t)min ≤ SoC(t) ≤ SoC(t)max

This formula illustrates how the battery’s charge builds up over time. The integral
term is the entire charge that has been transferred into the battery from the beginning of
charging to the present time (t), normalized by the battery’s maximum capacity. This is an
equation depicting fast-charging SoC behavior; more intricate models may include other
variables and dynamics. Table 2 shows the classification of EV charging stations based on
different levels, type and locations.
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Table 2. Classification of EV charging stations [9,13,15,54].

Classification
Criteria Category Details Uses

Charging
Power Levels

Level 1
Charging

Voltage: 120 V, Current: Up to 16 A,
Power Output: Up to 1.9 kW

Home use with
standard outlets

Level 2
Charging

Voltage: 240 V Current: Up to 80 A
(typically 30–40 A), Power

Output-Up to 19.2 kW

Home, workplace,
public stations

Level 3
Charging

Voltage: Typically 200–450 V DC, up
to 900 V DC, Current: up to 400 A or

more, Power Output: 50 kW to
350 kW or more

Public stations along
highways

Type of
Current

AC Charging
Level 1 and Level 2, In-vehicle

Charger: Converts AC to DC for
battery charging

Home, workplace,
public stations

DC Charging Level: Level 3 (DC fast charging)
Public stations along

highways, quick
charging

Location

Residential Chargers: Level 1 and Level 2 Home charging,
overnight charging

Public Chargers: Level 2 and DC
Fast Chargers

Parking lots,
shopping centers,

public places

Workplace Chargers: Level 2 Charging during
working hours

Highway/
Corridor Chargers: DC Fast Chargers Along highways and

major routes

Application

Private
Charging

Control: Controlled by
individual user

Personal use at home
or private spaces

Commercial
Charging

Management: Managed by
operators, may require payment

Multiple users in
commercial settings

Fleet Charging
Characteristics: High utilization,
multiple charging points, higher

power levels

Commercial fleets
(e.g., delivery trucks,

buses)

The expenditure of EV charging points in the US fluctuates depending on the utiliza-
tion; Table 3 indicates the costs in USD for level 2, and level 3 [1].

Table 3. Construction and installation cost of different EV charging stations [1].

Type of EV Charging Station Application Costs in USD Source of Report

LEVEL 2 home charging 450–1000

RMI (2017)
LEVEL 2 parking garage 1500–2500

LEVEL 2 curb side 1500–3000

LEVEL 3 DC fast EV charging 12,000–30,000

2.2.2. Fast Charging Station Required Number

The number of fast charging stations in existence is determined by the total amount of
electric vehicle load in a given location, as well as the battery capacity used, system load
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factor, and EV charging duration. The equation for calculation of approx. EV charging
station number is given in [4].

Nev
FCS =

Pev × nev × Ctime
Cst × Cη × LF × Nc × p. f

(8)

where Pev denotes the total average power of EV, nev represents the number of EV, Ctime
is the charging time per day, Cst denotes the charger service time, Cη denotes charging
efficiency, the load factor LF × Nc is for the number of connectors in FCS, and p. f denotes
the power factors.

3. Modelling of the Three-Phase Distributed Network

Three-phase balanced and unbalanced systems are characterized by symmetrical
components; however, in this work, the phase frame approach [55] of three-phase load flow
is used to easily analyze the system. In the current system, mesh and node analysis for load
flow should be performed. IEEE 69 bus mesh and nodal analysis have been used to account
for three-phase balancing and unbalanced load flow. The phase frame approach is used to
achieve three-phase balanced and unbalanced system performance [55,56]. Let us examine
a simple three-phase lumped network diagram represented in Figure 2. The variables
considered in Figure 2 represented for m node system with three phases a, b, c. Also
RL1a, RL1b, RL1c, XL1a, XL1b, XL1c, Z1a_s, Z1b_s, Z1c_s are the self resistances, self reactances
and self impedances of lines for three phases a, b, c respectively. Similarly, the mutual
impedance for the distributed network are Z12_m, Z12_m, Z13_m can aslo be represented with
its respective parameters for system..

va
1

vb
1

vc
1

vn
1

−


va

2
vb

2
vc

2
vn

2

 =


z11_s z12_m z13_m z1n_m
z21_m z22_s z23_m z2n_m
z31_m z32_m z33_s zcn_m
zn1_m zn2_m zn3_m znn_s




ia
12

ib
12

ic
12

in
12

 (9)

where z11_s, z22_s, z33_s is the self-impedance and Z12_m, Z12_m, Z13_m is the mutual impedance
for the distributed network.

vbranch = vabcn
1 − vabcn

2 = zabcn×iabcn (10)

where the branch voltage vbranch, the branch current iabcn, and the primitive impedance
matrix zabcn are set in the distribution system.

Yabcn = (Zabcn)
−1

(11)

where Yabcn is the primitive admittance matrix.
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All primary and secondary windings’ admittance as well as their per unit value are
considered in this analysis. In the balanced case study, all transformer topologies were
star wound. However, the unbalanced case study additionally included some delta con-
figurations. Therefore, the admittance matrix must be generated for conversion. Leakage
admittance has not been taken factored into the load flow estimations of the current study.
A power system that highlights fluctuating voltages as a result of different phase angles
or unbalanced voltage values is known as an unbalanced DN. Figure 3 illustrates the
representation of EV corridors in the single-line diagram of the IEEE 69 bus network.
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The Modelling Effect on Distribution Due to the Temperature Effect

In the radial distribution model uniformly distributed series resistance, series induc-
tance is defined in per unit length [35]. In this model, temperature is assumed to be a
constant parameter, but nowadays, many power electronic static devices are connected
to the system, and in static devices, temperature can affect performance. So, in this study,
temperature effects are considered for further load flow analysis [20–24].

Rline
Tactual

= Rline
Tre f

(1 + α(Tactual − Tre f ) (12)

where
Tre f is the reference 20 degree temperature [33],
T is the radial line actual sessional global temperature,
Rline

Tre f
is the radial line resistance at reference in ohms,

Rline
Tactual

is the radial line resistance at sessional temperature in ohms, and
α is the resistance temperature coefficient, considered as 0.0033/◦C [33].

Xline
ω,Tactual

= Xline
ω,Tre f

(1 + β(Tactual − Tre f ) (13)

where Xline
ω,Tre f

is the radial line reactance at reference temperature in ohms, Xline
ω,Tactual

is the
radial line reactance at sessional temperature in ohms, ω is the angular network frequency,
β is the reactance temperature coefficient [24] of the ACSR conductor, i.e., β = 0.00429
in/◦C [20].

The steady-state current flowing through the radial conductor can be calculated by
the heat balance equation
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ie f f
current =

√
(qcon + qrad + qsol)

Rline
T

(14)

where ie f f
current is the effective current flowing in the radial line, qcon, qrad, qsol are the heat

losses by convection, radiation and solar heat consumed by the conductor, and the formulas
for calculation are mentioned in IEEE standard 738-2006 [29].

This study examines four cases of temperature change, varying the transmission line
bus parameters in a sessional and day–night manner. A temperature reference of 20 ◦C
is used while developing standard resistance and inductance. For the case study, the
average annual night temperature was 18 ◦C, while the average annual day temperature
was 32.33 ◦C. The details about the seasonal temperature are mentioned in Table 4.

Table 4. Monthly averaged weather data of India [20].

Month
Day

Temperature
in ◦C

Night
Temperature

in ◦C

Sessional
Weather

Avg. Day
Temp ◦C

Avg. Night
Temp ◦C

Dec 23 7
Winter 23.33 7.83Jan 23 6.5

Feb 24 10

Mar 32 14
Summer 37.33 19.66Apr 37 20

May 43 25

Jun 38 29
Monsoon 36.33 26.66Jul 36 26

Aug 35 25

Sep 35 23
Post-

monsoon
32.33 18Oct 35 19

Nov 27 12

4. Proposed Methodology

The backward–forward load flow method was adopted for the distribution network,
and the backward–forward load flow analysis of the IEEE 69 bus, encompassing both
unbalanced and balanced loads, was performed with the aid of KVL and KCL.

4.1. Multi-Objective Function (MOFs)

Multi-objective functions are widely used in complex scenarios that require balancing
many objectives throughout the decision-making phase. MOFs allow for the optimized
performance of conditions with numerous objectives. This analysis takes into account
characteristics such as minimal voltage variation, minimal phase angle variation, and both
reactive and active power losses.

MOF = ka × APIloss_index + kb × V.D.Iindex + kc × RPIloss_index (15)

where ka, kb, kc are the priority-based performance index weightage coefficients. The weight
factor in this work is determined using the weighted sum approach [46], which adds up
all of the specified weighted objectives to create a composite objective whose sum equals
unity. The analytic hierarchy process approach is used to generate the weight indexing
coefficient for each objective [47]. Here, the equation for the priority matrix (P) is provided,
with details given in Table 5.
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P =

 1 3 2
1/3 1 1/5
1/2 5 1



Table 5. The pairwise comparison matrix.

Parameters Active Power Losses Voltage Deviation Reactive Power Losses

Active power losses 1 3 2

Voltage deviation 1/3 1 1/5

Reactive power losses 1/2 5 1
Where 1—equal priority, 3—moderate, 5—strong, 7—very strong, 9—extreme and 2, 4, 6, and 8—intermediate
priority.

The weight factors that were calculated by the analytic hierarchy process approach
are 0.5012, 0.1185, and 0.3803; these are used in the objective function as the indexing
coefficients for ka, kb, and kc.

The formulation of the distribution system performance index is as follows:
The Active Power Losses Index (APIloss_index)

APIloss_index =
PPhase_a

losswith_DG,EV
+ PPhase_b

losswith_DG,EV
+ PPhase_c

losswith_DG,EV

PPhase_a
lossbase

+ PPhase_b
lossbase

+ PPhase_c
lossbase

(16)

The Reactive Power Losses Index (RPIloss_index)

RPIloss_index =
QPhase_a

losswith_DG,EV
+ QPhase_b

losswith_DG,EV
+ QPhase_c

losswith_DG,EV

QPhase_a
lossbase

+ QPhase_b
lossbase

+ QPhase_c
lossbase

(17)

The Voltage Deviation Index (VDI)

V.D.Iindex = Maximum(
Vphase_a − Vre f

Vre f
+

Vphase_b − Vre f

Vre f
+

Vphase_c − Vre f

Vre f
) (18)

where 1.0 pu is considered as Vre f .
The details about the bus location in EV corridors in the IEEE69 bus network are given

in Table 6 with the EV corridors bus location, type, size and cost information to plan for the
different EV charging stations in the respective EV corridors.

4.2. Substation Power Supply Cost

The cost of supplying a grid substation is divided into various components, reflecting
the complexity and scope of the infrastructure required to properly manage and distribute
electricity. Here is a breakdown of the primary cost components connected with grid
substation supply [50]:

Costsub_station = cs ×
√
(P2

s + Q2
s ) (19)

where Ps, Qs are the active and reactive power supply by grid.

4.3. Cost of Energy Loss (Per Annum)

An electrical distribution system’s overall operational efficiency and expenses, partic-
ularly those of grid substations, are significantly influenced by energy loss costs. When
determining the annual cost of energy loss, it is vital to take into account the total energy
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provided to the distribution system year over year, the percentage of energy lost due to
resistance in transmission lines and transformers, and the cost of power per unit [49].

CELper_year = Ptotal_loss × (kcpRL + kepRL + LF × 8760) (20)

Loss f actor(LF) = Rb × l f + (1 − Rb)× l f 2 (21)

where Rb is taken as 0.2, 0.47 is the load factor, kcp is 57.6923 USD/kw for this test study,
and kep to plan for taken as 0.00961538 USD/kwh [49].

Table 6. Details about the bus location in EV corridors in the IEEE69 bus network.

Corridor Name BUS No. Type of EV
Charging Application Size of EV

(kW)
Costs in
USD [1]

First EV Corridor 2, 3, 4, 5, 6, 7,8, 28, 29,
30, 31, 32, 33, 34, 35 LEVEL 2 Home, workplace,

public stations 19.2 450–1000

Second EV
Corridor

36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52 LEVEL 2 Home, workplace,

public stations 19.2 450–1000

Third EV Corridor 9, 10, 11, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67 LEVEL 3

DC fast EV
charging (public

stations along
highways)

50 12,000–30,000

Fourth EV
Corridor

12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 68, 69 LEVEL 3

DC fast EV
charging (public

stations along
highways)

50 12,000–30,000

4.4. Distributed Generation (DG) Cost

DG is the decentralized production of energy close to the point of demand rather
than at a big, central facility. DG systems include solar PV, wind turbines, small-scale
hydro, biomass, fuel cells, and diesel generators. The cost of supplying power via DG
varies according to the type of generation technology used [49,50]. Equations (22) and (23)
represent the active and reactive power cost function.

CPDG = g1 × P2
DG + g2 × PDG + g3 (22)

where CPDG is the active power cost and CQDG is the reactive power cost.

CQDG = [cost(
1.1 × PDG

p f
)− cost(

√
((

1.1 × PDG
p f

)
2
− Q2

DG)]× ck (23)

where the coefficients are considered as g1 = 0, g2 = 20, g3 = 0.25 and ck = 0.05–0.1.

4.5. Greenhouse Gas Emissions

Greenhouse gases (GHGs) are gases found in the atmosphere which cause global
warming and the greenhouse effect. It is imperative to reduce greenhouse gas emissions in
order to mitigate the effects of global warming on ecosystems and human societies. In order
to combat climate change and advance a sustainable future, greenhouse gas emissions must
be reduced. The pollutant emission factor for CO2 is 632.0 g/kWh, whereas that for SO2
is 2.74 g/kWh and that for NOx is 1.34 g/kWh [52]. The typical greenhouse gas emission
calculation formula is [54].

Gemission = Egrid × Gem− f actor × (1 − Gre−e f f icency) (24)



World Electr. Veh. J. 2024, 15, 425 16 of 30

where Gre−e f f icency is the overall greenhouse reduction efficiency, Gem− f actor is the green-
house emission factor (g/kWh), and Egrid represents the entire substation power capacity
in (kWh).

4.6. Constraints

Power system constraints and limitations are essential elements that need to be taken
into account during planning and operation to ensure effective, reliable, and stable power.
To maintain system stability, power system design requires certain limitations. Limits need
to be defined for voltage limits, active and reactive power demand, power balance, and the
number of EV charging stations [4].

vmin
i ≤ vbus ≤ vmax

i
Pmin

dg ≤ Pdg ≤ Pmin
dg

Qmin
dg ≤ Qdg ≤ Qmin

dg
PEV + PDistrubution_load = PDG + PGrid

Nmin
ECS ≤ NECS

4.7. Particle Swarm Optimization

The PSO originated from a social interaction that resulted from the combination of
biological mobility and swarm intelligence behavior. The PSO developer looks for the ideal
place to gather food for the group as well as for individuals while travelling in a swarm.
Each particle in the swarm is separately represented by the vector x(t) and velocity v(t).
Each particle in the swarm uses its individual experience to guide it towards the food.
Swarms follow each other as they look for the optimal spot. To update location and velocity
in the direction of the food hunt, the swarm optimizes in two stages: locally best first, and
then group global best [51].

Yn+1
i=n = kp × (a1 × r1 × (Gbest − Yn

i=n) + a2 × r2 × (Gbest − Yn
i=n)) (25)

where r1, r2 are random variables with values ranging from 0 to 1 and kp is the PSO weight
factor, a1, a2 are PSO acceleration coefficients. Figures 4 and 5 show the flow chart of the
proposed methodology and PSO the optimization flow chart, respectively.
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5. Results and Discussion

A three-phase IEEE 69 bus network has been taken as a reference to analyze the
implemented work parameters for this comparative study. The data of IEEE 69 bus three
phase balanced and modified unbalanced system is given in Appendix A. In the distribution
network, due to the large R/X ratio, the three-phase backward–forward load flow sweep
method is used to compute the three-phase balanced and modified unbalanced system. In
this study, temperature-dependent effected parameters are considered in three cases. In
Case I, all the performance parameters are computed in standard reference temperature. In
Case II, the average night temperature of 18 ◦C is considered, and in Case III, the average
day temperature of 32.33 ◦C is considered to analyze the line parameters effect for different
seasons. In all the cases, DG and four mixed-level EV corridors integrated to improve the
performance as well as economics and environmental factors. To maximize the objective
benefit, DG and EV location in optimal place and size with the help of PSO optimization
technique. All three cases perform in both balanced and modified unbalanced networks
with the same objective, and performance parameters have been measured for discussion
in this work.

The optimal size and location of DG and EV were computed with the help of PSO,
which is tabulated in Tables 7 and 8 in all three considered cases. In both the balanced
and unbalanced bus systems, DG 2 is located at bus no 50 in all cases, but DG1’s optimal
location changes in all cases as per tabular data. The EV1 and EV2 are located in the
first and second corridors, and their size is 19.2 kW, but EV3 and EV4 are located in the
third and fourth corridors with a size of 50 kW. The minimum, maximum value of voltage
and the average voltage deviation for balanced and unbalanced networks are given in
Tables 9 and 10.

Table 7. DG and EV size and location in IEEE-69 balanced network.

IEEE 69
BAL-

ANCE

Case I Case II Case III

Size Bus
Location

Size Bus
Location

Size Bus
LocationP (kW) Q (kW) P (kW) Q (kW) P (kW) Q (kW)

DG1 655.74 262.384 18 657.03 406.64 15 499.78 410.69 16

DG2 1721.44 1150 50 1850 1137.81 50 1850 1150 50

EV SIZE
(kW)

EV
LEVEL

EV SIZE
(kW) EV TYPE EV SIZE

(kW) EV TYPE

EV1 19.2 LEVEL 2 35 19.2 LEVEL 2 2 19.2 LEVEL 2 5

EV2 19.2 LEVEL 2 38 19.2 LEVEL 2 49 19.2 LEVEL 2 52

EV3 50 LEVEL 3 10 50 LEVEL 3 60 50 LEVEL 3 64

EV4 50 LEVEL 3 24 50 LEVEL 3 69 50 LEVEL 3 20
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Table 8. DG and EV size and location in the modified IEEE-69 unbalanced network.

Modified
IEEE 69

Unbalance

Case I Case II Case III

Size Bus
Location

Size Bus
Location

Size Bus
LocationP (kW) Q (kVAr) P (kW) Q (kVAr) P (kW) Q (kVAr)

DG1 520.41642 434.3319 17 493.1669 377.1205 17 577.1405 407.9346 16

DG2 1703.1085 1150 50 1850 1150 50 1850 1150 50

---- EV SIZE
(kW)

EV
LEVEL EV SIZE EV TYPE LOCATION EV SIZE

(kW) EV TYPE -----

EV1 19.2 LEVEL 2 2 19.2 LEVEL 2 29 19.2 LEVEL 2 30

EV2 19.2 LEVEL 2 52 19.2 LEVEL 2 36 19.2 LEVEL 2 44

EV3 50 LEVEL 3 56 50 LEVEL 3 59 50 LEVEL 3 55

EV4 50 LEVEL 3 23 50 LEVEL 3 18 50 LEVEL 3 18

Table 9. Minimum, maximum voltage and average deviation in the balanced network.

Modified IEEE 69 Balance

Case I Case II Case III

Without
DG and EV

With DG
and EV

Without
DG and EV

With DG
and EV Without DG and EV With DG

and EV

Minimum voltage
Deviation

Phase A/
Phase B/
Phase C

0.82497 0.96052 0.88291 0.97376 0.82497 0.96052

Maximum voltage
Deviation

Phase A/
Phase B/
Phase C

1 1.00049 1 1.0043 1 1.00001

Average voltage
Phase A/
Phase B/
Phase C

0.97337 0.99783 0.97466 0.9996 0.96403 0.99706

Table 10. Minimum, maximum voltage and average deviation in the unbalanced network.

Modified IEEE 69 Unbalance

Case I Case II Case III

Without DG
and EV

With DG
and EV

Without DG
and EV

With DG
and EV

Without DG
and EV

With DG
and EV

Minimum
voltage

Deviation

Phase A 0.87662 0.96641 0.88291 0.97376 0.82497 0.96052

Phase B 0.92389 0.99528 0.92756 0.99629 0.89514 0.99563

Phase C 0.92511 0.98724 0.92872 0.98792 0.89699 0.98443

Maximum
voltage

Deviation

Phase A 1.00000 1.00000 1.00000 1.00000 1.00000 1.00244

Phase B 1.00000 1.00734 1.00000 1.01239 1.00000 1.01544

Phase C 1.00000 1.00835 1.00000 1.01334 1.00000 1.01686

Average
voltage

Phase A 0.96885 0.99333 0.97041 1.00094 0.95736 0.99325

Phase B 0.97714 1.00005 0.97823 0.99785 0.96923 1.00178

Phase C 0.97372 0.99682 0.97497 1.00094 0.96456 0.99748

The voltage profiles for every case are displayed in Figures 6–11. In Figures 6–8, all
three cases are evaluated in balance load data, but at the same time, Figures 9–11 show the
modified unbalanced load data in all three phases, the magnitude of minimum, maximum,
and average voltage deviation voltage is tabulated in Tables 9 and 10. The minimum
voltage found in Case III, in unbalanced case phase A, is 0.82497 pu without DG and
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EV integration, but after integration, it improves. The maximum voltage is 1.00244 pu
in unbalanced case phase A after the DG and EV integration. In all the cases, per-phase
voltage improves after the DG and EV integration.
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Table 11 shows the economics analysis for the CEL and DG installation cost estimated
in all the cases and conditions. In the balanced case, DG costs are 29,370.13, 32,116.41,
32,454 USD, and in the unbalanced case, these are 32,945.71, 31,756.02, 32,454 USD in case I,
case II, and case III. The CEL savings after DG and EV integration increased by 95.96, 96.01,
96.05 percent in balance and 91.79%, 92.06%, 92.46% in unbalanced cases.
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In this study, active and reactive power loss reduction is the prime objective with
the integration of both DG and EV; here, a three-phase analysis has been performed to
find out all per-phase branch losses. In balance bus condition, active losses are 225.03 kW,
213.824 kW, and 250.337 kW in case I, case II, and case III, and the reactive power losses are
102.116 kVAr,95.046 kVAr, 238.961 kVAr. Then, after DG and EV, its losses were reduced.
Modified three-phase unbalanced case active and reactive power loss data are tabulated
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in Tables 12 and 13. Here, due to unbalanced load distribution in the three phases, the
system becomes more nonlinear; thus, active and reactive loss increases compared to the
balanced case. When computing the loss without DG and EV, the total active power losses
are 242.698 kW, 230.111 kW, 273.857 kW, and total reactive power losses are 112.066 kVAr,
105.031 kVAr, 261.413 kVAr in three cases, respectively. But after DG and EV integration
in optimal location and size losses decrease in all the case scenarios, individual per phase
active and reactive loss data are tabulated in Tables 12 and 13.

Table 11. CEL, DG cost in the IEEE-69 balanced network and the modified IEEE-69 unbalanced
network.

Economic
Factor

IEEE 69 Bus Network Modified IEEE 69 Unbalance Bus Network

DG
COST(USD)

CEL(USD)_Without
DG and EV

CEL(USD)_With
DG and EV

CEL Saving
in %

DG
COST(USD)

CEL(USD)_Without
DG and EV

CEL(USD)_With
DG and EV

CEL Saving
in %

Case I 29,370.13 18,111.65 730.95 95.96% 32,945.71 19,536.04 1604.09 91.79%

Case II 32,116.41 17,211.83 686.89 96.01% 31,756.02 18,538.92 1472.32 92.06%

Case III 32,454.00 20,150.92 706.16 96.50% 32,454.00 22,044.15 1662.38 92.46%

Table 12. Active and reactive power loss in IEEE-69 balanced network.

IEEE 69 Balance Network

Case I Case II Case III

Without DG
and EV

With DG
and EV

Without DG
and EV

With DG
and EV

Without DG
and EV

With DG
and EV

Active power
loss (kW)

Phase A 75.001 3.027 71.275 2.844 83.446 2.924

Phase B 75.001 3.027 71.275 2.844 83.446 2.924

Phase C 75.001 3.027 71.275 2.844 83.446 2.924

Total 225.003 9.081 213.824 8.533 250.337 8.773

Reactive
power loss

(kVAr)

Phase A 34.055 3.015 31.955 2.732 79.654 2.791

Phase B 34.055 3.015 31.955 2.732 79.654 2.791

Phase C 34.055 3.015 31.955 2.732 79.654 2.791

Total 102.166 9.046 95.864 8.197 238.961 8.374

Table 13. Active and reactive power loss in the modified IEEE-69 unbalanced network.

Modified IEEE 69 Unbalance

Case I Case II Case III

Without DG
and EV

With DG
and EV

Without DG
and EV

With DG
and EV

Without DG
and EV

With DG
and EV

Active power
loss (kW)

Phase A 128.146 12.173 121.262 9.217 148.325 10.550

Phase B 54.165 2.448 51.553 3.004 59.449 3.562

Phase C 60.388 5.307 57.496 6.070 66.082 6.540

Total 242.698 19.928 230.311 18.291 273.857 20.652

Reactive
power loss

(kVAr)

Phase A 58.758 9.472 54.925 7.958 141.585 10.071

Phase B 23.697 0.949 22.262 1.143 56.748 3.400

Phase C 29.611 5.577 27.844 5.622 63.079 6.243

Total 112.066 15.998 105.031 14.724 261.413 19.713

The emission of harmful greenhouse gas parameters is also reduced in this case study,
which is tabulated in Table 14. Here, CO2, SO2, NOx, and CO gas are considered for
calculation as per Equation (24). The total emission of greenhouse gases is 632.468 g/kWh,
and their effect is calculated with and without DG and EV cases in both balanced and
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unbalanced conditions. In the balanced case, the emission was reduced by 61.4%, 64.5%, and
60.98% in all three study cases, and in the modified unbalanced condition, it was reduced
by 57.55%, 60.39%, and 62.79%. Table 15 shows the comparative analysis of grid supply
efficiency in balanced and unbalanced networks in all cases. The results analysis shows that
the efficiency has increased while considering the DG and EV planning in the distribution
network. The total power losses and efficiency for different cases of the balanced system
for the case I at standard temperature are 247.1118 MVA and 95.27% (without DG and
EV) and 12.81775 MVA and 99.71% (with DG and EV), for case II at 18 ◦C temperature are
234.3301 MVA and 95.51% (without DG and EV) and 11.83228 MVA and 99.73% (with DG
and EV) and for case III at 32.33 ◦C temperature are 346.0794 MVA and 92.75% (without
DG and EV) and 12.12804 MVA and 99.70% (with DG and EV), respectively. Similarly,
for the different cases of the unbalanced system the total power losses and efficiency for
the case I at standard temperature are 267.3221 MVA and 94.34% (without DG and EV)
and 25.55506 MVA and 99.46% (with DG and EV), for case II at 18 ◦C temperature are
253.1297 MVA and 94.62% (without DG and EV) and 23.48099 MVA and 99.51% (with DG
and EV) and for case III at 32.33 ◦C temperature are 378.5953 MVA and 92.79% (without
DG and EV) and 28.55009 MVA and 99.42% (with DG and EV) correspondingly. This
analysis clearly shows that the losses are increased, and the efficiency is reduced with the
increment in the temperature for the balanced and unbalanced systems. Here, it is clearly
found that the unbalanced nature will also affect system performance by temperature
variations. As shown in the analysis, the losses are always high and the efficiency is low for
the unbalanced system as compared to the balanced system.

Table 14. Emission factor calculation.

Emission
Factor

Emission of Greenhouse Gases in g/kWh
Emission of

Greenhouse Gas
in g/kWh

Greenhouse
Gas Yearly
in Tonnes
without

DG

Greenhouse
Gas Yearly
in Tonnes
after DG

Emission
Saving

after
Renewable

DG

IEEE 69 Balanced Case

CO2
(g/kWh)

SO2
(g/kWh)

NOx
(g/kWh)

CO
(g/kWh)

Case I
623 6.48 2.88 0.1083 632.468

22,311.93 8612.76 61.40%

Case II 22,250.02 7898.54 64.50%

Case III 22,452.26 8761.12 60.98%

Modified IEEE 69 Unbalanced case

Case I
623 6.48 2.88 0.1083 632.468

22,409.90 9513.67 57.55%

Case II 22,341.29 8849.41 60.39%

Case III 22,582.49 8402.40 62.79%

Table 15. Comparison of distribution system efficiency for different cases.

Comparative Analysis

Total
Power

Demand
(MVA)

Total
Power
Loss

without
DG and

EV (MVA)

Total
Power

Loss with
DG and

EV (MVA)

System
Efficiency
without
DG and

EV

System
Efficiency
with DG
and EV

IEEE 69
Balance

Case I 4660.214 247.1118 12.81775 95.27% 99.71%

Case II 4660.214 234.3301 11.83228 95.51% 99.73%

Case III 4660.214 346.0794 12.12804 92.75% 99.70%

Modified
IEEE 69

Unbalance

Case I 4660.214 267.3221 25.55506 94.34% 99.46%

Case II 4660.214 253.1297 23.48099 94.62% 99.51%

Case III 4660.214 378.5953 28.55009 92.79% 99.42%
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6. Conclusions

This study analyzed and evaluated three cases of unbalanced and balanced load
distributions on an IEEE 69 bus, taking into account global average temperature changes
during the day and night. Temperature variations affect system performance parameters,
showing the complexity of the present configuration. This study proposes EV charging
stations with optimal DG location with 3.64% EV load penetration. Here, DG mitigates
the impact of the load on EV charging stations. In all cases, greenhouse gas emissions
are lowered by 60.98–64.5% in the balanced scenario and 57.55–62.79% in the unbalanced
scenario. The annual cost of energy loss was minimized by almost 96% in balance and
almost 92% in unbalanced network in all the cases after the DG and EV integration in
the test bus network. This study’s multi-objective function is employed to figure out the
optimal bus location along with the size of distributed DG and EV. The incorporation of DG
and EV into the present network lowered both reactive and active power loss. This variation
in global temperature comparison research demonstrates the technological, economic, and
environmental impacts of balanced versus unbalanced networks. The main characteristic
of unbalanced systems is voltage stability, which is reduced, and the system becomes more
complex when compared to balance. The optimal location of DG and EV also varies with
unbalanced load distribution. The CEL and GHG savings are similarly diminished when
operating the same load in an imbalanced situation. Active and reactive power losses are
increased, and the size of the DG and cost are increased. However, it can be concluded
that if any network needs reconstruction with DG and EV, the unbalancing effect of the
load must always be considered. Performance, like efficiency, stability, and losses are also
affected by temperature variation under balanced and unbalanced conditions.
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Appendix A. The Data of IEEE 69 Bus Three Phase Balanced and Modified Unbalanced System

IEEE 69 Balanced (Three-Phase Load Data) Modified IEEE 69 Unbalanced (Three-Phase Load Data)

Bus
Node
No.

Three-
Phase
Distri-
bution

transformer
Connec-

tion
Type

Bus
Type

Active
Power
(Phase

A)

Reactive
Power
(Phase

A)

Active
Power
(Phase

B)

Reactive
Power
(Phase

B)

Active
Power
(Phase

C)

Reactive
Power
(Phase

C)

Phase
Distri-
bution

Connection
type

Active
Power
(Phase

A)

Reactive
Power
(Phase

A)

Active
Power
(Phase

B)

Reactive
Power
(Phase

B)

Active
Power
(Phase

C)

Reactive
Power
(Phase

C)

1 ABC Y slack 0 0 0 0 0 0 ABC Y 0 0 0 0 0 0

2 ABC Y PQ 0 0 0 0 0 0 ABC Y 0 0 0 0 0 0

3 ABC Y PQ 0 0 0 0 0 0 ABC Y 0 0 0 0 0 0

4 ABC Y PQ 0 0 0 0 0 0 ABC Y 0 0 0 0 0 0

5 ABC Y PQ 0 0 0 0 0 0 ABC Y 0 0 0 0 0 0

6 ABC Y PQ 0.867 0.733 0.867 0.733 0.867 0.733 AB Y 1.3 1.1 1.3 1.1 0 0

7 ABC Y PQ 13.467 10.000 13.467 10.000 13.467 10.000 A D 40.4 30 0 0 0 0

8 ABC Y PQ 25.000 18.000 25.000 18.000 25.000 18.000 BC Y 0 0 37.5 27 37.5 27

9 ABC Y PQ 10.000 7.333 10.000 7.333 10.000 7.333 B Y 0 0 30 22 0 0

10 ABC Y PQ 9.333 6.333 9.333 6.333 9.333 6.333 C Y 0 0 0 0 28 19

11 ABC Y PQ 48.333 34.667 48.333 34.667 48.333 34.667 ABC Y 48.33 34.67 48.33 34.67 48.33 34.67

12 ABC Y PQ 48.333 34.667 48.333 34.667 48.333 34.667 ABC Y 48.33 34.67 48.33 34.67 48.33 34.67

13 ABC Y PQ 2.667 1.833 2.667 1.833 2.667 1.833 A Y 8 5.5 0 0 0 0

14 ABC Y PQ 2.667 1.833 2.667 1.833 2.667 1.833 B Y 0 0 8 5.5 0 0

15 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

16 ABC Y PQ 15.167 10.000 15.167 10.000 15.167 10.000 C Y 0 0 0 0 45.5 30

17 ABC Y PQ 20.000 11.667 20.000 11.667 20.000 11.667 A Y 60 35 0 0 0 0

18 ABC Y PQ 20.000 11.667 20.000 11.667 20.000 11.667 B Y 0 0 60 35 0 0

19 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

20 ABC Y PQ 0.333 0.200 0.333 0.200 0.333 0.200 AC Y 0.5 0.3 0 0 0.5 0.3

21 ABC Y PQ 38.000 27.000 38.000 27.000 38.000 27.000 C Y 0 0 0 0 114 81

22 ABC Y PQ 1.767 1.167 1.767 1.167 1.767 1.167 A Y 5.3 3.5 0 0 0 0

23 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

24 ABC Y PQ 9.333 6.667 9.333 6.667 9.333 6.667 B Y 0 0 28 20 0 0

25 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC D 0 0 0 0 0 0

26 ABC Y PQ 4.667 3.333 4.667 3.333 4.667 3.333 C Y 0 0 0 0 14 10

27 ABC Y PQ 4.667 3.333 4.667 3.333 4.667 3.333 A Y 14 10 0 0 0 0
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IEEE 69 Balanced (Three-Phase Load Data) Modified IEEE 69 Unbalanced (Three-Phase Load Data)

Bus
Node
No.

Three-
Phase
Distri-
bution

transformer
Connec-

tion
Type

Bus
Type

Active
Power
(Phase

A)

Reactive
Power
(Phase

A)

Active
Power
(Phase

B)

Reactive
Power
(Phase

B)

Active
Power
(Phase

C)

Reactive
Power
(Phase

C)

Phase
Distri-
bution

Connection
type

Active
Power
(Phase

A)

Reactive
Power
(Phase

A)

Active
Power
(Phase

B)

Reactive
Power
(Phase

B)

Active
Power
(Phase

C)

Reactive
Power
(Phase

C)

28 ABC Y PQ 8.667 6.200 8.667 6.200 8.667 6.200 B Y 0 0 26 18.6 0 0

29 ABC Y PQ 8.667 6.200 8.667 6.200 8.667 6.200 C Y 0 0 0 0 26 18.6

30 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

31 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

32 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

33 ABC Y PQ 4.667 3.333 4.667 3.333 4.667 3.333 A Y 14 10 0 0 0 0

34 ABC Y PQ 6.500 4.667 6.500 4.667 6.500 4.667 B Y 0 0 19.5 14 0 0

35 ABC Y PQ 2.000 1.333 2.000 1.333 2.000 1.333 ABC Y 2 1.33 2 1.33 2 1.33

36 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

37 ABC Y PQ 26.333 18.800 26.333 18.800 26.333 18.800 ABC Y 26.34 18.8 26.34 18.8 26.34 18.8

38 ABC Y PQ 128.233 91.500 128.233 91.500 128.233 91.500 C Y 0 0 0 0 384.7 274.5

39 ABC Y PQ 128.233 91.500 128.233 91.500 128.233 91.500 A Y 384.7 274.5 0 0 0 0

40 ABC Y PQ 13.500 9.433 13.500 9.433 13.500 9.433 B D 0 0 40.5 28.3 0 0

41 ABC Y PQ 1.200 0.900 1.200 0.900 1.200 0.900 AB Y 1.8 1.35 1.8 1.35 0 0

42 ABC Y PQ 1.450 1.167 1.450 1.167 1.450 1.167 C Y 0 0 0 0 4.35 3.5

43 ABC Y PQ 8.800 6.333 8.800 6.333 8.800 6.333 BC Y 0 0 13.2 9.5 13.2 9.5

44 ABC Y PQ 8.000 5.733 8.000 5.733 8.000 5.733 ABC Y 8 5.73 8 5.73 8 5.73

45 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

46 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

47 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

48 ABC Y PQ 33.333 24.000 33.333 24.000 33.333 24.000 A Y 100 72 0 0 0 0

49 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

50 ABC Y PQ 414.667 296.000 414.667 296.000 414.667 296.000 ABC Y 414.66 296 414.66 296 414.66 296

51 ABC Y PQ 10.667 7.667 10.667 7.667 10.667 7.667 AB Y 16 11.5 16 11.5 0 0

52 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

53 ABC Y PQ 75.667 54.000 75.667 54.000 75.667 54.000 A Y 227 162 0 0 0 0

54 ABC Y PQ 19.667 14.000 19.667 14.000 19.667 14.000 BC Y 0 0 29.5 21 29.5 21

55 ABC Y PQ 6.000 4.333 6.000 4.333 6.000 4.333 B Y 0 0 18 13 0 0

56 ABC Y PQ 6.000 4.333 6.000 4.333 6.000 4.333 C Y 0 0 0 0 18 13
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IEEE 69 Balanced (Three-Phase Load Data) Modified IEEE 69 Unbalanced (Three-Phase Load Data)

Bus
Node
No.

Three-
Phase
Distri-
bution

transformer
Connec-

tion
Type

Bus
Type

Active
Power
(Phase

A)

Reactive
Power
(Phase

A)

Active
Power
(Phase

B)

Reactive
Power
(Phase

B)

Active
Power
(Phase

C)

Reactive
Power
(Phase

C)

Phase
Distri-
bution

Connection
type

Active
Power
(Phase

A)

Reactive
Power
(Phase

A)

Active
Power
(Phase

B)

Reactive
Power
(Phase

B)

Active
Power
(Phase

C)

Reactive
Power
(Phase

C)

57 ABC Y PQ 9.333 6.667 9.333 6.667 9.333 6.667 ABC Y 9.33 6.66 9.33 6.66 9.33 6.66

58 ABC Y PQ 9.333 6.667 9.333 6.667 9.333 6.667 ABC D 9.34 6.67 9.34 6.67 9.34 6.67

59 ABC Y PQ 8.667 6.183 8.667 6.183 8.667 6.183 A Y 26 18.55 0 0 0 0

60 ABC Y PQ 8.667 6.183 8.667 6.183 8.667 6.183 B Y 0 0 26 18.55 0 0

61 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

62 ABC Y PQ 8.000 5.667 8.000 5.667 8.000 5.667 C Y 0 0 0 0 24 17

63 ABC Y PQ 8.000 5.667 8.000 5.667 8.000 5.667 A Y 24 17 0 0 0 0

64 ABC Y PQ 0.400 0.333 0.400 0.333 0.400 0.333 B Y 0 0 1.2 1 0 0

65 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

66 ABC Y PQ 2.000 1.433 2.000 1.433 2.000 1.433 AC Y 3 2.15 0 0 3 2.15

67 ABC Y PQ 0.000 0.000 0.000 0.000 0.000 0.000 ABC Y 0 0 0 0 0 0

68 ABC Y PQ 13.073 8.767 13.073 8.767 13.073 8.767 C Y 0 0 0 0 39.22 26.3

69 ABC Y PQ 13.073 8.767 13.073 8.767 13.073 8.767 A Y 39.22 26.3 0 0 0 0



World Electr. Veh. J. 2024, 15, 425 28 of 30

References
1. Rajendran, G.; Vaithilingam, C.A.; Misron, N.; Naidu, K.; Ahmed, R. A comprehensive review on system architecture and

international standards for electric vehicle charging stations. J. Energy Storage 2021, 42, 103099. [CrossRef]
2. Kathiravan, K.; Rajnarayanan, P.N. Application of AOA algorithm for optimal placement of electric vehicle charging station to

minimize line losses. Electr. Power Syst. Res. 2023, 214, 108868. [CrossRef]
3. Rajani, B.; Kommula, B.N. An optimal energy management among the electric vehicle charging stations and electricity distribution

system using GPC-RERNN approach. Energy 2022, 245, 123180. [CrossRef]
4. Ahmad, F.; Iqbal, A.; Ashraf, I.; Marzband, M. Optimal location of electric vehicle charging station and its impact on distribution

network: A review. Energy Rep. 2022, 8, 2314–2333. [CrossRef]
5. Ahmad, F.; Ashraf, I.; Iqbal, A.; Marzband, M.; Khan, I. A novel AI approach for optimal deployment of EV fast charging station

and reliability analysis with solar based DGs in distribution network. Energy Rep. 2022, 8, 11646–11660. [CrossRef]
6. Toghranegar, S.; Rabiee, A.; Soroudi, A. Enhancing the unbalanced distribution network’s hosting capacity for DERs via optimal

load re-phasing. Sustain. Cities Soc. 2022, 87, 104243. [CrossRef]
7. Abujubbeh, M.; Natarajan, B. A New Probabilistic Framework for EV Charging Station Planning in Distribution Systems

Considering Spatio-temporal Uncertainties. In Proceedings of the 2023 IEEE Kansas Power and Energy Conference (KPEC),
Manhattan, KS, USA, 27–28 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6.

8. Harish, B.N.; Surendra, U. A review on power quality issues in electric vehicle interfaced distribution system and mitigation
techniques. Indones. J. Electr. Eng. Comput. Sci. 2022, 25, 656–665. [CrossRef]

9. Ahmad, F.; Khalid, M.; Panigrahi, B.K. An enhanced approach to optimally place the solar powered electric vehicle charging
station in distribution network. J. Energy Storage 2021, 42, 103090. [CrossRef]

10. Eid, A.; Mohammed, O.; El-Kishky, H. Efficient operation of battery energy storage systems, electric-vehicle charging stations and
renewable energy sources linked to distribution systems. J. Energy Storage 2022, 55, 105644. [CrossRef]

11. Islam, M.S.; Mithulananthan, N.; Hung, D.Q. Coordinated EV charging for correlated EV and grid loads and PV output using a
novel, correlated, probabilistic model. Int. J. Electr. Power Energy Syst. 2018, 104, 335–348. [CrossRef]

12. Jha, B.K.; Singh, A.; Kumar, A.; Misra, R.K.; Singh, D. Phase unbalance and PAR constrained optimal active and reactive power
scheduling of Virtual Power Plants (VPPs). Int. J. Electr. Power Energy Syst. 2020, 125, 106443. [CrossRef]

13. Esmaili, M.; Goldoust, A. Multi-objective optimal charging of plug-in electric vehicles in unbalanced distribution networks. Int. J.
Electr. Power Energy Syst. 2015, 73, 644–652. [CrossRef]

14. AbuElrub, A.; Hamed, F.; Saadeh, O. Microgrid integrated electric vehicle charging algorithm with photovoltaic generation. J.
Energy Storage 2020, 32, 101858. [CrossRef]

15. Kumar, A.; Kumar, S.; Sinha, U.K.; Bohre, A.K. Renewable DG Integration in the Unbalanced Distribution System with Impact of
EV Penetration for Sustainable Operation. In Proceedings of the 2023 IEEE 3rd International Conference on Smart Technologies
for Power, Energy and Control (STPEC), Bhubaneswar, India, 10–13 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6.

16. Balu, K.; Mukherjee, V. Optimal allocation of electric vehicle charging stations and renewable distributed generation with battery
energy storage in radial distribution system considering time sequence characteristics of generation and load demand. J. Energy
Storage 2023, 59, 106533. [CrossRef]

17. Ren, X.; Zhang, H.; Hu, R.; Qiu, Y. Location of electric vehicle charging stations: A perspective using the grey decision-making
model. Energy 2019, 173, 548–553. [CrossRef]

18. Shivashankar, G.S. Overview of different overhead transmission line conductors. Mater. Today Proc. 2017, 4, 11318–11324.
19. Karmakar, S.; Bera, T.K.; Bohre, A.K. Novel PI controller and ANN controllers-Based passive cell balancing for battery management

system. IEEE Trans. Ind. Appl. 2023, 59, 7623–7634. [CrossRef]
20. Burle, T.; Chintapalli, V.B.R. Modified load flow algorithm suitable for modern power systems under variable weather conditions.

Electr. Power Syst. Res. 2022, 211, 108221. [CrossRef]
21. Xu, Q.; Zhang, H.; Cao, Y.; Qin, H.; Gao, Z. Power System State Estimation Approach Considering Transmission Line Temperature.

Appl. Sci. 2022, 12, 10171. [CrossRef]
22. Haldar, S.; Choudhury, M.; Choudhury, S.; Samanta, P. Trend analysis of long-term meteorological data of a growing metropolitan

city in the era of global climate change. Total Environ. Res. Themes 2023, 7, 100056. [CrossRef]
23. Albrechtowicz, P. The overhead transmission line temperature impact on the phase-shifting transformer settings. Electr. Power

Syst. Res. 2023, 220, 109266. [CrossRef]
24. Cecchi, V.; Knudson, M.; Miu, K. System impacts of temperature-dependent transmission line models. IEEE Trans. Power Deliv.

2013, 28, 2300–2308. [CrossRef]
25. Dong, X.; Wang, C.; Liang, J.; Han, X.; Zhang, F.; Sun, H.; Wang, M.; Ren, J. Calculation of power transfer limit considering

electro-thermal coupling of overhead transmission line. IEEE Trans. Power Syst. 2014, 29, 1503–1511. [CrossRef]
26. Burle, T.; Chintapalli, V.B.R. Effect of ambient temperature variations on estimation of proximity of the voltage collapse point.

IET Gener. Transm. Distrib. 2020, 14, 6382–6396. [CrossRef]
27. Mishra, A.; Rajan, J.S. Development of a Self-Powered Temperature Monitoring Wireless Node for Transmission Lines for Smart

Grid Application. Power Res. A J. CPRI 2019, 14, 93–103. [CrossRef]
28. Rahman, M.; Atchison, F.; Cecchi, V. Temperature-dependent system level analysis of electric power transmission systems: A

review. Electr. Power Syst. Res. 2021, 193, 107033. [CrossRef]

https://doi.org/10.1016/j.est.2021.103099
https://doi.org/10.1016/j.epsr.2022.108868
https://doi.org/10.1016/j.energy.2022.123180
https://doi.org/10.1016/j.egyr.2022.01.180
https://doi.org/10.1016/j.egyr.2022.09.058
https://doi.org/10.1016/j.scs.2022.104243
https://doi.org/10.11591/ijeecs.v25.i2.pp656-665
https://doi.org/10.1016/j.est.2021.103090
https://doi.org/10.1016/j.est.2022.105644
https://doi.org/10.1016/j.ijepes.2018.07.002
https://doi.org/10.1016/j.ijepes.2020.106443
https://doi.org/10.1016/j.ijepes.2015.06.001
https://doi.org/10.1016/j.est.2020.101858
https://doi.org/10.1016/j.est.2022.106533
https://doi.org/10.1016/j.energy.2019.02.015
https://doi.org/10.1109/TIA.2023.3299886
https://doi.org/10.1016/j.epsr.2022.108221
https://doi.org/10.3390/app121910171
https://doi.org/10.1016/j.totert.2023.100056
https://doi.org/10.1016/j.epsr.2023.109266
https://doi.org/10.1109/TPWRD.2013.2276757
https://doi.org/10.1109/TPWRS.2013.2296553
https://doi.org/10.1049/iet-gtd.2020.0270
https://doi.org/10.33686/pwj.v14i1.142191
https://doi.org/10.1016/j.epsr.2021.107033


World Electr. Veh. J. 2024, 15, 425 29 of 30

29. Rakpenthai, C.; Uatrongjit, S. Power system state and transmission line conductor temperature estimation. IEEE Trans. Power
Syst. 2016, 32, 1818–1827. [CrossRef]

30. Koufakis, E.I.; Tsarabaris, P.T.; Katsanis, J.S.; Karagiannopoulos, C.G.; Bourkas, P.D. A wildfire model for the estimation of the
temperature rise of an overhead line conductor. IEEE Trans. Power Deliv. 2010, 25, 1077–1082. [CrossRef]

31. Valentina, C.; St, L.A.; Karen, M. Incorporating temperature variations into transmission-line models. IEEE Trans. Power Deliv.
2011, 26, 2189–2196.

32. Bockarjova, M.; Andersson, G. Transmission line conductor temperature impact on state estimation accuracy. In Proceedings of
the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 701–706.

33. Du, Y.; Liao, Y. On-line estimation of transmission line parameters, temperature and sag using PMU measurements. Electr. Power
Syst. Res. 2012, 93, 39–45. [CrossRef]

34. Leger, A.S.; Nwankpa, C. OTA-based transmission line model with variable parameters for analog power flow computation. Int.
J. Circuit Theory Appl. 2008, 38, 199–220. [CrossRef]

35. Sagiyeva, I.Y.; Nosov, A.V.; Surovtsev, R.S. The influence of temperature on microstrip transmission line characteristics. In
Proceedings of the 2020 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices
(EDM), Chemal, Russia, 29 June–3 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 191–194.

36. Du, Y.; Liao, Y. Online estimation of power transmission line parameters, temperature and sag. In Proceedings of the 2011 North
American Power Symposium, Boston, MA, USA, 4–6 August 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6.

37. Moghassemi, A.; Padmanaban, S.; Ramachandaramurthy, V.K.; Mitolo, M.; Benbouzid, M. A novel solar photovoltaic fed
TransZSI-DVR for power quality improvement of grid-connected PV systems. IEEE Access 2020, 9, 7263–7279. [CrossRef]

38. Satyanarayana PV, V.; Radhika, A.; Reddy, C.R.; Pangedaiah, B.; Martirano, L.; Massaccesi, A.; Jasiński, M. Combined DC-link
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