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Abstract: Environmental perception is a key technology for autonomous driving, enabling
vehicles to analyze and interpret their surroundings in real time to ensure safe navigation
and decision-making. Multi-sensor information fusion, which integrates data from different
sensors, has become an important approach to overcome the limitations of individual sen-
sors. Each sensor has unique advantages. However, its own limitations, such as sensitivity
to lighting, weather, and range, require fusion methods to provide a more comprehen-
sive and accurate understanding of the environment. This paper describes multi-sensor
information fusion techniques for autonomous driving environmental perception. Various
fusion levels, including data-level, feature-level, and decision-level fusion, are explored,
highlighting how these methods can improve the accuracy and reliability of perception
tasks such as object detection, tracking, localization, and scene segmentation. In addition,
this paper explores the critical role of sensor calibration, focusing on methods to align data
in a unified reference frame to improve fusion results. Finally, this paper discusses recent
advances, especially the application of machine learning in sensor fusion, and highlights
the challenges and future research directions required to further enhance the environmen-
tal perception of autonomous systems. This study provides a comprehensive review of
multi-sensor fusion technology and deeply analyzes the advantages and challenges of
different fusion methods, providing a valuable reference and guidance for the field of
autonomous driving.

Keywords: autonomous driving; multi-sensor information fusion; environmental perception;
machine learning

1. Introduction
In recent years, autonomous vehicles have shown great potential to improve the ef-

ficiency of intelligent transportation systems, enhance road safety, and optimize energy
consumption [1]. Significant progress in sensor technology, artificial intelligence (AI), and
vehicle control systems has driven rapid development in the field of autonomous driving.
These technological advances have enabled autonomous vehicles (AVs) to operate at higher
levels of autonomy and safety. However, with the rapid development of autonomous
driving control and regulation technologies, higher requirements have been placed on
perception systems, requiring more complex and reliable systems. The development of
autonomous driving control systems is a key factor in enhancing the overall capabilities of
Avs [2]. Advanced technologies such as model predictive control (MPC) [3], robust path
tracking [4], and deep reinforcement learning (DRL) [5] are increasingly being applied
to autonomous vehicle systems. The goal of these control technologies is to ensure that
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the vehicle can still achieve accurate trajectory tracking, stable operation, and reasonable
decision-making in dynamic and unpredictable environments. With the continuous ad-
vancement of control systems, the requirements for autonomous vehicle perception systems
are becoming more and more stringent. The perception system is responsible for providing
accurate and real-time environmental data to the control system, which is the basis for the
accurate operation of the control system. The close interaction between the control system
and the perception system is crucial because the control algorithm is highly dependent on
accurate and up-to-date environmental information to adjust its decisions in real time. The
rapid development of autonomous driving control technology has led to higher and higher
expectations for perception systems, hoping that they can provide high-precision real-time
data under various driving conditions.

The perception system in autonomous driving is one of the key technologies to achieve
autonomous driving capabilities. It perceives the surrounding situation by analyzing and
understanding the environment around the vehicle, making subsequent decisions and plan-
ning driving paths. Autonomous vehicles rely on advanced perception systems to obtain
accurate and comprehensive information about the surrounding environment. Therefore,
the research and development of perception systems are crucial for promoting autonomous
driving technology. By continuously improving the accuracy, stability, and adaptability
of the perception system, safer and more efficient intelligent driving cars can be achieved,
bringing huge potential benefits to society. Multi-sensor information fusion comprehen-
sively utilizes the information obtained by different sensors, avoiding the perception
limitations and uncertainties of a single sensor, forming a more comprehensive perception
and recognition of the environment or target, and improving the system’s external envi-
ronment perception ability. In recent years, multi-sensor information fusion technology
has been fully applied to fault detection [6], remote sensing technology [7], robotics tech-
nology [8], simultaneous localization and mapping (SLAM) [9], health detection [10], and
advanced driver assistance systems (ADAS) [11].

Environmental perception systems provide a comprehensive perception network for
autonomous vehicles by equipping them with multiple sensors, such as lidar, cameras,
millimeter-wave radar, GNSS/IMU, etc. This paper focuses on how multi-sensor informa-
tion fusion technology can enhance environmental perception tasks. Cameras can provide
rich visual information, such as color, texture, and contour, and are widely used for object
detection and tracking. Millimeter-wave radar provides data on the distance and speed of
objects, which has a wide range of applications in obstacle detection [12], pedestrian [13],
and vehicle [14] recognition. GNSS and IMU provide global position information and
inertial information for autonomous vehicles to determine their location. This allows the
vehicle to update its position in real time on the high-precision map. Lidar can provide
accurate distance measurement and three-dimensional spatial information, and is mainly
used for positioning, obstacle detection, and environmental reconstruction. Since 3D data
provides richer and more accurate environmental information than 2D data, 3D lidar plays
an increasingly important role in autonomous driving systems. It can maximize the recon-
struction of the real traffic environment to obtain the details of the target by combining
sensors such as cameras and lidar.

However, during the fusion process, the targets of multiple sensors are not in the
same coordinate system, and the data transmission rates of different sensors are also
different. Therefore, the multi-sensor information must be synchronized and aligned to a
common spatiotemporal reference frame. In addition, there are differences in the physical
information form and sensors, which requires calibration of the external parameters of
multiple sensors to determine the final position and posture. In the process of sensor
fusion, the current research methods are different, and the information fusion, fusion
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methods, and fusion algorithms used by multiple sensors are also different. From the
perspective of fusion methods, there are many combinations of sensors, including lidar–
radar, camera–lidar, radar–camera, camera–lidar–radar, etc. According to the different
forms of information processing by information fusion, the methods can be divided into
data-level fusion, feature-level fusion, and decision-level fusion. In the process of data
fusion, different fusion levels are usually adopted based on different abstraction levels of
sensor data.

This paper will explore the application of multi-sensor information fusion in envi-
ronmental perception, focusing on object detection and tracking, localization, mapping,
and scene segmentation. By integrating data from different sensors, autonomous driving
systems can more accurately identify and track pedestrians, vehicles, and obstacles, thereby
improving safety. Multi-sensor fusion can also improve real-time positioning and map-
ping, ensuring reliable navigation in complex environments. This paper is organized as
follows: Section 2 discusses the types, characteristics, and applications of sensors used in
autonomous vehicles. Section 3 reviews sensor calibration methods. Section 4 studies multi-
sensor fusion methods and algorithms, and Section 5 concludes and provides suggestions
for future research.

2. Sensors in Environmental Perception Systems
The environmental data that autonomous vehicles can make clear decisions depend

largely on the data obtained by sensors. The type and performance of sensors in au-
tonomous vehicles directly determine the quantity and quality of external information
collected by the system. In addition to using vehicle-to-vehicle communications such
as V2V (vehicle to vehicle) and V2I (vehicle to infrastructure), autonomous vehicles also
analyze and integrate various sensor data to perceive the external environment. Currently,
the commonly used sensor types include radar, camera (including RGB-D, infrared cam-
era), ultrasonic, lidar, and GNSS/IMU. Because the detection capabilities and reliability
of various sensors in different environments are limited, the fusion of multi-sensor data
can improve the detection and recognition accuracy. Table 1 summarizes the advantages
and disadvantages of the above sensors and their detection ranges, indicating that different
sensors have obvious differences in working characteristics. At the same time, by fusing
multi-sensor data, the perception capabilities of AD vehicles can be improved in all aspects,
effectively ensuring the safety of drivers [15]. Therefore, this section will mainly discuss
the characteristics and advantages and disadvantages of these sensors.

Table 1. Comparison of different sensors [15].

Type Advantage Disadvantage Max Working Distance

MMW Radar
(1) long working distance;
(2) applicable to radial speed;
(3) suitable for all weather conditions

(1) unapplicable for static objects;
(2) frequent false alarms 5–200 m

Camera
(1) excellent recognition;
(2) available lateral speed;
(3) available color distributions

(1) large amount of calculation;
(2) light interference;
(3) vulnerable to weather disturbances 250 m

LiDAR
(1) wide field of view
(2) wide range resolution
(3) high angular resolution

(1) unable to tolerate bad weather
(2) expensive 200 m

Ultrasonic (1) cheap
(1) low resolution
(2) not suitable for high speed 2 m

DSRC
(1) suitable for high speed (up to 150 km/h)
(2) relatively mature technology
(3) low latency (0.2 s)

(1) low data rate
(2) small coverage area 100–300 m
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Table 1. Cont.

Type Advantage Disadvantage Max Working Distance

LTE-V2X

(1) long working distance
(2) relatively high data transfer rates (up to

300 mbps)

(1) high latency over long distances (>1 s)
(2) not suitable for time-critical events Up to 20 km

5G-V2X

(1) ultra-high data transfer rate
(2) low latency (<80 s)
(3) high bandwidth
(4) suitable for high speed (up to 500 km/h)

(1) immature application 100–300 m

2.1. Millimeter-Wave Radar

Millimeter-wave (MMW) radar uses electromagnetic waves in the millimeter-
wavelength range (usually between 30 GHz and 300 GHz) to detect objects and measure
their distance, speed, and relative position. The radar transmits electromagnetic waves,
which are reflected from objects in the environment. The radar system then measures the
time delay and frequency shift of the reflected waves and uses this data to calculate the
distance and speed of the object. The frequency shift occurs due to the Doppler effect,
allowing the radar to track the speed of moving objects. MMW radar works by transmitting
a continuous or pulsed signal and receiving the reflected signal from the object. It can
be divided into two types: frequency modulated continuous wave (FMCW) and pulse
Doppler radar. FMCW radar is particularly useful in autonomous driving because it is
able to measure distance and relative speed at the same time. The main types of MMW
radar currently used in autonomous vehicles are as follows: (1) FMCW radar, which is
widely used in autonomous driving systems because of its ability to provide distance and
speed measurements. It works by modulating the frequency of the transmitted signal and
measuring the frequency difference of the returned signal, which allows accurate estimation
of distance and speed. (2) Pulse Doppler radar uses pulses of electromagnetic energy to
detect objects. Although the resolution may be lower than that of FMCW radar, it is partic-
ularly suitable for long-range detection. (3) Short-range, medium-range, and long-range
radars are designed to provide different levels of coverage. Short-range radar provides
high-resolution data to detect close-range objects. Long-range radar detects objects at a
greater distance, such as the vehicle ahead.

One of the advantages of incorporating MMW radar into autonomous driving is that
it is not affected by light and weather conditions. It can work in darkness and detects
snow, rain, fog, or dust almost equally well. Long-range radar can detect up to 250 m
in very adverse conditions where other sensors cannot operate [16]. MMW radar can
accurately measure the speed of moving objects through the Doppler effect, making it ideal
for adaptive cruise control (ACC) and collision avoidance systems.

However, it also has some disadvantages and difficulties. The low resolution cannot
distinguish objects that are closer or makes it difficult to detect small objects in the environ-
ment. Although it is very good at detecting large objects and measuring distance and speed,
it lacks the detailed visual information provided by cameras, such as object shape, texture
and color. In addition, MMW radar systems are susceptible to interference from other
radar sensors, especially in urban environments with many radar vehicles. MMW radar
is sensitive to target reflectivity. This is because different object materials have different
abilities to reflect radar waves. Metallic objects can significantly enhance radar signals,
which helps to identify targets such as vehicles, but it can also make small metal objects on
the road, such as discarded cans, appear larger than they actually are, while some others
(such as wood) hardly reflect radar waves. This situation may lead to false detections and
missed detections.
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A millimeter-wave radar is an important sensor for autonomous driving systems,
and it excels in object detection, speed measurement, and coping with complex environ-
mental conditions. The all-weather performance and long-range detection capabilities of
millimeter-wave radar make it an indispensable part of applications such as adaptive cruise
control, obstacle detection, and pedestrian safety. However, due to its low angular resolu-
tion and limited details, complementary sensors such as cameras and lidar are needed to
achieve a fully integrated and reliable perception system.

2.2. Camera

Cameras are one of the most widely used sensors in autonomous driving, provid-
ing critical visual information for the vehicle’s perception system. They capture two-
dimensional (2D) images of the surrounding environment and then process them to detect
objects, lanes, road signs, and traffic lights. Cameras rely on optical principles to capture
light reflected from objects and convert it into electrical signals that create digital images.
Cameras used in autonomous driving include RGB and special variants such as infrared
cameras, fisheye cameras, etc., which can provide additional depth, infrared, or visual
information under special conditions. It can provide the necessary visual information for
perception, navigation and decision-making, including color, texture and shape features.
Cameras can provide raw visual data and work together with sensors such as lidar, radar,
and ultrasound to provide the vehicle with a full understanding of the surrounding envi-
ronment, thereby improving driving safety. Object detection and recognition, lane detection
and tracking, traffic sign recognition, and pedestrian detection are the main applications
of cameras. Based on deep learning methods, deep neural networks have revolutionized
computer vision tasks, achieving more accurate and efficient object detection, classification,
and scene understanding. Advanced deep learning models, such as convolutional neural
networks (CNNs), can achieve more accurate and efficient object detection, classification,
semantic segmentation, and scene understanding from camera data. These models can
learn complex features and patterns directly from raw pixel data, significantly improv-
ing perception performance. The most common models of camera-based perception in
autonomous driving are the (1) stereo vision system, which uses two or more cameras
placed at different angles to simulate human binocular vision. By comparing the images
of each camera, the stereo vision system can estimate the depth and distance to the object,
thereby achieving 3D reconstruction of the environment. (2) Monocular vision systems
rely on a single camera and typically use machine learning algorithms to infer depth and
3D information from 2D images. While monocular vision systems are more cost-effective,
they are not as accurate as stereo vision systems. (3) Infrared cameras are used to enhance
vision in low-light environments and provide a thermal image of the surrounding envi-
ronment. Infrared cameras are particularly useful for detecting objects with higher body
temperatures, such as pedestrians or animals, in the dark.

However, cameras are susceptible to lighting conditions, and reliability and accuracy
decrease when lighting conditions change (e.g., vehicles exiting tunnels, shadows, low
light). Cameras are also easily affected by weather conditions such as rain, snow, or fog.
Water droplets on the lens blur the image and fog reduces visibility, making it difficult to
detect objects at a distance. Unlike lidar, which provides accurate 3D spatial data, cameras
typically provide 2D data. Although techniques such as stereo vision and monocular
depth estimation can infer depth, their accuracy is not as good as lidar, especially in
complex scenes. Camera data requires a lot of computing resources to process, especially
when using deep learning models for real-time object detection and classification. This
increases the computational burden of the entire system. By fusing camera data with
data from other sensors (radar, lidar) to confirm the observation results and improve
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reliability, the limitations of a single sensor can be compensated. Using deep learning
methods, convolutional neural networks (CNNs) trained on large-scale datasets can adapt
to different lighting environment conditions and improve object detection capabilities.

2.3. LiDAR

As a distance measurement technology [17], LiDAR works by measuring the time
interval between the emitted laser pulse and the reflected light scattered by the surrounding
targets, thereby achieving accurate distance calculation. The round-trip delay of the LiDAR
signal is called the time of flight (TOF), which can be obtained by modulating the frequency,
phase, intensity, etc., of the emitted light and measuring the time it takes for the receiver to
detect the modulation pattern [18–20]. LiDAR systems can be divided into laser ranging
systems and scanning systems [21]. Rangefinders that measure the distance to an object
using a laser beam are called laser rangefinders. The way they work depends on the type
of signal modulation used in the laser beam. Their time of flight (TOF) can be measured
using pulsed lasers, and these are called direct detection laser rangefinders. The laser
signal can also be frequency modulated continuous wave (FMCW), which can indirectly
measure distance and speed through the Doppler effect. These are called coherent detection
laser rangefinders. TOF LiDARs dominate the current automotive LiDAR market due
to their simple structure and signal processing methods. However, due to eye safety
requirements, the limited transmit power limits the potential to increase their maximum
range. Their return signals may also be interfered by strong sunlight or other TOF LiDAR
beams. FMCW LiDAR continuously transmits frequency modulated laser signals to the
target, continuously illuminating the object with less transmission power, thus meeting
eye safety requirements and opening the possibility of using more power to expand its
field of view (FOV). Compared with cameras, LiDAR is insensitive to light and provides
practical and accurate 3D perception capabilities during the day and night. It can provide
high-resolution and real-time 3D point clouds of the environment [22], with the aim of
obtaining the shape and distance of surrounding vehicles and pedestrians as well as road
geographic information, while facilitating object detection and classification. Multi-line
LiDAR continuously transmits laser beams through the transmitter, and the receiver collects
the scattered light of the target as a point cloud image, which helps perceive and identify
pedestrians and vehicles.

However, multi-thread LiDAR systems in autonomous driving bring challenges such
as data synchronization, resource management, real-time performance, concurrency issues,
scalability, and fault tolerance. Effective management of these issues is crucial to improving
the reliability of autonomous driving systems. LiDAR can sense the surrounding environ-
ment in real time and form high-definition 3D graphics [23]. It has the advantages of fast
response, long detection distance, and high accuracy. The main performance of LiDAR
point cloud in autonomous driving is (1) real-time environment perception and process-
ing for scene understanding and target detection [24]; (2) generation and construction of
high-definition maps and city models for reliable positioning and construction. LiDAR
also has unique advantages in ranging. Reference [25] proposed an obstacle detection and
tracking method based on three-dimensional light detection and ranging (LiDAR) to obtain
the motion state of obstacles in real traffic scenes. The experimental results show that the
method has good performance in real urban scenes and has high reliability. For the problem
that adjacent obstacles are difficult to distinguish and distant obstacles are easily detected
as multiple targets, reference [26] proposed an obstacle detection and tracking method
based on multiple LiDARs. The average detection accuracy of this method was 97.53%,
and the average tracking accuracy was 95.1%. The results showed that it was superior to
other methods in obstacle detection and tracking.
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Although LiDAR is superior to other sensors in ranging accuracy and 3D perception,
its performance is poor in harsh environments such as fog, snow, or rain. Heterogeneous
sensor data fusion can eliminate information redundancy and loss, and provide reliable,
stable, and efficient environmental perception capabilities, but the cost of the system will
increase accordingly.

2.4. Global Navigation Satellite System (GNSS)/Inertial Measurement Unit (IMU)

The Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU)
are key components in autonomous driving systems, helping to determine the position,
speed, and orientation of the vehicle. GNSS is a satellite-based navigation system that
provides precise positioning and timing information anywhere on Earth. By triangulat-
ing signals from multiple satellites, a GNSS receiver can calculate the vehicle’s position
(latitude, longitude, and altitude) and speed. GNSS is widely used for global positioning
and mapping, especially in open areas such as highways. In autonomous driving, it is one
of the most commonly used vehicle positioning sensors. GNSS provides precise global
positioning, which enables accurate positioning in open environments such as highways or
rural roads. Differential GPS (DGPS), Real-Time Kinematic GPS (RTK-GPS), and Precise
Point Positioning (PPP) technologies can be used to improve the accuracy of GNSS. The
differential global positioning system (DGPS) operation consists of a reference station and
a rover. Both stations use GPS receivers to receive positioning data from GPS satellites, use
the positioning data collected by the reference station to calculate the positioning error, and
transmit the error correction to the rover to improve the positioning accuracy [27]. RTK can
achieve real-time centimeter-level positioning accuracy through double-difference ambigu-
ity resolution (AR) [28]. Compared with differential techniques, precise point positioning
(PPP) has a significant advantage in that it can accurately determine the position of a
GNSS rover receiver by using external corrections from the Internet or dedicated correction
satellites [29]. While both DGPS and RTK can achieve high positioning accuracy, GPS signal
interruptions in urban environments and tunnels remain a challenge for these sensors.

The IMU can provide information about the vehicle’s attitude, velocity, and direction.
The IMU helps determine vehicle motion between GNSS updates and ensures continuous
tracking of the vehicle’s path, especially in areas where GNSS signals may be temporarily
lost, such as tunnels and dense urban areas. The IMU provides real-time feedback on the ve-
hicle’s motion, which is critical for continued tracking, especially in dynamic environments.
As the positioning error accumulates during the vehicle’s driving, the IMU signal error
accumulation will drift over time, so the IMU needs to continuously correct the estimated
position. The data fusion of GNSS and IMU can achieve vehicle state estimation and ensure
a continuous positioning process. GNSS and IMU data are often fused with other sensors
such as LiDAR and radar to improve positioning accuracy and build a complete picture
of the vehicle’s surroundings. By fusing these data sources, autonomous vehicles are able
to navigate in a variety of environments, even without direct GNSS signals. There are
currently several models for combining GNSS and IMU data. (1) GNSS/IMU integration:
combining GNSS data with IMU information can create a dead reckoning system that
continuously estimates the vehicle’s position when GNSS signals are unavailable. In this
model, the IMU uses accelerometers and gyroscopes to track vehicle motion and orientation
to fill in the gaps in GNSS data. (2) Tightly coupled system: in this, GNSS and IMU data are
fused and processed in real time. This can improve the accuracy of vehicle positioning, es-
pecially in challenging environments where GNSS signals are weak or unstable. (3) Loosely
coupled system: in this system, GNSS and IMU operate independently and merge the data
in the post-processing stage. Compared with the tightly coupled system, this method is
less computationally intensive, but less accurate.
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To mitigate the limitations of GNSS and IMU, these sensors are often fused with other
perception technologies, such as LiDAR, radar, and cameras. GNSS/IMU systems are
often integrated with LiDAR and radar sensors to enhance the vehicle’s perception of its
surroundings. LiDAR provides a high-precision 3D map of the environment around the
vehicle, while radar provides reliable object detection in adverse weather conditions. The
integration of these sensors improves positioning, obstacle detection, and path planning.
Cameras are used in conjunction with GNSS/IMUs to help detect road signs, lane markings,
and other visual cues that support positioning. By fusing visual data and GNSS/IMU
information, autonomous driving systems can achieve higher vehicle positioning and
decision-making accuracy. The integration of GNSS and IMU is critical for the precise
positioning and navigation of autonomous vehicles. While GNSS provides reliable global
positioning services, IMU ensures continuous tracking when GNSS signals are missing or
unstable. GNSS/IMU data is fused with sensors such as LiDAR, radar, and cameras to
ensure that autonomous vehicles can operate reliably in a variety of environments.

In general, the fusion of multi-source heterogeneous sensor data will improve the
perception capability and range of autonomous vehicles, but the resulting computational
pressure needs to be resolved. The combination of V2V, V2I, and cloud computing will
reduce the computational pressure of vehicles processing massive data.

3. Multi-Sensor Information Fusion
Autonomous vehicles travel in dynamic and unpredictable environments, and a sin-

gle type of sensor cannot provide the comprehensive data required for safe and efficient
navigation. Each sensor has its own unique advantages and limitations. Multi-sensor
fusion can increase redundancy and reduce the possibility of errors due to sensor-specific
limitations. By combining data from multiple sensors, the system obtains overlapping cov-
erage, ensuring robust perception while improving the accuracy and reliability of the data.
Fusion sensor systems provide more reliable and detailed perception of the environment,
which helps make real-time decisions in complex scenarios such as urban navigation and
highway driving. By gaining a more comprehensive understanding of the environment,
fusion systems can reduce risks by improving object detection, obstacle avoidance, and
path planning, enabling autonomous vehicles to adapt to different scenarios. However,
the fusion of multiple sensors is also challenging. Since the fusion algorithm requires a
lot of computing resources, this increases system complexity and energy consumption.
The fusion process requires precise alignment of sensor data in time and space, which is
difficult to achieve in real-time applications. Similarly, differences or noise in sensor data
can lead to information conflicts, requiring complex algorithms to resolve inconsistencies.
The integration of multiple sensors brings additional hardware and software complex-
ity, making the system more expensive and complex to maintain. By addressing these
challenges, multi-sensor fusion systems can provide a reliable foundation for advanced
autonomous vehicle perception and decision-making. Therefore, multi-sensor fusion is
essential for autonomous driving, enabling vehicles to operate safely and efficiently in
various environments. This section will focus on the calibration and fusion methods in
multi-sensor fusion.

3.1. Multi-Sensor Calibration

The calibration of multiple sensors is crucial for accurate data fusion in autonomous
driving systems. The calibration task is to ensure accurate alignment of multiple sensors on
a vehicle for effective environmental perception and understanding. There are two types of
multi-sensor calibration [30]: intrinsic calibration and extrinsic calibration. Intrinsic cali-
bration focuses on the internal parameters of individual sensors, correcting their inherent
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distortions and inaccuracies. Intrinsic calibration addresses sensor-specific parameters
and is performed before external calibration. Most intrinsic parameters are provided or
calculated by the manufacturer, so calibration focuses mainly on extrinsic parameters. In
order to adjust the relative position and orientation of multiple sensors to ensure that their
data can be accurately combined, the sensors need to be calibrated externally. External
calibration is a rigid transformation (or Euclidean transformation) that maps points from
one 3D coordinate system to another 3D system, such as mapping points from a 3D world
or 3D LiDAR coordinate system to a 3D camera coordinate system. External calibration
estimates the position and orientation of the sensor in three orthogonal axes (also known as
six degrees of freedom, 6DoF) of the 3D space relative to an external reference frame [31–33].
This section reviews the extrinsic calibration methods for multi-sensor systems, including
emerging methods currently used in research.

There are three different types of fusion levels in sensor fusion: data-level fusion,
feature-level fusion, and decision-level fusion [34]. Data-level fusion and feature-level
fusion are early fusion, while decision-level fusion is late fusion. Early fusion refers to the
integration of data series at the feature level [35]. Unlike early fusion, late fusion is handled
by each sensor independently for classification or recognition. Since the integration of data
series is done at the semantic level, synchronization and calibration are required in the
early fusion stage, but not in the late fusion stage. In early fusion, the input sources from
different sensors need to be regularized. The goal is to ensure that different types of sensors
can achieve the same goal in the same coordinate system. The purpose of multimodal
sensor calibration is to determine how to transform data from different sources into a
common reference system required for early sensor fusion [36]. Target-based calibration
and targetless calibration are two traditional calibration methods. Next, we will introduce
them respectively and discuss their advantages and disadvantages. Finally, we will give
the emerging methods currently under research.

3.1.1. Target-Based Calibration Method

The target-based calibration method uses a specially designed calibration target. Fig-
ure 1 is a general flow chart of target calibration. The calibration plate is a sensor calibration
workpiece used in the calibration target. Its surface is usually an object plane or approxi-
mate plane with a specific set of shapes, patterns or features. In the external calibration
of LiDAR and camera, it is used as a reference object to measure the correspondence be-
tween the image or point cloud observed by the sensor and the actual geometric shape,
such as chessboard pattern [37], polygonal flat plate [38], nearly orthogonal multi-plane
chessboard [39], arbitrary trihedron [40], plane target with holes [41], spherical pattern [42],
etc., to calibrate a multi-sensor system. Typical features such as chessboards have the ability
to accurately detect corners and intersections, and they provide high flexibility [43–45].
Most of the research focuses on the external calibration of LiDAR-camera, with chessboard
patterns as its main target. Reference [46] proposed an external calibration method to cali-
brate the direction and position of 2D LiDAR and camera through multi-angle chessboard
pattern poses. The calibration parameters are estimated by solving a nonlinear optimization
problem. Reference [47] proposed an extrinsic calibration method for 2D LiDAR and stereo
vision cameras based on 3D reconstruction of a chessboard and inverted plane geometric
constraints between two sensor views, and applied a nonlinear optimization algorithm
based on geometric constraints to solve the extrinsic parameters. For feature matching,
multiple calibration board views are required to determine the feature correspondence
in order to establish a set constraint between the two sensors and estimate the relative
transformation. Reference [48] proposed a calibration method based on point-to-plane con-
straints. The key to this method is that the laser points on the chessboard are obtained from
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the initially positioned LiDAR and the same LiDAR rotated vertically from the original
position. Additional constraints are constructed and the basic constraints are strengthened,
thereby solving the problem of LiDAR sensitivity to posture. References [49,50] proposed
an optimal extrinsic calibration algorithm between a binocular stereo vision system and
a 2D LiDAR under the Mahalanobis distance constraint. Instead of repeating the same
calibration process from the LiDAR to each camera, they calibrated the multi-sensor sys-
tem based on the point-to-plane geometric constraints of the 3D reconstruction of the
chessboard calibration board. Reference [51] proposed an improved calibration method
for the joint calibration of 2D LiDAR and color camera, estimating the 2D homography
by using point-to-line constraints established by a triangle plate. They proposed a data
preprocessing method to improve the measurement error of the LiDAR. Reference [52]
used point calibration targets to locate the target and LiDAR coordinates in the image,
that is, the parameter-constrained point-to-point correspondence between the two. Specif-
ically, the target in front of the sensor is repeatedly moved downward until the LiDAR
captures the target to obtain the correspondence. Most calibration targets are composed
of alternating black and white color blocks with different regions, such as chessboard and
ArUco [53,54]. The outer edges of some calibration targets have obvious geometric features,
which greatly facilitates the detection of features. However, in order to overcome the prob-
lem that the traditional chessboard may cause uneven illumination of the calibration target
under strong annular illumination, resulting in the failure of ordinary chessboard detection.
Reference [55] proposed a calibration method based on the Charuco plate, which can solve
the problems caused by the traditional calibration plate and can also be used to detect other
saddle points. To date, there are many external calibration tools for LiDAR and cameras.
These calibration targets are usually designed based on chessboard patterns. Compared
with 2D LiDAR, 3D LiDAR can obtain more information, such as the normal vector of
a point [56]. The calibration of 3D LiDAR and camera is a 6-degree-of-freedom (DOF)
problem. Similar to the calibration of a 2D LRF and camera, the chessboard provides three
constraints for each observation, but this will affect the calibration accuracy. To compare
the effects of different calibration targets, some typical external calibration methods for
3D LiDAR and camera are given in Table 2. Existing calibration tools can only solve the
calibration of paired sensors with at most two sensing modes. References [57,58] proposed
an external calibration tool for radar, camera and LiDAR, and bound it to the Robot Oper-
ating System (ROS). Three configurations are proposed to estimate the pose of the sensor
by simultaneously detecting multiple calibration plate positions, as shown in Figure 2.
(1) Minimum connected pose estimation (MCPE): in the MCPE configuration, all sensors
are calibrated in pairs relative to a selected reference sensor. The advantage of this method
is that it is computationally simple because only the reference sensor is involved, so the
computational effort is small. However, if the calibration of the reference sensor is biased, it
will affect the calibration results of all other sensors. Therefore, choosing the right reference
sensor is crucial to the success of MCPE. (2) Fully connected pose estimation (FCPE): the
FCPE configuration performs pairwise calibration between all sensors without specifying
a specific reference sensor. This method is similar to loop closure optimization in SLAM
and can improve the robustness of calibration because it does not rely on the accuracy of
a single reference sensor. However, as the number of sensors increases, the number of
transformation matrices that need to be estimated increases, and additional loop closure
constraints need to be added, which may increase the computational complexity. (3) Pose
and structure estimation (PSE): the PSE configuration estimates the poses of all sensors
and the pose of the calibration plate at the same time. This method is similar to bundle
adjustment because it estimates the pose of the sensor and the pose of the calibration plate
at the same time. The advantage of this method is that it can avoid the use of heterogeneous
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error functions (pixel and Euclidean distance) and use a unified error function instead.
However, the optimization of this approach is more complex and thus takes longer to
compute. In addition, loop closure constraints are not explicitly enforced, which may affect
the accuracy of the calibration. They compared the joint optimization results of PSE, MCPE,
and FCPE depending on multiple variables, such as the number of calibration plate loca-
tions and the choice of MCPE reference sensor. The results show that the joint optimization
of FCPE outperforms MCPE and PSE when more than five calibration plate locations are
used. However, the increase in the number of calibration plate locations has a significant
impact on the computation time. Reference [59] introduced L2V2T2Calib and open-sourced
it as a toolbox to unify extrinsic calibration between different lidars, visual cameras, and
thermal cameras. All sensors can use the same calibration target (a four-circular hole plate).
A general method for automatically detecting planar calibration targets is proposed, using
the concept of template matching to improve calibration efficiency.
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Table 2. Some representative 3D LiDAR and camera calibration methods.

Calibration Plate Features Year Literature

Checker board

Expanding from 2D LiDAR to 3D LiDAR 2010 [60]
Introducing unit normal vector uncertainty 2012 [56]

Fit a chessboard model to the chessboard point cloud; optimize using
the Levenberg–Marquardt method 2017 [61]

By combining 3D line and plane correspondences, the number of poses
is reduced to one 2018 [37]

Intensity clustering method based on Gaussian mixture model (GMM) 2022 [62]
Polygonal flat plate Utilizes 2D–3D correspondence 2014 [38]
Design—flat panel AprilTag is placed at the intersection of two reflective cross stripes 2022 [63]

Nearly orthogonal Multiplane
chessboard

Solve nonlinear constraint adjustment problems using sequential
quadratic programming (SQP) methods 2022 [39]

Any trihedron Prevalent in structured environments 2013 [40]
Plane target with a hole There is a triangular hole on the plane; establish 3D–3D correspondence 2012 [64]

Spheric Available for different modality devices; the center of the sphere is
calculated separately from the LiDAR point cloud and the image 2020 [65]

Ordinary box
Only a simple cardboard box of known dimensions is needed; Can be

used to calibrate camera–LiDAR and LiDAR–LiDAR 2017 [66]

Directly solved through the E-PnP algorithm 2018 [67]

ArUco marking
A method for fitting a plane using points, independent of edge points 2018 [68]

Use polygon corners as corresponding points to avoid errors 2021 [53]
Calibration of multiple scenes at different distances 2022 [69]

Panoramic infrastructure Robust calibration using data from a single frame 2021 [70]
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Although the target-based calibration method has been more widely adopted, it also
has certain limitations. First, the target-based calibration method requires setting a specific
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calibration target; however, the target board has the defect of relatively complex calcula-
tion. Secondly, the vehicle will cause changes in hardware, software and the surrounding
environment during long-term driving, which will eventually lead to the misalignment of
the sensor system, increase the error of the calibration result, or even fail. Therefore, it is
crucial to improve the reliability and accuracy of the calibration method of the autonomous
driving fusion sensor system.

3.1.2. Targetless-Based Calibration Method

Targetless calibration can be based on targetless external calibration, which uses
the estimated motion of each sensor or uses features in the perceived environment for
calibration. However, using features of the perceived environment requires multimodal
sensors to extract the same features in the environment and is sensitive to the calibration
environment [71,72]. Its overall calibration process is similar to that of the target-based
calibration method. In general, the target-based calibration structure is also applicable to
this section. Since it relies on real objects in natural scenes, it is more general and flexible
and suitable for various scenarios and applications. Specifically, targetless calibration
methods can be divided into feature-based, mutual information-based, and motion-based
methods. Given that most current research focuses on LiDAR–camera external calibration,
this section mainly outlines targetless calibration methods based on LiDAR–camera.

(1) Feature-based methods

Feature-based methods directly extract features from the environment for matching
and external parameter estimation. Specifically, these features can be divided into: geomet-
ric, semantic and motion features. Geometric features are composed of some geometric
features in the environment, such as points, edges, etc. Semantic features are semantic
perceptions of specific objects in a given environment, such as skylines, cars, and telephone
poles. Motion features describe the properties of moving objects, including posture, velocity
and acceleration. In reference [73], it first manually selects point correspondences from
laser–camera acquisition in natural scenes, then uses the PnP algorithm to estimate external
parameters, and then uses the Levenberg–Marquardt algorithm to solve the nonlinear
optimization problem. Reference [74] proposes a key point-based 2D–3D pose estimation
network for the real-time calibration of camera–LiDAR. A trainable point weighting layer
is used to find more obvious local features for easy matching, such as tree trunks, traffic
signs and road edges. The network can extract sparse key points and give corresponding
weights for posture estimation, which further improves the robustness of the network. In
addition to point features, edge features are another type of geometric features widely
used in LiDAR–camera external calibration. Edge features in point clouds and images
contain useful environmental geometric information. Reference [75] proposed a calibra-
tion method based on local features by jointly registering edge feature points between
LiDAR and camera data. They do not require geometric primitives or any other type of
environmental structure. They use a combination of P3P and MSAC to reduce the error
of external parameters, and finally use a Kalman filter to smooth the final calibration. In
reference [76], pixel-level accuracy is achieved by aligning natural edge features in LiDAR–
camera. They proposed an algorithm based on point cloud voxel cutting and plane fitting
that can accurately and reliably extract LiDAR edges. Its robustness and consistency are
verified in various natural scenes. In the process of selecting points and edges, the features
need to be translated and rotated, and distortion and other problems will occur in this
process. Therefore, it is necessary to introduce feature operators. The scale-invariant feature
transform (SIFT) method proposed in the literature [77] converts an image into a large
number of local feature vectors, each of which is invariant to image translation, scaling and
rotation, and is invariant to illumination changes and affine or 3D projection parts. This is
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a popular operator. Sped-up robust features (SURFs) [78,79] are a faster method for SIFT to
extract interest point features. When point features are unstable and insufficient to describe
environmental features, edge features become particularly important. The commonly used
method is to use depth discontinuity to extract edge information from LiDAR point clouds.
The main principle is to set a depth difference threshold between adjacent points. Points
whose depth changes exceed the threshold will be retained. On the contrary, they will be
filtered out, and then these edges can be identified from the points. This idea has been
widely used in various point cloud edge extraction methods. The literature [80] uses the
classic Canny method to extract point features from a single-frame LiDAR and extracts
edge contours from point clouds by setting a depth threshold. The literature [81] optimizes
external parameters by minimizing the difference between the LiDAR depth map and the
camera depth map. Similar to point cloud edge feature extraction, image edge extraction
in cameras adds various operators, such as Sobel operator, Canny operator [82], and LSD
operator [83]. Different semantic feature information in the environment, such as skyline,
lanes, and poles, can be used to calibrate the LiDAR–camera. Reference [84] proposed a
skyline-based LiDAR–camera automatic registration method. This method extracts sky-
line pixels from images and skyline points from point clouds, respectively, and uses a
strong optimization method to search for the best matching parameters between them.
Reference [85] proposed a calibration-independent track-to-track association method. This
method selects trajectories in the same time series as features based on time information.
Reference [86] proposed a line feature-based automatic calibration and refinement method.
They extracted straight-line features from road lanes and poles in images and point clouds.
These features not only provide sufficient spatial constraints to robustly estimate accurate
initial calibration, but also provide rich semantic information for further refinement. In
existing research, we can perform external calibration based on various detection and
tracking algorithms by receiving the estimated trajectory of the object through the LiDAR
and camera. It is worth noting that the two trajectories should match as closely as possi-
ble. In the literature [87], they proposed a multi-sensor calibration method based on the
Gaussian process (GP) to estimate the trajectory of moving objects. This method uses the
GP regression method to estimate the object trajectory and applies it to object tracking. In
addition, the obtained time delay is used to estimate the external parameters based on the
3D point correspondence relationship.

(2) Information-based approach

Information-based methods mainly estimate external parameters by maximizing the
similarity transformation between the LiDAR and the camera, which is achieved through
various information metrics. The information-based LiDAR–camera calibration method
can be summarized in three steps: first, the 3D–2D projection of the LiDAR points, that
is, projecting the 3D LiDAR point set into the image. Second, the statistical similarity
measurement, which uses the similarity distribution between some sensor data obtained
from the LiDAR and the camera to measure the statistical similarity between the 2D
projected image and the camera image. Finally, the statistical correlation measure is
optimized, which is usually a non-convex function and requires an optimization method
to reach the global optimum. It is worth noting that the data obtained from the LiDAR
and the camera have several properties that have similar distributions. For example,
LiDAR data points with high reflectivity usually correspond to bright areas in the image,
while data points with low reflectivity correspond to dark areas [88]. Therefore, the
similarity between reflectivity and image intensity can be used to test the similarity between
the LiDAR and camera data. In addition, the gradient information in the lidar point
cloud data and the camera image can also be used to measure the similarity between the
two [89]. Some commonly used point cloud and image attribute pairs include reflectivity
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and grayscale intensity, gradient amplitude and direction, 3D semantic label–2D semantic
label, and 3D–2D attribute pair combinations. Reflectivity and grayscale intensity represent
the return intensity of the LiDAR point cloud and the pixel intensity in the grayscale
image, respectively. When the LiDAR and camera observe the environment at the same
time, there will be statistical similarities between them, and the same surface properties
of the object determine the properties of both. Similarly, other attribute pairs such as
reflectivity and hue [90] and reflectivity and visible wavelength [91] also depend on the
same surface properties of the object. Since they are relative values inferred from the image
and not directly measured physical quantities, they may be affected by environmental
conditions and lighting changes. Using 3D semantic label–2D semantic label attribute
pairs can solve the above problems well. The semantic labels of the 3D LiDAR point cloud
correspond to the 2D image pixels of the camera, and this semantic information can be
used for data association [92]. Some studies have found that the use of a combination
of multiple features can improve the robustness of algorithms in different environments.
Reference [93] uses a combination of 3D–2D attribute pairs to measure similarity and
assigns appropriate weights to them. These attribute pairs can be a combination of the
above attribute pairs, such as reflectivity, surface discovery, gradient information, etc. Next,
we need to use various statistical correlation metrics to measure the statistical similarity
between attribute pairs, where larger metrics have better correspondence. The mutual
information-based method is currently the most commonly used method. Reference [94]
reviews the commonly used statistical dependency metrics in existing information-based
methods. The mutual information-based method is currently the most commonly used
method. Finally, we need an optimization algorithm to solve non-convex functions to
achieve global optimality. Commonly used optimization algorithms include the Barzilai–
Borwein steepest descent method [95], the Nelder–Mead downhill simplex method [96],
the Levenberg–Marquardt algorithm [97], the particle swarm optimization (PSO) [98], the
BFGS quasi-Newton method [99], and the Boundary-Optimized Quadratic Approximation
(BOBYQA) algorithm [100].

This section describes an information-based targetless external calibration method
that infers the external pose of a camera or sensor by analyzing feature acquisition and
relationships in image or sensor data. Compared with targeted calibration methods, it
does not require the setting of a dedicated calibration plate or target, and has a variety of
attribute pairs or attribute pair combinations to choose from, is easy to calculate, and has
a certain degree of flexibility. However, its accuracy depends on data quality, and some
factors such as reflectivity and grayscale intensity are more dependent on the environment,
which constitutes its limitations.

(3) Motion-based methods

The motion-based targetless extrinsic calibration method uses the motion of sensors
mounted on a moving vehicle to estimate extrinsic parameters. Currently, this method
mainly involves finding the correspondence between the trajectories generated by the
sensors. Some methods attempt to find the correspondence between trajectories through
odometry technology or IMU and GNSS measurements. According to existing literature,
motion-based methods can be mainly divided into hand–eye calibration and calibration
based on 3D structure estimation. The method of changing the position and orientation
of the sensor and calibrating using the motion observed by each sensor is called hand–
eye calibration [101]. The hand–eye calibration problem is mainly used in robot vision.
The traditional hand-eye calibration is extended to the calibration problem of LiDAR and
camera for wider application. Solving the homogeneous matrix equation AX = XB [102],
the extrinsic parameters between sensors can be obtained. Hand–eye calibration can be
roughly divided into three stages: estimating the motion of each sensor, estimating extrinsic
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parameters, and refining extrinsic parameters. The state transformation matrix of LiDAR
and camera is estimated by considering the rotation and translation between adjacent
frames. The extrinsic parameters are estimated by the motion state of the sensor. For
the motion estimation of LiDAR, the literature [103] combines LiDAR odometry and ICP
algorithm to obtain the transformation matrix of LiDAR as accurately as possible. For
camera motion estimation, reference [104] uses a combination of motion structure (SFM)
and visual odometry to calculate the camera transformation matrix. However, both the
ICP algorithm and SFM are currently the more commonly used methods for estimating
LiDAR and camera motion. Reference [105] summarizes the current hand–eye based
LiDAR–camera external calibration methods, as shown in Table 3.

Table 3. LiDAR–camera calibration method based on hand–eye calibration.

Literature Motion Estimation Method
(LiDAR–Image)

Rotation Parameter
Representation Refinement Method

[106] ICP and SFM angular axis edge-to-edge
[107] ICP and Visual Odometry angular axis color matching
[103] LiDAR Odometry and Visual Odometry angular axis intensity matching
[81] ICP and Visual Odometry quaternions edge alignment

[108] ICP and Visual Odometry lie algebra depth matching and edge alignment
[104] LiDAR Odometry and Visual Odometry rotation matrix 3D–2D point matching

Unlike the hand–eye calibration method, the 3D structure-based method analyzes the
3D structure of the surrounding environment from the image. Among them, SFM is one of
the most commonly used methods [109]. SFM can estimate the 3D model from overlapping
2D image sequences [110]. It has a wide range of applications in 3D modeling, visual
SLAM, augmented reality, etc. Specifically, when estimating 3D structure based on the SFM
method, the camera is installed on a moving vehicle and a series of images are captured
while the vehicle is moving, thereby converting the LiDAR–camera external calibration
problem into a registration task in the 3D domain. Reference [111] describes a method for
registering a panoramic image sequence to a LiDAR point cloud using a non-rigid version
of ICP containing a bundle adjustment framework. The registration is then improved
by integrating the SIFT correspondence from the image to the reflectivity data into the
bundle adjustment. Reference [112] proposes a procedure for automatically combining
and jointly registering images and LiDAR data. This method uses the SFM reconstruction
method to calculate high-precision image orientation and sparse point clouds, so that the
3D–3D correspondence can be accurately determined. Reference [113] uses scene sequence
information of vehicle motion to obtain initial extrinsic parameters. This method estimates
the LiDAR motion by registering 3D point clouds through the ICP algorithm, estimates
the 3D structure from a 2D image sequence that may be coupled with local motion signals
using the SFM algorithm, and then projects the 3D LIDAR points onto the 2D image plane
using the initialization parameters. By searching for the edges of the image and LiDAR,
the SIFT feature points between the two sensors are calculated respectively. According
to the distribution and confidence of the points, the registered SIFT feature points are
selected and added to the objective function. Finally, the optimal parameters are obtained
by combining the optimization algorithm. However, the SFM method may result in sparse
point clouds when converting 2D images to 3D point clouds. In this case, the matching rate
will decrease, and the use of the ICP algorithm will increase the error. To solve this problem,
reference [114] proposed an automatic registration method based on semantic features
extracted from panoramic images and point clouds. The method first estimates the precise
rotation parameters between the panoramic camera and the laser scanner using GPS and
IMU-assisted motion structure (SFM). Then, Faster-RCNN is used to extract vehicles in the
panoramic image as candidate primitives. Finally, the translation between the panoramic
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camera and the LiDAR is refined by maximizing the overlapping area of corresponding
primitive pairs based on particle swarm optimization (PSO). Reference [115] uses SFM to
generate point clouds from image sequences recorded by a moving vehicle, connects the
image domain and 3D space, and uses this as the basis for registration, and performs object-
level alignment between the LiDAR and the generated point cloud. Methods based on 3D
structure estimation can recover the three-dimensional form of a scene from a collection
of images without relying on precise camera internal and external parameters or detailed
prior information about the scene. However, they face the challenge of high computational
cost when processing large-scale scenes. Although effective reconstruction methods such
as SFM are proposed in current research, various measures to increase the number of point
clouds are also required.

3.1.3. Deep Learning-Based Methods

Currently, deep learning is widely used in various applications, including the external
calibration of multiple sensors. Among them, the external calibration method based on
deep learning is an emerging research method that can calibrate the LiDAR camera system
without using calibration objects, mileage information or mutual information. In current
research, many researchers use training data to train neural network models to estimate
the relationship between camera parameters and input images. End-to-end methods can
simplify the calibration steps using neural network models. They use these models to
learn useful features, and in this case, there is no need to manually define features. It
uses a neural network model to process the input camera image and LiDAR point cloud
data, and then directly outputs external parameters to achieve the optimal calibration
parameters by minimizing the corresponding loss function. Reference [116] proposed
RegNet, which is the first deep convolutional neural network (CNN) for inferring 6 degrees
of freedom (DOF) external calibration between multimodal sensors. It integrates three
traditional calibration steps (feature extraction, feature matching and global regression)
into the convolutional neural network. Based on RegNet, reference [117] proposed a deep
learning-based online calibration method for visual sensors and depth sensors. They first
merged the LiDAR point cloud and depth image into one point cloud, and considered
that the entire point cloud was generated by a virtual depth sensor and then calibrated
the virtual sensor with the camera. RegNet can complete the calibration without manual
intervention and has higher calibration accuracy than traditional methods. It can provide
stable initial estimates and continuous online correction of external parameters. However,
the performance of the network is limited by its structural design and capabilities. The
overly simple feature extraction and matching network fails to fully consider the geometry
of the point cloud. When the internal parameters of the camera change, the trained model
needs to be fine-tuned, which may not fully capture the features and relationships between
complex sensors, thus affecting the accuracy. Reference [118] proposed CalibNet, which
is the first geometrically supervised deep learning method. They use a new architecture
based on 3D space transformer, which learns to solve the underlying physical problem by
using geometric and photometric consistency to guide the learning process. Reference [119]
proposed CalibRCNN to infer the 6-degree-of-freedom (DOF) rigid body transformation
between 3D LiDAR and 2D camera. It not only uses LSTM network to extract temporal
features between 3D point clouds and RGB images of consecutive frames, but also uses
geometric loss and photometric loss obtained by inter-frame constraints to refine the
calibration accuracy of predicted transformation parameters. In the reference [120], they
proposed a novel CalibDNN for accurate calibration between multimodal sensors. It is a
simple system with a single model and a single iteration, which considers transformation
loss and geometric loss to maximize the consistency of multimodal data. And it is applied
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to challenging datasets with complex and diverse scenes. Reference [121] proposed an
online LiDAR camera self-calibration network (LCCNet). Unlike other learning-based
methods, they constructed a cost volume between RGB features and depth features for
feature matching instead of directly connecting them. In addition to the smooth L1 loss
between the predicted calibration and the ground truth, an additional point cloud distance
loss is proposed. Reference [122] proposed a new adaptive LiDAR–camera calibration
method ATOP, which implements a cascade process from attention to optimization. In
the attention stage, they proposed a cross-modal object matching network (CMON) to
find overlapping FOVs between the camera and LiDAR and match 2D objects in the
image with their 3D versions in the point cloud. In the optimization stage, the center
and vertices of each matched object are collected to construct 2D–3D point pairs. They
adopted two cascade PSO-based methods: Point-PSO and Pose-PSO for pose initialization
and refinement in the optimization stage. The method does not require the estimation of
the initial pose and does not rely on a specific calibration target. However, the various
networks mentioned above solve the external calibration as a regression task without
considering the geometric constraints involved. Reference [123] proposed a new end-
to-end external calibration method called DXQ-Net, which applies a differentiable pose
estimator module to estimate external parameters and constrain 2D–3D correspondences
with uncertainty during training. Deep learning-based methods use neural networks to
extract latent features from LiDAR and camera data. With a large amount of training data,
these methods can obtain suitable feature extraction results. However, the accuracy of this
method is inevitably limited by the size of the training dataset and the framework of the
deep learning network.

3.2. Multi-Sensor Information Fusion Method

In the process of multi-source heterogeneous sensor fusion, different methods repre-
sent different levels of thinking about the raw data in the fusion stage. Since the fusion
of multiple sensors adopts different fusion methods at different data abstraction levels,
different fusion algorithms are deployed. According to the level of information fusion,
information fusion can be divided into data-level fusion, feature-level fusion, and decision-
level fusion. Table 4 summarizes the different fusion methods. Next, they will be explained
one by one.

Table 4. Summary of the fusion methods.

Fusion Level Features Advantages Disadvantages

data level combine raw data from multiple
sensors high precision and rich data the computational complexity is high

and precise alignment is required

feature level fuse features such as edges,
shapes or textures from sensors

balance accuracy and efficiency,
retain useful information

need to extract features, which may
cause information loss

decision-making level combining each sensor decision modular, highly resistant to sensor
failures, easy to use in real time

information loss, reduced detail,
conflicting decisions

3.2.1. Data-Level Fusion

Data-level fusion refers to the fusion process of directly fusing the raw perception
data of different sensors and then further processing the fused data. It is a low-level fusion
process. This method is most commonly used for multi-source image enhancement, where
combining the raw data can present the environment more richly and comprehensively,
especially for applications such as remote sensing and image enhancement. In autonomous
driving, sensors such as LiDAR and millimeter-wave radar (MMW–radar) generate data
at different resolutions and sampling rates. Therefore, spatial and temporal alignment of
sensor data is essential to ensure that objects detected by each sensor correspond accurately
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across all sensors. This means that the data must be integrated into a unified coordinate
system to seamlessly fuse them. For example, compared to camera images, LiDAR provides
high spatial resolution but has limited horizontal and vertical resolution. On the other
hand, MMW–radar has advantages in bad weather but lacks instant imaging capabilities
due to its long wavelength. Data-level fusion achieves fusion by aligning the frames of
these different data sources and then integrating them into a comprehensive representation.
In recent years, some research has focused on radar imaging [124,125]; however, this is not
sufficient to distinguish multiple objects in complex scenes. Multi-source data fusion can
improve image clarity and target detection capabilities. Generating a raster map based
on radar or LiDAR data and then fusing it with an optical image can also be considered
a data-level fusion method. Generally speaking, in the research on radar or laser radar
(LiDAR) and camera fusion, data-level fusion methods can be divided into two research
directions. One is to use the obstacle detection results of radar or laser radar to generate a
raster map. The other is to use the optical image as a real sample and generate radar or
laser radar images through a generative adversarial network (GAN) [126,127].

In the process of autonomous driving, multi-source heterogeneous pixel-level fusion
usually relies on the resolvable units or generated images of radar and laser radar (LiDAR).
This process aims to extract environmental features and target parameters from the fused
data for further decision making. Data-level fusion methods can directly combine sensor
data without deep information processing. Although this method can achieve the max-
imum fusion of multi-source data, the redundancy between data also leads to reduced
fusion efficiency.

3.2.2. Feature-Level Fusion

Feature-level fusion refers to the fusion of multi-source heterogeneous sensor data after
feature extraction. It is a mid-level fusion that first extracts features from the raw sensor
data, such as edges, corners, shapes, and motion patterns, and then merges these extracted
features to form a single feature set that can be further processed by machine learning
or decision algorithms. Since the same target can be extracted from different sensors
in different directions, better target detection and recognition can be achieved. Target
parameter extraction and data feature extraction are two extraction methods in autonomous
driving systems. Target parameter extraction includes extracting information such as the
size, distance, direction, speed, and acceleration of the target from preprocessed data. Many
studies use radar or LiDAR to extract the location features of the target and assist image
recognition by generating a region of interest (ROI). This region directly converts the target
position detected by the radar into an image, thereby forming a specific area. Data feature
extraction is to extract the shape, edge, texture, time–frequency characteristics, and color
distribution of the target from the image or processed data for classification and recognition.
In order to reduce the large amount of computation caused by the large number of regions
of interest (ROIs) generated in the image that may be included in the computer vision,
many studies use radar and LiDAR to first extract the range and azimuth information of
the target, and then integrate its location information with the image data to produce fewer
regions of interest (ROIs) and computational complexity. Finally, a pre-trained model is
used to further identify these regions and accurately classify the target categories. Many
studies apply machine learning methods to further perception tasks after extracting the
ROI. Traditional machine learning usually requires the extraction of standard features
such as Haar operators, HOG operators, and gray-level co-occurrence matrices (GLCMs).
These features are then classified using SVM [128], Adaboost, and other methods. In recent
studies, neural networks such as YOLO, CNN, and ANN are often used to achieve target
classification and recognition.
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Feature-level fusion requires a certain degree of information extraction from the raw
data and the integration of unrelated dimensional features or parameters from multiple
sensor data. These high-dimensional features provide stronger discrimination capabilities
in target recognition, thereby improving fusion efficiency and overcoming the inherent
limitations of a single sensor. In recent years, due to the direct use of existing visual pattern
recognition neural network architectures, research on the combination of multi-sensor
features has been insufficient. Most studies focus on implementing feature-level fusion
strategies through target parameter extraction methods.

3.2.3. Decision-Level Fusion

Decision-level fusion is a high-level fusion. Each sensor does not merge the raw
data and features, but processes its own data independently first, and then fuses the final
decision of each sensor through the decision fusion method, so as to make a decision or
prediction on the detected object or environment. Common methods of decision fusion
include probability-based methods, deep learning methods and fuzzy subset hypothesis
methods. Reference [129] uses decision-level fusion of radar signals and LiDAR point
cloud data, and then uses a nonlinear Kalman filter method to detect obstacles and state
tracking. Reference [130] proposes a two-sensor decision fusion method based on evidence
reasoning rules for object classification. This method uses a Logistic model to calculate
the reliability of the sensor based on the difference in classification decisions within a
certain time span, and calculates the adaptive weight of the sensor based on the coefficient
of variation to adapt to different environments. They used the Nuscenes dataset and
the Waymo dataset to conduct a comparative experimental study on object classification
decision fusion in autonomous driving. The results show that when there are only two
sensors, the proposed method can effectively improve the fusion accuracy. Reference [131]
proposed an attention-based fusion neural network (AFnet) model that can decouple data
correlation through the encoder without considering traditional constraints and make full
use of the nonlinear fitting ability of deep learning. Experimental results in NuScenes
and Carla show that under the decision-level fusion framework, AFnet shows excellent
performance in dealing with complex fusion problems caused by vehicle occlusion and
overlap, achieving a state-of-the-art fusion matching accuracy of 99.11%. Reference [132]
proposed a framework that combines fuzzy logic and neural networks. The framework
combines Kalman filtering and an adaptive filtering algorithm (i.e., ANFIS) to construct
an effective data fusion method for target tracking systems. The fuzzy adaptive fusion
algorithm is an effective tool to keep the actual quality of the residual covariance consistent
with its assumed value. ANFIS has good absorption and prediction capabilities, which
makes it an effective tool for dealing with empirical defects in any system. This method
uses the learning and prediction capabilities of ANFIS to adjust the confidence of the sensor
through the training data set, thereby improving the accuracy of target tracking.

Decision-level fusion combines multiple decisions made by different sensors. The
final fusion effect depends on the performance of the fusion strategy. Through this level
of information fusion, the final decision is directly generated. Since the data of each
sensor areprocessed independently before fusion, the system does not need to process a
large amount of raw data or features, thereby reducing the overall computational burden.
Decision-level fusion allows for modularity, where sensors operate independently using
dedicated algorithms suitable for their specific data types. This makes it easier to integrate
new sensors or update individual sensor algorithms without affecting the entire system.
However, since only the final decision is fused, many of the detailed information available
in the raw data or features are lost. This may limit the system’s ability to make a nuanced
interpretation of the environment. It can also be challenging to handle conflicting and
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redundant data from multiple sensors. In some studies, it is combined with other fusion
methods to take advantage of the advantages of each level while mitigating its limitations.

3.3. Multi-Sensor Information Fusion Algorithm

Multi-sensor information fusion involves integrating data from multiple sensors to im-
prove the accuracy, reliability, and robustness of environmental perception in autonomous
driving. To this end, various methods and algorithms have been developed, each with
its own advantages and disadvantages. Since there is currently no completely unified
algorithm that can adapt to all scenarios, it is necessary to select appropriate algorithms
according to different application scenarios. This section discusses several key algorithms
used in multi-sensor information fusion, including Kalman filter, Bayesian estimation,
D-S evidence theory, and deep learning methods, and then compares and analyzes these
methods. Table 5 summarizes the advantages and disadvantages of commonly used fusion
algorithms and their application scenarios.

Table 5. Common fusion algorithms.

Fusion Algorithm Advantages Disadvantages Application

Kalman Filter effectively handle Gaussian noise;
real-time processing capability nonlinear systems perform poorly vehicle tracking and navigation

Bayesian Estimation able to integrate prior knowledge;
suitable for redundant data

requires probabilities to be
independent; may have

convergence issues
data fusion and object recognition

D-S Evidence Theory ability to handle uncertainty and
inconsistent information

Evidence of an inability to
effectively handle conflict decision making and target tracking

Deep Learning
it has the ability of self-learning
and has a higher accuracy when

processing large data sets.

computationally demanding; lack
of interpretability object detection and classification

3.3.1. Kalman Filter

The Kalman filter is a recursive algorithm that uses input measurements from a
mathematical process model to recursively estimate the current state of a system over
time [133]. It is implemented in two steps: first, in the prediction phase, an estimate of
the current state is given under uncertainty. Then, after the measurement is obtained, the
previous estimate is updated by a weighted average. The Kalman filter fuses multi-sensor
data information with dynamic environmental information. When the system and sensor
noise are both Gaussian white noise in a linear dynamic model, the Kalman filter can
provide a statistically optimal estimate of the fused information. Therefore, the Kalman
filter can provide an optimal estimate for statistical multi-sensor system information fusion,
and its recursive nature can eliminate the large amount of storage and computation required
for information processing. Today, the Kalman filter is widely used in multi-target tracking
and state estimation (such as position, velocity, and direction) in multi-sensor systems. The
Kalman filter uses multi-sensor information such as LiDAR, camera, IMU, etc., to locate the
vehicle and build a map. However, the Kalman filter can only accurately estimate linear
systems and it is difficult to achieve optimal estimates for nonlinear systems. Since the
motion process of the vehicle is nonlinear, many studies have adopted variants of Kalman
filtering, such as extended Kalman filtering and unscented Kalman filtering, to linearize the
nonlinear problem, and select the optimal algorithm according to different linearity models.

3.3.2. Bayesian Estimation

Bayesian estimation is a method that represents various uncertain information pro-
vided by multiple sensors as probabilities, and processes them using the Bayesian condi-
tional probability formula in probability theory [134]. Bayesian estimation is a common
method for multi-sensor low-level redundant data fusion, and its information is described
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as the probability distribution of sensor information with Gaussian noise uncertainty
added. Bayesian estimation is based on minimizing risk cost as a model and can update
the hypothesis likelihood function given a prior likelihood estimate and additional obser-
vations. Bayesian estimation is applicable to redundant data, but it requires probability
independence and requires prior probability and conditional probability. Particle filtering
is a Bayesian algorithm that can handle nonlinear and non-Gaussian estimation problems.
Particle filtering is based on the point mass (“particle”) representation of probability density.
It is achieved by sampling a certain number of discrete samples (particles) from a suitable
probability density function and using the probability density (or probability) of the sample
points as the corresponding weights [135]. Using these samples and corresponding weights,
the posterior probability density can be approximately estimated, thereby achieving state
estimation. When the sample size is large enough, the discrete particle estimation method
will approach the posterior probability density of any distribution with high accuracy. In
autonomous vehicles, particle filters can fuse multiple sensors for positioning, tracking,
and map matching.

3.3.3. D-S Evidence Theory

The D-S evidence theory is a generalization of Bayesian estimation. The D-S evidence
theory is not hindered by incomplete models or a lack of prior information. The Bayesian
theory requires the definition or assumption of prior probabilities and can only assign
evidence to one hypothesis. In the D-S evidence theory, evidence is assigned only based on
known information and no assumptions are made. Evidence can be assigned to multiple
hypotheses, which constitute a proposition [136]. In multi-sensor information fusion, the
D-S evidence theory is structurally divided into three stages. The first stage is the target
synthesis, which integrates the observations of multiple sensors into a single total output.
The second stage is inference, which obtains and infers observations and expands them into
target reports. The third stage is updating, because of the random errors of various sensors,
a set of time-independent continuous reports from the same sensor is more reliable. It can
provide a faster and more accurate method for ignorant multi-sensor fusion. However, its
disadvantage is that it cannot effectively handle contradictory evidence, and the calculation
is often more complicated than other methods. The D-S combination rule is sensitive, and
sometimes some slight changes in the underlying probability distribution may lead to
significant changes in the results.

3.3.4. Deep Learning

Deep learning can be considered an improvement in neural networks, and its core con-
cept is artificial neural networks. Artificial neural networks are a type of non-programmed,
adaptive, brain-like information processing. Their essence is to achieve parallel distributed
information processing functions through network transformation and dynamic behav-
ior, and to imitate the information processing of the human brain and nerves to varying
degrees and levels [137]. Artificial neural networks have high fault tolerance, robustness,
and self-organization in information processing. In the process of realizing multi-sensor
information fusion, it is necessary to first determine the neural network model, network
topology, and learning rules according to the system requirements and the form of fusion.
CNN and RNN are two commonly used algorithms for deep learning sensor fusion in
autonomous driving. Figure 3 summarizes these two algorithms and their variants. In the
absence of a functional model of the sensor fusion system, artificial neural networks can be
trained through a large amount of test data to obtain the network structure and mapping
relationship, which is suitable for complex multi-sensor information fusion scenarios.
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Among the existing various sensor information fusion technologies, different informa-
tion fusion algorithms have their own shortcomings and limitations. Therefore, in future
research, we should focus on organically combining different algorithms to form new
fusion algorithms and further improve the performance of the fusion system. At present,
there are some algorithm fusion methods, such as combining fuzzy logic, artificial neural
networks, wavelet transform, and Kalman filtering.

4. Application of Multi-Sensor Information Fusion in
Environmental Perception

During normal driving, the driver needs to constantly observe the surrounding traffic
conditions. In addition to observing traffic lights, it is more important to analyze and
predict the behavioral intentions of pedestrians and other vehicles, and make responses in
advance based on personal experience to avoid potential dangers that may occur during
driving. In order to achieve this goal, autonomous driving needs to monitor changes in
the surrounding environment in real time, and track and analyze the movement intentions
and behavioral trends of the target, so that correct decisions can be made in advance to
avoid dangers. Multi-sensor information fusion can make up for the situation where a
single sensor is easily disturbed in a complex traffic environment and causes information
distortion. Multi-sensor fusion plays an important role in improving the safety, reliability
and stability of autonomous driving systems. By integrating data information from sensors
such as cameras, lidars, and radars, vehicles can perceive and understand the surrounding
environment more comprehensively and accurately, and apply specific fusion strategies in
the process of perceiving the surrounding environment to ensure the reliability of the final
result. This section will discuss the main applications of multi-sensor information fusion in
autonomous driving environment perception.



World Electr. Veh. J. 2025, 16, 20 23 of 34

4.1. Object Detection and Tracking

The perception system of an autonomous vehicle needs to understand all objects
in the surrounding environment that may interact with it in real time. For example,
lane line detection should also detect other vehicles, pedestrians, obstacles, and traffic
signs. In addition to detection, the system should also be able to track detected objects
in the spatial domain in the time domain. The main goal is to predict possible events
based on the predicted motion of other vehicles, people, or obstacles [139]. This ensures
the safety of the autonomous vehicle, passengers, and other road users. In a complex
traffic environment, due to the presence of interference factors, it is difficult for a single
sensor to guarantee the accuracy of detection. This usually involves information fusion
of multiple sensors. Different sensor data information complements each other, which
improves the credibility of the data and provides a more comprehensive and accurate
understanding of the surrounding environment. Many papers focus on the fusion of the
main sensors in autonomous driving (cameras, LiDAR, radar), some focus on traditional
fusion methods using state estimators (Kalman filters, particle filters), and others use
machine learning fusion methods (such as deep neural networks). In addition, some papers
focus on single target detection and tracking with multi-sensor fusion, while others focus
on multi-target detection and tracking problems with multi-sensor fusion. In [140], a new
fusion extended Kalman filter (fusion-EKF) was proposed, which combined error bound
(EB) and homography estimation to align different coordinate systems of radar and camera
sensors. This study aims to fuse data from heterogeneous sensors such as mmWave radar
and camera to improve the reliability and accuracy of tracking and detection in advanced
driver assistance systems (ADAS). Sensor fusion and association are performed in the
fusion EKF using homography estimation method (HEM), timeline alignment and region
search. Reliable detection and cross-validated target tracking are achieved. At the same
time, they introduced the concept of error bound (EB) to define the approximate region of
sensor data, thereby enhancing the accuracy of data association in fusion-EKF. Experimental
results show that the proposed fusion system can achieve a distance accuracy of 0.29 m
and an angle accuracy of 0.013 rad in real time. Therefore, the proposed fusion system is
effective, reliable and computationally efficient for real-time motion fusion applications.
In [141], a fusion method of millimeter wave (MMW) radar and camera vision is proposed
for pedestrian tracking. They used an unscented Kalman filter (UKF) for radar tracking.
After detecting and locating pedestrian targets from vision using YOLOv5 and DeepSORT,
an unscented Kalman filter (UKF) was used for radar tracking. The detection results of
the two sensors were unified into a polar coordinate system with the sensor as the pole.
Then, the target information obtained by visual processing was associated with the target
information obtained by the radar module. Finally, the error covariance of each module was
applied to achieve fusion tracking. In [142], a new spatial attention fusion (SAF) method
for obstacle detection using millimeter-wave radar and visual sensors was proposed. The
method is that the SAF block generates an attention weight matrix that can refine visual
features based on radar data. SAF is implemented within the FCOS (fully convolutional
single-stage object detection) framework to enhance the model’s ability to detect small and
long-distance obstacles. In [143], a radar–camera fusion method for multi-target detection
and tracking in intelligent transportation systems (ITS) was proposed. This method uses a
position inference algorithm and an improved EKF method to fuse radar and camera to
detect and track pedestrians and vehicles. Reference [144] proposes a new deep learning
method for multi-object tracking (MOT) that integrates data from millimeter-wave radar
and camera sensors to improve the accuracy and robustness of autonomous driving. The
method uses a bidirectional long short-term memory (Bi-LSTM) network to integrate long-
term temporal information and improve motion prediction. In addition, an appearance



World Electr. Veh. J. 2025, 16, 20 24 of 34

feature model inspired by FaceNet is adopted to ensure consistent tracking by associating
objects between different frames. Reference [145] solves the problem of object detection
in severe weather conditions by fusing cameras, LiDAR and radar using an adaptive
deep fusion architecture. Reference [146] reviews the latest technologies for multi-object
detection (MOD) and multi-object tracking (MOT) using deep neural networks (DNNs)
for camera, LiDAR and radar sensor fusion. Most autonomous driving systems rely on 3D
perception because it can provide depth information and 3D structure information around
the vehicle. The precise 3D point cloud data provided by LiDAR is fused with visual
information to achieve 3D object detection and tracking. Reference [147] developed a new
method called DeepFusions to enhance 3D object detection by fusing deep features from
LiDAR and camera sensors. The method consists of two key methods (InverseAug and
LearnableAlign), which can help camera images to be effectively aligned with LiDAR point
clouds at marginal computational cost (i.e., only one cross-attention layer). Reference [148]
proposed a novel camera–LiDAR fusion 3D MOT framework called CAMO-MOT, which
uses both camera and LiDAR data and significantly reduces tracking failures caused by
occlusion and false detection. Reference [149] proposed a joint multi-object detection and
tracking (JMODT) system based on end-to-end camera–LiDAR fusion, which performs
joint detection and tracking by using 2D and 3D measurements for parallel object detection
and association. Reference [150] proposes a new simultaneous detection and tracking
baseline algorithm MotionTrack with multimodal sensor input in an autonomous driving
environment. Current advances in deep learning will lead to more powerful object detection
and tracking models, and with the application of mobile edge computing [151], sensor data
can be processed faster, reducing latency and improving real-time performance.

4.2. Positioning and Mapping

Autonomous driving needs to accurately determine the position and orientation of
the environment in which it is located, and create or update the map of the environment
in real time. This allows the vehicle to identify and avoid surrounding obstacles, while
achieving safe navigation. In addition, the positioning system should be sufficiently robust
and accurate to cope with various complex environments and severe weather conditions.
Generally, in autonomous driving systems, it is a common practice to increase the overall
positioning and mapping performance by fusing two or more sensors. Reference [152]
proposed a camera–radar sensor fusion framework based on vehicle component (rear
corner) detection and positioning to improve the stability of vehicle positioning. The
main idea of this method is to enhance the azimuth accuracy of radar information by
detecting and locating the rear corner of the target vehicle from the image. The proposed
method can effectively track the corner points of the vehicle using only one visible corner
even in occluded scenes. GPS may experience signal attenuation in indoor spaces and
urban canyons, and IMU may drift over time due to error accumulation when integrating
acceleration to determine velocity and position. Reference [153] uses an unscented Kalman
filter (UKF) Bayesian filter to fuse GPS and IMU data. Reference [154] uses the error state
Kalman filter (ESKF) and the piecewise Rauch–Tung–Striebel (RTS) smoothing algorithm to
fuse GNSS and IMU to improve the positioning accuracy and robustness of GNSS and IMU
sensors. The proposed ESKF-RTS method provides more accurate and reliable positioning
for autonomous vehicles, especially in environments where GNSS signals are unreliable.
Reference [155] proposes a fusion algorithm that combines the Kalman filter (KF) with a new
INS/GPS neural network framework (GI-NN) to assist INS in reducing the accumulated
navigation error during GPS signal loss. Reference [156] studies the information fusion
of GPS and INS sensors using the Kalman filter. In order to improve the performance of
the Kalman filter, a robust method using the Mahalanobis distance is adopted. In order to
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compensate for the problem of GPS data interruption, an artificial neural network is used to
assist GPS\INS information fusion. Visual sensors are important elements in autonomous
driving positioning and mapping systems. Reference [157] proposes an improved multi-
sensor fusion positioning system based on GNSS/LiDAR/Vision/IMU. With semi-tight
coupling and graph optimization. The system tightly couples the raw observation data of
LiDAR, vision and IMU, while adding the positioning information of GNSS as a loosely
coupled component to reduce the cumulative error. They use factor graph optimization
methods to integrate data from different sensors and improve the accuracy and reliability
of positioning through nonlinear optimization. In order to solve the limitations of SLAM
algorithms in map drift, the literature [158] proposed a sensor fusion SLAM and positioning
method based on LiDAR for offline mapping and online positioning of autonomous driving
vehicles, integrating LiDAR with other sensors such as GNSS, IMU and vehicle status data
to improve map accuracy and positioning performance, even when satellite signals are
unavailable or unreliable. This type of fusion will have many advantages by combining
the power of accurate LiDAR depth estimation and camera tracking capabilities. However,
the fusion of LIDAR and visual SLAM will produce large cumulative errors in high-
speed motion. Therefore, low-cost and high-performance inertial sensing units have
become the first choice to make up for this defect [159]. Reference [160] proposed the first
LiDAR–inertial–vision fusion SLAM system, LVI-SLAM. The system uses a tightly coupled
framework to fuse the measurements of all three sensors, addressing the challenges of noisy
point clouds, fast sensor movement, and tunnel environments. Reference [161] proposed
mVIL-Fusion, a new SLAM system designed to fuse data from a monocular camera, an
IMU (inertial measurement unit), and a 3D rotating LiDAR. The system aims to overcome
the limitations of traditional SLAM methods, such as time synchronization issues and
poor mapping performance in highly variable environments. Reference [162] proposed
an effective positioning algorithm for autonomous vehicles based on vision–LiDAR–IMU
fusion. In order to solve the problem of excessive back-end optimization calculations, a
balanced selection strategy is adopted to reduce the computational complexity, focusing
on key frames and sliding windows to optimize pose estimation. In dealing with large-
scale drift, a loop detection algorithm based on iterative closest point (ICP) is proposed to
improve long-term positioning accuracy. Common positioning and mapping techniques,
as shown in Table 6.

Table 6. Comparison of localization and mapping technologies in terms of accuracy, cost, computa-
tional load, sources of external influences, and data storage size [138].

Method Accuracy Cost Computational Load External Effect Data Size

GPS/IMU low medium low signal outage low
GPS/INS/LiDAR/Camera high medium medium map accuracy high

SLAM high low high illumination high
Visual Odometry medium low high illumination high

Map-Based Matching very High medium very high map change very high

4.3. Scene Segmentation

Scene segmentation based on multi-sensor fusion is to accurately classify different
parts of the environment through different sensor data, so as to accurately segment and
classify different areas in the environment, enhance the understanding of the environment
of autonomous driving vehicles, and improve the detection and positioning capabilities of
objects. According to different environments, scenes can be divided into structured scenes
(urban roads, parking lots, etc.) and unstructured scenes (rural towns, wilderness, etc.).
Since unstructured scenes present higher complexity, most of them lack clear lane lines or
are affected by irregular light changes. Therefore, structured scenes are easier to handle
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than unstructured scenes. Existing large-scale open-source datasets are mainly concen-
trated in structured scenes, some of which contain some unstructured scenes. Therefore,
many current studies focus on structured scene segmentation. Reference [163] proposed
a Perception-Aware Multi-Sensor Fusion (PMF) scheme to effectively fuse the perception
information from RGB images and point clouds. By fusing the spatiotemporal depth
information of point clouds and the appearance information of RGB images, PMF can
solve the segmentation problems of poor lighting conditions and sparse point clouds.
Experiments show that PMF is robust to complex outdoor scenes. Reference [164] uses a
bird’s eye view (BEV) generated from a LiDAR point cloud combined with camera image
segmentation to achieve more accurate lane marking detection. The DeepLabV3+ network
image segmentation method is first used to segment the image captured by the camera,
and then fused with the LiDAR data to generate a more accurate 3D spatial understanding
of the lane marking. The segmentation network based on the DeepLabV3+ architecture is
combined with a long short-term memory (LSTM) module to utilize temporal information
and improve segmentation accuracy. Reference [165] proposes a new camera–LiDAR fusion
model for lane line segmentation, and proposes a multimodal network modeling method
based on information theory to optimize the fusion strategy and improve the robustness
of lane segmentation. The optimal fusion network obtained by the proposed method
achieves a lane line accuracy of more than 85% and an overall accuracy of more than
98.7%. Reference [166] proposes an entropy-based adaptive entropy multimodal fusion
method for the night lane segmentation problem. This method uses attention to capture
the spatial relationship between modalities and illumination distribution, and adaptively
fuses them. Through the proposed lane feature enhancement module, they enhance lane
features globally and locally, improving the network’s ability to capture lanes. Since it is
not feasible to directly apply existing methods to scenes of different structural types for
robust autonomous driving systems, some research on unstructured scene segmentation
has emerged in recent years. Reference [167] proposed an effective multimodal network
called M2F2-Net for free space detection in unstructured off-road scenes. The network
uses a multimodal cross fusion (MCF) fusion module to fuse the features of RGB images
and surface normal maps (compiled from LiDAR point clouds). Reference [168] uses a
grouped attention network (GA-Nav) to classify drivable and obstacle areas in RGB images,
and then the Patchwork++ algorithm segments the LiDAR point cloud into ground and
non-ground areas. Finally, a late fusion method is proposed to better fuse the two results
to classify the drivable area. The fusion model successfully corrects the misclassification
of the camera-based system by integrating LiDAR data. For example, bushes that were
misclassified as drivable by the camera are correctly segmented as obstacles after fusion.
Reference [169] proposed a multi-sensor fusion network combined with surface normals
(SN) for unstructured scene segmentation. The network effectively combines 3D informa-
tion from LiDAR and high-resolution color and texture features from RGB cameras. It fuses
point cloud representations (based on point and range views) with reweighted RGB images
of different scales. Surface normal features are extracted from LiDAR data to reweight
the RGB image data to reduce the negative impact of inaccurate or unreliable visual data,
especially in low-light conditions.

5. Conclusions and Future Research Suggestions
This paper deeply analyzes the environmental perception technology of multi-sensor

information fusion in autonomous driving, and reveals the key role of making full use of
sensor complementarity in improving the performance of autonomous driving systems.
This paper focuses on the methods of heterogeneous sensor fusion, including the integra-
tion of lidar, camera, millimeter-wave radar, and GNSS/IMU, to effectively improve the
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vehicle’s perception of the surrounding environment and enhance the accuracy, stability
and robustness of the system. Through a review of relevant literature, this paper sum-
marizes the advantages of these sensors in applications such as data acquisition, target
detection and tracking, positioning and map construction, and explores the key methods
of calibration and data fusion in multi-sensor information fusion. This study finds that
multi-sensor information fusion technology plays a key role in environmental perception
of autonomous driving. Fusion technology significantly improves the accuracy of target
detection and tracking, enhances the reliability of positioning and map construction, and
improves the effect of scene segmentation. In particular, the introduction of deep learning
technology has opened up new ways for multi-sensor information fusion, and the per-
ception performance has been significantly improved by learning complex data features
and patterns. In addition, this paper also explores the application of the Kalman filter,
Bayesian estimation, D-S evidence theory, and deep learning algorithm in multi-sensor
information fusion, and analyzes their role in specific tasks such as target detection and
tracking, positioning and mapping, and scene segmentation.

Looking to the future, the development direction of autonomous driving technology
is to optimize sensor fusion algorithms, thereby improving the ability of autonomous
driving systems to cope with complex and dynamic environments and improving real-time
decision-making under various driving conditions. Improving sensor performance, espe-
cially performance assurance in bad weather and complex environments, will be the key
to ensuring the safety and reliability of autonomous driving. The seamless integration of
perception systems and vehicle control systems is essential for the safety of autonomous
vehicles, especially in high-speed or high-risk driving scenarios. In addition, the integra-
tion of edge computing and cloud computing can effectively solve the problem of limited
on-board computing resources and achieve real-time and efficient data processing. The inte-
gration of smart cities and vehicle-to-everything (V2X) can enhance the interaction and data
exchange between autonomous vehicles and the surrounding environment, thereby achiev-
ing more comprehensive environmental perception. By deeply exploring these research
directions, the environmental perception ability of autonomous vehicles will be raised to
a new level, promoting the transformation and widespread application of autonomous
driving technology. This study emphasizes the importance of multi-sensor information
fusion in autonomous driving and points out the direction of future research. Through
the analysis of this article, we believe that multi-sensor information fusion technology
is the key to achieving safe and reliable autonomous driving, and with the continuous
advancement of technology, this field will continue to develop and improve.

Author Contributions: Formal analysis, J.L.; Writing—original draft, B.Y.; Writing—review & editing,
T.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This paper was supported by the Guangdong Basic and Applied Basic Research Foundation
(no. 2020A 1515110999).

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author(s).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. PraveenKumar, S.; Agyekum, E.B.; Kumar, A.; Velkin, V.I. Performance evaluation with low-cost aluminum reflectors and phase

change material inte-grated to solar PV modules using natural air convection: An experimental investigation. Energy 2023,
266, 126415. [CrossRef]

2. Liang, J.; Yang, K.; Tan, C.; Wang, J.; Yin, G. Enhancing High-Speed Cruising Performance of Autonomous Vehicles through
Integrated Deep Rein-forcement Learning Framework. arXiv 2024, arXiv:2404.14713.

https://doi.org/10.1016/j.energy.2022.126415


World Electr. Veh. J. 2025, 16, 20 28 of 34

3. Liang, J.; Tian, Q.; Feng, J.; Pi, D.; Yin, G. A Polytopic model-based robust predictive control scheme for path tracking of
autonomous vehicles. IEEE Trans. Intell. Veh. 2023, 9, 3928–3939. [CrossRef]

4. Peng, H.; Wang, W.; An, Q.; Xiang, C.; Li, L. Path tracking and direct yaw moment coordinated control based on robust MPC with
the finite time horizon for autonomous independent-drive vehicles. IEEE Trans. Veh. Technol. 2020, 69, 6053–6066. [CrossRef]

5. Chen, I.-M.; Chan, C.-Y. Deep reinforcement learning based path tracking controller for autonomous vehicle. Proc. Inst. Mech.
Eng. Part D J. Automob. Eng. 2021, 235, 541–551. [CrossRef]

6. Zhang, H.; Deng, Y. Weighted belief function of sensor data fusion in engine fault diagnosis. Soft Comput. 2020, 24, 2329–2339.
[CrossRef]

7. Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and
spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote
Sens. Environ. 2019, 232, 111280. [CrossRef]

8. Mao, X.; Li, W.; Lei, C.; Jin, J.; Duan, F.; Chen, S. A brain–robot interaction system by fusing human and machine intelligence.
IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 533–542. [CrossRef]

9. Tao, Y.; He, Y.; Ma, X.; Xu, H.; Hao, J.; Feng, J. SLAM Method Based on Multi-Sensor Information Fusion. In Proceedings of the
2021 International Conference on Computer Network, Electronic and Automation (ICCNEA), Xi’an, China, 24–26 September
2021.

10. Gan, S.; Zhuang, Q.; Gong, B. Human-computer interaction based interface design of intelligent health detection using PCANet
and multi-sensor information fusion. Comput. Methods Programs Biomed. 2022, 216, 106637. [CrossRef]

11. Jia, X.; Hu, Z.; Guan, H. A new multi-sensor platform for adaptive driving assistance system (ADAS). In Proceedings of the 2011
9th World Congress on Intelligent Control and Automation (WCICA 2011), Taipei, Taiwan, 21–25 June 2011.

12. Rosero, L.A.; Osório, F.S. Calibration and multi-sensor fusion for on-road obstacle detection. In Proceedings of the 2017 Latin
American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), Curitiba, Brazil, 8–11 November 2017;
IEEE: Piscataway, NJ, USA, 2017.

13. Etinger, A.; Balal, N.; Litvak, B.; Einat, M.; Kapilevich, B.; Pinhasi, Y. Non-imaging MM-wave FMCW sensor for pedestrian
detection. IEEE Sens. J. 2013, 14, 1232–1237. [CrossRef]

14. Lee, S.; Yoon, Y.J.; Lee, J.E.; Kim, S.C. Human–vehicle classification using feature-based SVM in 77-GHz automotive FMCW radar.
IET Radar Sonar Navig. 2017, 11, 1589–1596. [CrossRef]

15. Wang, Z.; Wu, Y.; Niu, Q. Multi-Sensor Fusion in Automated Driving: A Survey. IEEE Access 2020, 8, 2847–2868. [CrossRef]
16. Marti, E.D.; de Miguel, M.A.; Garcia, F.; Perez, J. A review of sensor technologies for perception in automated driving. IEEE Intell.

Transp. Syst. Mag. 2019, 11, 94–108. [CrossRef]
17. Middleton, W.E.K.; Spilhaus, A.F. Meteorological Instruments; University of Toronto Press: Toronto, ON, Canada, 1941.
18. Amann, M.C.; Bosch, T.M.; Lescure, M.; Myllylae, R.A.; Rioux, M. Laser ranging: A critical review of unusual techniques for

distance measurement. Opt. Eng. 2001, 40, 10–19.
19. Lum, D.J. Ultrafast time-of-flight 3D LiDAR. Nat. Photonics 2020, 14, 2–4. [CrossRef]
20. Behroozpour, B.; Sandborn, P.A.; Wu, M.C.; Boser, B.E. Lidar system architectures and circuits. IEEE Commun. Mag. 2017, 55,

135–142. [CrossRef]
21. Li, Y.; Ibanez-Guzman, J. Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and

per-ception systems. IEEE Signal Process. Mag. 2020, 37, 50–61. [CrossRef]
22. Roriz, R.; Cabral, J.; Gomes, T. Automotive LiDAR technology: A survey. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6282–6297.

[CrossRef]
23. Wang, P. Research on comparison of lidar and camera in autonomous driving. J. Phys. Conf. Ser. 2021, 2093, 012032. [CrossRef]
24. Yang, B.; Luo, W.; Urtasun, R. Pixor: Real-time 3D object detection from point clouds. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7652–7660.
25. Xie, D.; Xu, Y.; Wang, R. Obstacle detection and tracking method for autonomous vehicle based on three-dimensional LiDAR. Int.

J. Adv. Robot. Syst. 2019, 16, 1729881419831587. [CrossRef]
26. Li, J.; Zhang, Y.; Liu, X.; Zhang, X.; Bai, R. Obstacle detection and tracking algorithm based on multi-lidar fusion in urban

environment. IET Intell. Transp. Syst. 2021, 15, 1372–1387. [CrossRef]
27. Chew, W.K.; Zakaria, M.A. Outdoor localisation for navigation tracking using differential global po-sitioning system estimation

(DGPS): Positioning errors analysis. Mekatronika 2019, 1, 103–114. [CrossRef]
28. Li, X.; Huang, J.; Li, X.; Shen, Z.; Han, J.; Li, L.; Wang, B. Review of PPP–RTK: Achievements, challenges, and opportunities. Satell.

Navig. 2022, 3, 28. [CrossRef]
29. Elsheikh, M.; Iqbal, U.; Noureldin, A.; Korenberg, M. The Implementation of Precise Point Positioning (PPP): A Comprehensive

Review. Sensors 2023, 23, 8874. [CrossRef] [PubMed]
30. Kummerle, J.; Kuhner, T. Unified intrinsic and extrinsic camera and LiDAR calibration under uncertainties. In Proceedings of the

2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 6028–6034.

https://doi.org/10.1109/TIV.2023.3340668
https://doi.org/10.1109/TVT.2020.2981619
https://doi.org/10.1177/0954407020954591
https://doi.org/10.1007/s00500-019-04063-7
https://doi.org/10.1016/j.rse.2019.111280
https://doi.org/10.1109/TNSRE.2019.2897323
https://doi.org/10.1016/j.cmpb.2022.106637
https://doi.org/10.1109/JSEN.2013.2293534
https://doi.org/10.1049/iet-rsn.2017.0126
https://doi.org/10.1109/ACCESS.2019.2962554
https://doi.org/10.1109/MITS.2019.2907630
https://doi.org/10.1038/s41566-019-0568-2
https://doi.org/10.1109/MCOM.2017.1700030
https://doi.org/10.1109/MSP.2020.2973615
https://doi.org/10.1109/TITS.2021.3086804
https://doi.org/10.1088/1742-6596/2093/1/012032
https://doi.org/10.1177/1729881419831587
https://doi.org/10.1049/itr2.12105
https://doi.org/10.15282/mekatronika.v1i2.4994
https://doi.org/10.1186/s43020-022-00089-9
https://doi.org/10.3390/s23218874
https://www.ncbi.nlm.nih.gov/pubmed/37960573


World Electr. Veh. J. 2025, 16, 20 29 of 34

31. Yeong, D.J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and sensor fusion technology in autonomous vehicles: A review.
Sensors 2021, 21, 2140. [CrossRef] [PubMed]

32. Lesson 3: Sensor Calibration—A Necessary Evil—Module 5: Putting It Together—An Autonomous Vehicle State Estima-
tor|Coursera. Available online: https://www.coursera.org/lecture/state-estimation-localization-self-driving-cars/lesson-3-
sensorcalibration-a-necessary-evil-jPb2Y (accessed on 15 June 2020).

33. Kwak, K.; Huber, D.F.; Badino, H.; Kanade, T. Extrinsic calibration of a single line scanning lidar and a camera. In Proceedings of
the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011;
pp. 3283–3289. [CrossRef]

34. Hall, D.; Llinas, J. An introduction to multisensor data fusion. Proc. IEEE 1997, 85, 6–23. [CrossRef]
35. Kumar, P.; Gauba, H.; Roy, P.P.; Dogra, D.P. Coupled HMM-based multi-sensor data fusion for sign language recognition. Pattern

Recognit. Lett. 2017, 86, 1–8. [CrossRef]
36. Qiu, Z.; Martínez-Sánchez, J.; Arias-Sánchez, P.; Rashdi, R. External multi-modal imaging sensor calibration for sensor fusion:

A review. Inf. Fusion 2023, 97, 101806. [CrossRef]
37. Zhou, L.; Li, Z.; Kaess, M. Automatic Extrinsic Calibration of a Camera and a 3D LiDAR Using Line and Plane Correspondences.

In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 5562–5569. [CrossRef]

38. Park, Y.; Yun, S.; Won, C.S.; Cho, K.; Um, K.; Sim, S. Calibration between color camera and 3D LIDAR instruments with a
polygonal planar board. Sensors 2014, 14, 5333–5353. [CrossRef] [PubMed]

39. Yoon, S.; Ju, S.; Nguyen, H.M.; Park, S.; Heo, J. Spatiotemporal Calibration of Camera-LiDAR Using Nonlinear Angular
Constraints on Multiplanar Target. IEEE Sens. J. 2022, 22, 10995–11005. [CrossRef]

40. Gong, X.; Lin, Y.; Liu, J. 3D LIDAR-camera extrinsic calibration using an arbitrary trihedron. Sensors 2013, 13, 1902–1918.
[CrossRef] [PubMed]

41. Velas, M.; Spanel, M.; Materna, Z.; Herout, A. Calibration of RGB camera with velodyne LiDAR. In Proceedings of the 22nd
International Conference in Central Europeon Computer Graphics, Visualization and Computer Visionin Co-Operation with
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