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Abstract: With the rapid advancement of technologies related to unmanned ground sys-
tems, ground vehicles are being widely deployed across various domains. However, when
operating in complex, soft terrain environments, the low bearing capacity of such terrains
poses a significant challenge to vehicle mobility. This paper presents a comprehensive
review of mobility prediction methods for ground vehicles in off-road environments. We
begin by discussing the concept of vehicle mobility, followed by a systematic and thor-
ough summary of the primary prediction methods, including empirical, semi-empirical,
numerical simulation, and machine learning approaches. The strengths and weaknesses
of these methods are compared and analyzed in detail. Subsequently, we explore the
application scenarios of mobility prediction in military operations, subsea work, planetary
exploration, and agricultural activities. Finally, we address several existing challenges in
current mobility prediction methods and propose exploratory research directions focus-
ing on key technologies and applications, such as real-time mobility prediction, terrain
perception, path planning on deformable terrain, and autonomous mobility prediction for
unmanned systems. These insights aim to provide valuable reference points for the future
development of vehicle mobility prediction methods.

Keywords: soil terrain; terramechanics; mobility prediction; off-road; numerical simulation

1. Introduction
Research on ground vehicle mobility began in the 1950s, driven by the need to ad-

dress vehicle terrain navigability in military operations. This demand led to extensive
investigations by organizations such as the “Military Vehicles Experimental Mud Research
Committee” in the United Kingdom, the “SAE War Emergency Committee” of the United
States Army Ordnance Department, the “National Research Council” in Canada, and
research institutes in the former Soviet Union [1]. In recent years, with the rapid advance-
ments in military intelligence, agricultural mechanization, and deep space and deep-sea
exploration, the requirements for ground vehicle mobility have become increasingly critical
and urgent.

In the military domain, vehicles operating in the field often encounter various un-
known and complex terrain environments. To ensure the mobility of military tactics, it is
crucial to predict how these machines will perform in such areas. This need has become
even more pressing with the rapid development of unmanned ground technologies in
recent years, where effective prediction of autonomous mobility presents a significant
challenge in military intelligence. In the agricultural sector, enhancing the intelligence of
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agricultural machinery to achieve precision operations and optimize driving strategies
requires active research into mobility prediction for such equipment. In the resource ex-
traction industry, significant reserves of oil, natural gas, and minerals are often located
in deserts, swamps, mudflats, and permafrost regions, where highly mobile machinery
is essential for transportation and operational support. In deep space exploration, the
lunar and Martian surfaces are characterized by soft, sandy soils, making the prediction
of planetary exploration vehicles’ mobility a crucial element in ensuring the reliable op-
eration of these systems during expensive space missions. Clearly, the study of mobility
prediction methods is vital for advancing national defense, agriculture, the economy, and
space exploration.

Current research has seen some scholars conducting review studies on methods for
predicting ground vehicle mobility. Ref. [2] primarily focuses on practical applications
and introduces empirical methods for predicting vehicle mobility, noting that numerical
simulation-based prediction methods are likely to be the future development trend. Ref. [3]
provides a detailed analysis of the cone index vehicle mobility prediction method based on
empirical models. Ref. [4] offers an overview of prediction methods for military vehicle
mobility, with a particular emphasis on "vehicle–terrain analysis" approaches. Ref. [5]
reviews research on the ground mechanics of tracked robots, highlighting the characteristics
of ground mechanical responses in semi-empirical models.

Based on an extensive literature review and related research efforts, this paper first
provides a comprehensive and systematic explanation of the definition and scope of mobil-
ity, integrating the latest advancements in relevant fields. It then analyzes and summarizes
the primary methods currently employed for predicting mobility. Following this, the paper
discusses the applications of these prediction methods across various domains. Finally,
the paper concludes with a summary and outlook, proposing key research directions for
future work in vehicle mobility prediction, aiming to offer valuable references for further
advancements in this research area.

2. The Concept of Mobility
Ground vehicle mobility primarily refers to the ability of a vehicle to travel rapidly

across various potential road, surface, and terrain conditions [6]. The United States Army
Corps of Engineers characterizes ground vehicle mobility by using the maximum achiev-
able speed between two points within a given area as a fundamental metric [7]. This
maximum achievable speed serves as a highly integrated parameter representing the
complex interactions between the vehicle and its operating environment.

When a vehicle traverses a certain area, its maximum achievable speed may be influ-
enced by one or more of the following factors [8]: (1) the driving force required to overcome
resistances such as sinkage, slopes, obstacles, and vegetation, (2) the driver’s tolerance
limits for discomfort when traversing uneven terrain and for collisions with obstacles,
(3) due to the limited visibility ahead on the road, the driver’s reluctance to exceed the
speed at which they can stop in time, and (4) reductions in speed due to acceleration,
deceleration, and maneuvering to avoid obstacles.

By calculating and comparing the effects of each of these factors on speed, one can
determine the maximum achievable speed of a vehicle within a specific area. The results of
this analysis can be represented using a mobility map, as shown in Figure 1. In Figure 1,
numbers indicate the maximum speed achievable by a particular vehicle across various
sections of the area, while shaded regions represent areas that are impassable. This infor-
mation provides a basis for selecting the optimal path, thereby maximizing the average
speed of the vehicle through a given region [9].
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Figure 1. Mobility map; the numbers represent the vehicle speed, with the units in km/h.

3. Mobility Prediction Methods
Early mobility prediction methods were based on empirical data accumulated from

long-term trials. These empirical data were used to derive empirical formulas for predicting
a vehicle’s performance in traversing a given area, representing a theoretical approach
based on empirical models.

In the United States and some Northern European countries, the Vehicle Cone Index
(VCI) is used as a mobility indicator. In the United Kingdom, the mean maximum pressure
(MMP) is employed as a measure of tracked vehicle mobility. Both the VCI and MMP are
theoretical methods based on empirical models.

With the advancement of research, in the 1950s, Bekker from the University of Michi-
gan conducted mechanical studies on the interaction between vehicles and terrain. Based
on field test data, Bekker developed approximate simplified formulas for vehicle–terrain
interaction and identified the primary soil characteristics affecting vehicle mobility as soil
resistance caused by vehicle settlement, and the driving force and slip rate during soil shear.
This led to the development of a semi-empirical analytical method for describing ground
vehicle mobility [10].

With the development of numerical computation methods and computer technologies,
a new research approach emerged in vehicle mobility studies: numerical simulation meth-
ods. Utilizing satellite remote sensing data and incorporating soil mechanics, elastoplastic
theory, and constitutive relations, this approach includes techniques such as finite element
analysis and discrete element analysis. These methods are suited for solving nonlinear
relationships between wheels/tracks and soil, addressing issues that traditional mechanics
could not analyze, and thus have become increasingly widespread as an effective means
for vehicle mobility prediction.

In recent years, with the rapid advancement of artificial intelligence, machine learning
methods have effectively improved the efficiency of mobility prediction through training
data and algorithms. Data-driven modeling approaches can replace the complex iterative
processes of soil mechanics formulas, and are attracting growing attention in computa-
tional mechanics. Consequently, machine learning-based mobility prediction methods are
expected to be a significant research direction in the future.

3.1. Mobility Prediction Methods Based on Empirical Models

The development of empirical model-based mobility prediction methods relies en-
tirely on data obtained from experimental measurements. The process of establishing an
empirical model typically involves the following steps: first, identifying the factors that in-
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fluence vehicle mobility; second, conducting displacement tests based on these factors; and
finally, applying curve-fitting techniques to model the data trends by selecting appropriate
functions within a given input range, resulting in an empirical formula. The two most
widely used empirical methods are the mobility prediction method based on the Vehicle
Cone Index (VCI) and the method based on the mean maximum pressure (MMP).

3.1.1. Mobility Prediction Method Based on the Cone Index

The Cone Index (VCI) and the Reshaped Cone Index (Rating Cone Index, RCI) are
used to evaluate soil passability [11]. The VCI represents the minimum strength of the soil
in the critical layer that allows a given vehicle to successfully traverse a specified number
of passes (typically 1 or 50 passes). The VCI values for 1 pass (VCI1) and 50 passes (VCI50)
can be calculated using empirical formulas based on the Vehicle Mobility Index (MI).

The Vehicle Mobility Index (MI) is related to several factors, including the vehicle’s
ground pressure coefficient, axle load coefficient, tire/track coefficient, slip coefficient,
engine coefficient, and drive coefficient. It reflects the overall mobility performance of the
vehicle. The expression for the Vehicle Mobility Index (MI) is given by

MI =
[

PFG · W
T · G

+ L − H
]
· E · X (1)

In the expression, PFG represents the ground pressure coefficient, W is the vehicle
weight, E denotes the engine coefficient, G is the track or tread coefficient, T refers to the
track or tire coefficient, L indicates the load coefficient, H is the ground clearance, and X
represents the drive coefficient.

For a tracked vehicle with a single pass:

VCI1 = 7 + 2MI −
(

39.2
MI + 5.6

)
(2)

For a tracked vehicle with 50 passes:

VCI50 = 19.27 + 0.43MI −
(

125.79
MI + 7.08

)
(3)

For a wheeled vehicle with a single pass and MI ≤ 115:

VCI1 = 11.48 + 0.2MI −
(

39.2
MI + 3.74

)
(4)

For a wheeled vehicle with a single pass and MI > 115:

VCI1 = 4.1MI0.446 (5)

For a wheeled vehicle with 50 passes:

VCI50 = 28.23 + 0.43MI −
(

92.67
MI + 3.67

)
(6)

Once the VCI values (VCI1 and VCI50) are computed using the MI value, the criteria
for predicting vehicle passability are as follows: (1) if RCI ≥ VCI50, the vehicle can pass,
(2) if RCI ≥ VCI1, the vehicle can only pass once, (3) if RCI < VCI1, the vehicle cannot pass.
Here, the RCI is the ratio of the force required to vertically press a cone penetrometer into
the soil at a certain depth to the base area of the cone [11]. The process, as illustrated in
Figure 2, involves using input parameters such as vehicle weight, ground pressure, and
tire/track parameters to calculate the Vehicle Mobility Index and correction factors. If
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the vehicle’s cone index exceeds the soil cone index, the vehicle can pass. Curve-fitting
techniques are then applied to output mobility parameters such as traction force, maximum
slip ratio, and rolling resistance.

Vehicle quality

Ground pressure

Tire/track parameters

Chassis dimensions

Drive parameters

MI VCI

Correction 
factor

CI

Engine parameters

GO/NOGO

Max. traction force

Rolling resistance

Max. slip ratio

Tire vehicle Track vehicle

Figure 2. Framework of mobility prediction method based on CI.

3.1.2. Mobility Prediction Method Based on Mean Maximum Pressure

Rowland, in the United Kingdom [12], proposed a mobility prediction method based
on the mean maximum pressure (MMP) beneath the road wheels of tracked vehicles. This
method calculates the MMP value using tracked vehicle parameters and compares it with
experimentally obtained MMP values suitable for tracked vehicle passage on different
types of terrain, thereby obtaining the mobility prediction results.

Below is the empirical formula used to predict the MMP value for tracked vehicles
with different structures. For vehicles with link tracks and rigid road wheels, the formula is
as follows:

MMP =
1.26W

2nr · A1 · b
√

t1 · D
(7)

For vehicles with band tracks and pneumatic road wheels, the predictive formula is
as follows:

MMP =
0.5W

2nr · b
√

f1 · D
(8)

In the formula, nr is the number of road wheels on a single track, A1 is the rigid area
of the link (or band track), proportional to b × t1, where b is the track or tire width, and t1

is the track pitch, D is the diameter of the track’s road wheel or tire, and f1 represents the
radial deformation of the tire under load.

To predict whether a specific vehicle with a given MMP value has sufficient mobility
on a particular terrain, researchers have compiled the expected mean maximum pressure
values required under specific surface conditions, as shown in Table 1.

For certain types of terrain, the impact of vehicle design parameters on the MMP value
may not be accurately represented by empirical formulas. Additionally, this method can only
be used to predict vehicle performance on soft ground in terms of “GO/NOGO” criteria and
cannot quantitatively predict other vehicle performance metrics, such as rolling resistance,
driving force, traction force, and traction efficiency under given operational conditions.
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Table 1. Large-scale soil modeling technology -level evaluation.

Surface
Conditions

MMP (kN · m−2 )

Expected Value
(Multi-Pass)

Good Value Max. Value
(Single Pass)

Temperate infiltrated clay soils 150 200 300
Tropical infiltrated clay soils 90 140 240
Marshland 30 50 60
Marshland flow layer 5 10 15
Snowfields 10 25–30 40

In summary, empirical methods are simple and effective for predicting vehicle mobility
on soils similar to those used in the tests and are still widely used today. However, these
methods only correlate vehicle mobility with indicators like the cone index, simplifying the
interaction between the vehicle’s mobility systems and the ground, which introduces signif-
icant limitations. Ref. [13] noted that the applicability of empirical methods is confined to
test scenarios similar to those used to derive the formulas, making these models unsuitable
for investigating new mobility system designs and vehicle performance on untested soil
conditions. Furthermore, empirical methods are only feasible when the number of variables
involved is relatively small.

3.2. Mobility Prediction Method Based on Semi-Empirical Models

Due to the limitations of the aforementioned empirical methods, Bekker developed
a parameterized semi-empirical analysis method for ground vehicle performance. This
method is based on measurements of ground response characteristics under simulated
vehicle loads and the mechanical principles of vehicle–ground interaction. It derives
a mechanical model of vehicle–soil interaction that incorporates both vehicle and soil
parameters [10]. The method identifies the key soil characteristics affecting vehicle mobility
as soil resistance caused by soil settlement under vehicle loads and the driving force and slip
rate provided by the soil during shear. In vehicle mobility research, the Bekker apparatus
(see Figure 3) is used to measure soil response to loads [14]. This apparatus includes both
plate penetration tests and shear tests. In penetration tests, a plate with dimensions similar
to the contact area of tracks or wheels is used to measure the relationship between pressure
and settlement. In shear tests, a shear ring or shear plate simulates the shear effect of
the vehicle’s mobility system. By determining the relationship between shear stress and
displacement, it provides data required for predicting shear stress at the vehicle–ground
interface and the relationship between vehicle traction force and slip ratio.

Based on the results from the Bishop ring shear test, the data are fitted to estab-
lish the typical relationships between pressure–settlement and shear stress–displacement
as follows:

P =

(
kc

b
+ kφ

)
· Zn (9)

τ = τmax
e
[(

−k2+
√

k2
2−1

)
·k1·j

]
− e

[(
−k2−

√
k2

2−1
)
·k1·j

]
e
[(

−k2+
√

k2
2−1

)
·k1·j0

]
− e

[(
−k2−

√
k2

2−1
)
·k1·j0

] (10)

where P represents the ground pressure, b denotes the shorter dimension of the wheel–
ground contact area, which is the width of the rectangular contact patch or the radius of a
circular contact patch, Z is the sinkage depth, n is the soil deformation index, kc and kφ are
the soil cohesion and friction deformation moduli, respectively, τ is the shear stress, τmax

is the maximum shear stress, k1 and k2 are empirical constants, and j and j0 represent the
shear displacement.
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Based on Equations (9) and (10), the relationship between running resistance, driving
force, and slip ratio, as well as the tractive force and maximum speed of the vehicle,
can be derived. Subsequently, researchers have introduced various modifications and
improvements to the semi-empirical model originally proposed by Bekker to enhance the
predictive accuracy of the mechanical model.

Figure 3. Bevameter.

The semi-empirical approach, rooted in classical soil mechanics, involves the devel-
opment of a series of semi-empirical formulas based on extensive simulation experiments.
Although the parameters within these formulas are derived from experimental data, they
can effectively guide the design of off-road vehicles. This approach benefits from controlled
experimental conditions, yielding results with strong repeatability and comparability, mak-
ing it a valuable research method even in the future [15]. However, the current pressure–
sinkage and shear stress–displacement models rely heavily on in situ soil measurement
data, and the measurement methods are predominantly based on axisymmetric vertical
loading in a planar model. These models neglect the effects of uneven load distribution
on the ground during vehicle roll and do not account for vehicle turning performance or
lateral dynamics. Therefore, developing a spatial vehicle–ground interaction model is more
advantageous for predicting and analyzing vehicle–ground interactions during operation.
Additionally, with the continuous evolution of vehicle configurations, further research is
needed to establish mechanical models that capture the interactions between new vehicle
designs and the ground.

3.3. Mobility Prediction Methods Based on Numerical Simulation

To predict the mobility of a vehicle in a specific area, researchers evaluate and ana-
lyze the geographic information of the region, combining empirical and semi-empirical
methods to obtain mobility prediction results. Currently, to more accurately capture the
nonlinear interaction between the vehicle and soil, and to achieve more precise mobility
predictions than those provided by empirical and semi-empirical approaches, researchers
employ numerical simulation techniques for soil modeling. By coupling vehicle multibody
dynamics models with soil models, they can simulate and predict the mobility performance
of ground vehicles. Typical soil modeling methods include finite element analysis (FEA)
based on mesh discretization and particle-based modeling approaches.
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3.3.1. High-Precision Geographic Information Acquisition

Geographic information is typically obtained from remote sensing sources, such as
remote sensing technology. However, remote sensing topographic data may contain er-
rors relative to actual spatial locations. Additionally, high-resolution topographic data
reconstructed through interpolation methods also exhibit errors. Variability in soil physical
properties, such as soil cohesion and the internal friction angle, further introduces uncer-
tainty into vehicle–ground interactions, leading to unreliable prediction results [16–18]. To
address the uncertainty in terrain elevation, [19] proposed a method for predicting vehicle
mobility over large areas (26 × 40 km²). To enhance map accuracy, they applied kriging
interpolation methods from geostatistics to the initial terrain data. Additionally, to quantify
terrain reconstruction uncertainty, they performed Monte Carlo simulations to generate
random samples and conducted statistical analysis to classify interpolated terrain points
as passable or impassable. Finally, by combining terrain slope, soil distribution data, and
vehicle kinematic models, they generated passable and impassable maps, which were then
used for path planning, as illustrated in Figure 4.

Fx

Fz

Fy

� �, �

有限元 离散元

NOGO
GO

Route Start

End

Figure 4. GO/NOGO map and path planning result.

Due to the large number of terrain points involved in reconstructing extensive ter-
rain areas, computer processing capabilities are significantly challenged. To address this,
ref. [20] proposed a down-sampling method to obtain a reduced-order representation of
the terrain elevation model, facilitating rapid interpolation of terrain data. On the other
hand, soil is a crucial factor affecting vehicle mobility, with properties such as particle
composition, liquid limit, and plasticity influencing soil passability. To determine the im-
pact of soil moisture on vehicle mobility, [21] proposed a multi-source data-based method
for predicting soil off-road passability. This method integrates rainfall data from meteo-
rological stations and satellite rainfall measurements to construct high-precision rainfall
data, and evaluates vehicle passability based on empirical methods (data download from
http://www.soilinfo.cn/map/index.aspx, accessed on 20 April 2017).

3.3.2. High-Fidelity Soil Model Construction

High-fidelity soil models are crucial for vehicle mobility prediction methods based on
numerical simulation and modeling. However, the stress–strain relationships in granular
soil models exhibit significant nonlinearity. Currently, most soil models employ grid-
based finite element methods, particle-based modeling approaches, or layered multi-scale
modeling techniques.

(1) Grid-based finite element soil modeling methods are described as follows: in finite
element methods (FEMs), soil is typically approximated as a continuum and its mechanical
properties are commonly described using elastoplastic constitutive models [22], such as

http://www.soilinfo.cn/map/index.aspx
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the Drucker–Prager yield model, Mohr–Coulomb yield model, and Cam-Clay critical
state plasticity model [23,24]. In this context, commercial finite element software such as
ABAQUS, PAM-CRASH, and LS-DYNA have been developed and are utilized to simulate
soil–wheel interactions. Ref. [25] employed ABAQUS to develop a soil finite element model
and investigated the impact of armored vehicle loads on mobility in off-road environments.
Ref. [26] used PAM-CRASH to study the mechanical relationships between single and
multi-wheeled vehicles and soft soil interactions.

Most FEM soil models use the Lagrangian finite element method (Lagrangian FEM)
to describe the movement of soil finite element nodes. When soil undergoes significant
deformation, Lagrangian FEM requires mesh updates, which involve re-interpolating the
solution domain (including plastic and elastic deformations) onto a new mesh. This process
demands substantial computational resources and can reduce solution accuracy. To address
this, ref. [27] employed the Arbitrary Lagrangian–Eulerian finite element method (ALE
FEM) to simulate the interaction between wheels and soil, as illustrated in Figure 5. This
model accounts for soil deformation effects through the force–displacement transmission
between the wheel and the mesh. However, despite using ALE FEM, effects such as soil
separation and adhesion still require reprocessing.

Figure 5. Wheel and soil interaction simulation.

Additionally, in Eulerian finite element models (Eulerian FEMs), Eulerian formulations
can handle soil flow, separation, and adhesion. Ref. [28] utilized the Eulerian formulation
in LS-DYNA to simulate interactions between tires and non-cohesive soil. The main ad-
vantage of the Eulerian FEM is its ability to model large soil deformations and flow while
incorporating the effects of material flow, fracture, plasticity, friction, and cohesion on soil
properties. However, accurately modeling the friction at solid boundaries remains challeng-
ing in Eulerian formulations. Therefore, precise construction of mechanical constitutive
models for cohesive soils continues to be an active research area.

The primary advantage of grid-based FEM soil models is their flexibility in adjusting
element sizes. Smaller elements can be used in high-deformation areas near the surface
and tires, while larger elements are suitable for low deformation regions deeper in the
soil and farther from the tires. Consequently, the number of degrees of freedom in finite
element soil models is typically lower than in particle-based soil models, leading to reduced
computation times, as illustrated in Figure 6. However, a major drawback is that significant
soil deformations require remeshing, which increases computational effort and decreases
the accuracy of Lagrangian FEM and ALE FEM solutions. Even with remeshing, simulating
soil separation and adhesion remains challenging. Although Eulerian FEMs can handle
soil flow and separation/adhesion effects, accurately modeling friction at solid boundaries
in Eulerian formulations is difficult.
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离散元模型

移动土块

Figure 6. Different mesh sizes for simulating soil characteristics.

(2) Particle-based soil modeling methods are described as follows: Although contin-
uum finite element models using phenomenological constitutive assumptions can simulate
soil deformation, they struggle to explain the microscopic mechanical behavior between
soil particles, leading to lower simulation accuracy. In contrast to finite element models,
particle-based models are more effective at simulating material characteristics at the particle
scale. These models capture material properties through particles with frictional contacts,
allowing for a relatively direct simulation of particle-based soil characteristics.

In particle-based soil modeling methods, the mechanical behavior of soil is simulated
using interaction force models between particles [29], as illustrated in Figure 7. In this
model, normal force contact is based on Hertzian contact theory, while tangential force
contact is governed by the Middlin–Deresiewicz theory. There are elastic forces Fs, damping
forces Fd, and rolling friction forces Fd between particles i and j. Specifically, the elastic
forces Fs and damping forces Fd are categorized into the normal elastic force Fn

s , tangential
elastic force Fs

t , normal damping force Fn
d , and tangential damping force Ft

d. The parameters
Kn, Kt, Cn, Ct, and µ represent the normal spring stiffness coefficient, tangential spring
stiffness coefficient, normal damping coefficient, tangential damping coefficient, and static
friction coefficient, respectively.

Fn
s = 4

3 E∗√R∗δ
3
2
n

Ft
s = −Stδt

Fn
d = −2

√
5
6 β

√
Snm∗v

−→
rel
n

Ft
d = −2

√
5
6 β

√
Stm∗v

−→
rel
t

(11)

where E∗ denotes the equivalent elastic modulus, R∗ represents the equivalent radius, δn

and δt correspond to the normal and tangential overlap quantities, respectively, and Sn

and St are the normal and tangential stiffness coefficients. m∗ is the equivalent mass, and

v
−→
rel
n and v

−→
rel
t are the normal and tangential components of the relative velocity. β is the

damping ratio.
Due to the variability and complexity of soil, it is necessary to adjust the parameters

within the soil model in simulation software during soil modeling [30]. The basis for
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adjustment is to conduct pressure–settlement and shear–displacement experiments on the
soil within the simulation environment, fitting the obtained experimental curves with the
measured curves to achieve an approximate real soil mechanical response in the simulation
environment, as shown in Figure 8. The pressure–sinkage test (Figure 8a) is described as
follows: in this test, a cylindrical object (usually a probe) is pressed vertically into a soil
or surface material, and the resulting sinkage (or penetration depth) is measured under
applied pressure. This test helps assess the compaction or resistance of the material when
a vertical force is applied. The pressure increases as the object penetrates deeper into the
material, and the resulting sinkage is observed to determine the material’s response to
vertical loading. The shear–displacement test (Figure 8b) is described as follows: this test
involves applying shear forces to the material, typically by rotating or moving a cylindrical
object laterally within the material. It measures how the material deforms under shear
stress and quantifies the shear displacement (lateral movement) that occurs as the shear
force is applied. This test is useful for assessing the material’s shear strength, friction, and
its ability to resist sliding or shearing forces. After establishing an accurate soil model,
a co-simulation scheme centered on tires, vehicles, and terrain is adopted, employing a
force–displacement co-simulation strategy for simulation [31–35], to predict the mobility of
the vehicle.



X
Y

Z

0

i

j

Normal force

Tangential force

O

i

j

KnCn

 Ct

KContact area t

Normal force

Tangential force

Figure 7. Model of the particle interaction force.

Figure 8. Simulation tests of the soil parameters calibration.

The granular model is the one that most closely approximates the actual physical
properties of soil. Numerous methods based on granular soil models have been employed
to simulate vehicle–soil interactions, including the discrete element method, smooth particle
hydrodynamics, and the material point method.

In the discrete element method (DEM) [36,37], the mechanical behavior of soil is mod-
eled through the inter-particle forces, which include the normal contact forces, attractive
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forces, tangential contact forces (including frictional and viscous forces), and forces re-
lated to the distance between particles (gravity, electrostatic forces, and magnetic forces).
Smith et al. [38] developed a discrete element soil model for simulating the interaction
between rigid wheels and cohesive soil. Ref. [39] developed an Implicit Differential Varia-
tional Inequality (DVI) solver for ground vehicle mobility simulation, which includes soil
cohesion, friction, viscosity, and elastic effects, but does not account for plastic deformation
and consolidation effects. Ref. [40] proposed a DEM model for cohesive soils that can
explain the effects of normal and consolidation stresses on soil plasticity, density, and cohe-
sion. Additionally, this model includes normal elastic forces, damping forces, tangential
frictional forces, and viscous forces, and has been validated in applications for ground
vehicle mobility. Subsequently, refs. [41,42] extended this model using a relaxation model
for soil plastic deformation, introducing the loss of cohesive strength due to tension; at the
same time, to enhance simulation efficiency, they proposed a mobile soil patch technique,
enabling the simulation of vehicle travel on extended soft terrains, as shown in Figure 9.

Figure 9. Multibody dynamics simulation of wheeled vehicles driving on the DEM terrain.

Smoothed Particle Hydrodynamics (SPH) [43] is also a granular modeling method
that fundamentally employs interacting particles to represent continuous soil fluids. Each
particle carries various physical quantities, including mass and velocity. By solving the
dynamic equations of the particles and their trajectories, the mechanical behavior of the
entire system is obtained. SPH involves the concept of a smoothing kernel, where the
properties of a particle are diffused to the surrounding area, with the influence diminishing
as the distance increases. This function, which decreases with increasing distance, is
referred to as the smoothing kernel function, and its maximum influence radius is known
as the smoothing kernel radius.

Refs. [44,45] utilized PAM-CRASH to create a finite element tire and SPH soil simula-
tion coupling model (see Figure 10), which is employed to simulate the rolling of a flexible
tire on soft soil. The soil is modeled using the SPH model, which, due to its excessive
viscosity and difficulty in simulating soil compressibility, necessitates further refinement.

Fx

Fz

Fy

� �, �

有限元 离散元

NOGO
GO

Route Start

End

Figure 10. Simulation of tire interacting using SPH soil model.

Similar to other granular modeling techniques, the primary advantage of SPH lies
in its capability to simulate significant soil deformations, including soil flow, separation,
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adhesion, and the adherence of soil to the tire surface. The main disadvantage of the SPH
soil model in vehicle mobility applications is that each particle interacts not only with its
neighboring particles but also with all particles within its kernel radius, resulting in slower
computational speeds.

The material point method (MPM), introduced by Sulsky in 1996 [46], is a numerical
simulation technique that employs a dual description of fluid mechanics characteristics
using material points and an Eulerian mesh. This method involves discretizing the material
into a set of material points that carry only mass and position information to describe
material properties, while the corresponding physical quantities are computed on the
Eulerian mesh. Interpolation functions facilitate the exchange of information between the
material points and the Eulerian mesh, thereby avoiding mesh distortion and the treatment
of advective terms. The MPM combines the advantages of both Eulerian and Lagrangian
methods, making it highly suitable for simulating problems involving large deformations,
impacts, and fracture fragmentation [47]. It effectively captures the characteristics of snow,
such as its stickiness, fragmentation, and compression. Consequently, in [48], researchers
applied the MPM to simulate the motion of vehicles on real snow, as depicted in Figure 11.

Figure 11. Simulation of the vehicle driving on the snow.

Currently, the evaluation criteria for macro-scale soil modeling technology levels [49]
are presented in Table 2, with a scale ranging from 1 to 10, where a higher score indicates
better performance.

Table 2. Large-scale soil modeling technology -level evaluation.

Evaluation Metrics Lagrangian/
ALE FEM

Eulerian
FEM DEM SPH MPM

Soil Deformation Range 4 9 9 9 9
Embedding Obstacle Capability 3 7 9 9 9
Vehicle Interaction Fidelity 5 6 8 8 8
Simulation Computational Speed 5 7 6 5 9
Experimental Verification Accuracy 5 3 7 5 3
Current Application Trends 5 4 8 6 5

Total Score 27 36 47 42 40

From Table 2 and the discussions presented in this section, it can be concluded that
particle-based soil modeling methods generally outperform grid-based finite element soil
modeling methods, with the DEM being the current optimal soil modeling technology.
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The Lagrangian/ALE FEM is recommended only for situations where soil deformation is
minimal and no other media (rocks, other soils, obstacles, etc.) are embedded within the
soil model.

(3) Soil modeling methods based on hierarchical multi-scale approaches are
described below.

To combine the advantages of finite element and discrete element soil models, in [50],
researchers proposed a hierarchical multi-scale soil model. In this model, the DEM is
employed to describe the soil surface to simulate the dynamic interaction between the
soil and the rolling tire, while the FEM is used to describe the underlying layers, thereby
reducing the dimensionality of the overall model. Results indicate that the multi-scale
soil model significantly reduces computational costs compared to a single-scale DEM
while maintaining similar fidelity [51,52]. To further enhance simulation efficiency, soil
modeling using the Representative Volume Element (RVE) model is utilized, where the
FEM is employed to predict macroscopic soil deformation. At the integration points of
the FEM, the granular-scale DEM is introduced in place of phenomenological constitutive
models [53,54] to predict the complex granular-scale material behavior under soil strain
response, as shown in Figure 12. Additionally, this method can be accelerated through
large-scale parallel processing on high-performance computers.

Figure 12. Interaction between tire and soil using RVE model.

3.4. Machine Learning-Based Mobility Prediction Methods

Numerical simulation-based methods for predicting vehicle mobility on soft terrain
rely on high-fidelity soil models. Despite the introduction of numerous soil modeling
techniques, the phenomenological constitutive assumptions in FEM soil models pose
significant challenges in capturing the intricate granular mechanical behavior. Although
the DEM soil models excel at simulating the complex mechanics of granular materials,
their computational cost becomes excessively high when simulating large-scale terrains
(>5 × 5 km2) with millions of soil particles. Generating mobility distribution maps using
these models can take weeks or even months [55]. With the rapid evolution of artificial
intelligence technology, researchers have introduced machine learning-based mobility
prediction techniques, significantly enhancing the efficiency of mobility simulation.

In [56], researchers introduced a machine learning method to efficiently predict vehicle
mobility, encapsulating the terrain factors influencing vehicle mobility into soil strength
and slope values. These parameters serve as inputs for the artificial neural network (ANN)
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algorithm, with the predicted output being the maximum attainable speed of the vehicle
on the given terrain. The training dataset is generated by sampling a range of soil strength
and slope combinations and conducting vehicle mobility simulations using numerical
simulation techniques to determine the maximum speed of the vehicle on each terrain
configuration. Thereafter, the ANN algorithm is employed to generate a comprehensive
distribution of mobility predictions.

Although this method effectively enhances simulation efficiency, the generalization of
mobility results is poor. The simulation of training data still requires a substantial amount
of time, and the mobility results obtained only reflect the distribution of the vehicle’s
maximum speed, without providing real-time simulation data such as vehicle posture,
traction force, and slip ratio. To obtain real-time vehicle driving data, data-driven modeling
methods have garnered increasing attention in the field of computational mechanics [57],
including the use of artificial neural networks to output stress–strain curves related to the
elastoplastic and viscoelastic material behavior under laboratory test conditions [58–60],
and the utilization of recurrent neural networks with long short-term memory to describe
material behavior [61]. Furthermore, in the context of multi-scale modeling, in [62],
researchers developed a surrogate model based on Gaussian process regression to accelerate
the calculation of state equations in material multi-scale models. Refs. [63,64] proposed
a neural network-based hierarchical multi-scale off-road mobility model. This method,
based on the RVE model, takes as input data the instantaneous load force exerted by the
vehicle on the ground and the terrain deformation during the simulation driving process,
using neural networks to replace the solution process of inter-particle state changes; the
output results are the subsequent terrain deformation and the forces transmitted to the
vehicle by the ground. This method offers simulation accuracy comparable to the DEM and
significantly reduces simulation time (70% to 80%), enabling the acquisition of real-time
vehicle simulation data. However, obtaining its training data is more complex, requiring the
construction of test scenarios in the simulation environment to test the mechanical effects
of vehicle–ground interaction under various driving conditions, as shown in Figure 13.

Figure 13. Test scenario in simulation environment.
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In this section, the aforementioned mobility prediction methods are compared across
various aspects, including the prediction methodologies, subjects of prediction, method-
ological limitations, and potential applications, with the results summarized in Table 3.

Table 3. Large-scale soil modeling technology -level evaluation.

Method Technique Target Limitation Application

Empirical Field Test Common Wheeled/
Tracked Vehicles

Poor generalizability Poor

Semi-Empirical Field Test/
Theoretical Derivation

Unrestricted Model simplifications/
assumptions

Average

Numerical Simulation Theoretical Derivation/
Computer Simulation

Unrestricted Long simulation time/
high modeling complexity

Good

Machine Learning Training Data/
Algorithm

Unrestricted Challenges in data acquisition/
poor generalizability

Excellent

4. Applications of Mobility Prediction Methods
4.1. Military Vehicle Mobility Prediction

In the military domain, for strategic decision-makers, the application significance of
ground vehicle mobility prediction encompasses several key aspects: (1) selecting passable
areas based on vehicle types, (2) identifying vehicle types suitable for specific terrain
scenarios, (3) optimizing vehicle design or developing new types of vehicles by predicting
the mobility of existing vehicles in specific terrain scenarios. Consequently, since 1979, the
United States and several NATO countries have developed the NATO Reference Mobility
Model (NRMM) for predicting the mobility of military ground vehicles [65]. The NRMM
utilizes the VCI as a metric for evaluating the mobility of military ground vehicles on
soil. By determining the relationship between the VCI and the RCI, it predicts vehicle
passability. The NRMM analyzes terrain into two-dimensional profiles and incorporates
an obstacle module (OBSDP), employing a half-vehicle dynamics model to traverse the
terrain, thereby ascertaining the minimum ground clearance and traction force required for
vehicles under various terrain and obstacle conditions. To simulate the impact of driving
shocks on speed, the NRMM integrates a ride dynamics module (VEHDYN), which adjusts
the maximum vehicle speed achievable based on the endurance limits of the occupants,
serving as a consideration for speed limitation. Ultimately, the data obtained from the
aforementioned modules are compiled into the NRMM dataset. Users only need to input
vehicle data, scenario data, terrain data, etc., and by leveraging historical vehicle test data,
empirical models, and semi-empirical formulas, the mobility distribution of an area can be
outputted [66–69].

Due to the limitations of vehicle mobility prediction methods based on empirical
and semi-empirical models, the NATO Applied Vehicle Technology (AVT) group, under
the support of the NATO Science and Technology Organization (STO), established the
AVT-248 research working group to develop the Next Generation NATO Reference Mobility
Model (NG-NRMM) [70]. The specific process of vehicle mobility prediction using NG-
NRMM is achieved through the integrated simulation of Geographic Information Systems
(GISs), FEM/DEM soil models, and multibody dynamics models of vehicles to evaluate
the mobility of vehicles in a certain area [71–77], as shown in Figure 14.
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Figure 14. NG-NRMM flowchart.

4.2. Underwater Vehicle Mobility Prediction

In the realm of underwater operations, [78] conducted mechanical interaction tests
between simulated track plates and simulated seabed sediments, based on the physical
and mechanical properties of deep-sea mining areas. They obtained functional relation-
ships between pressure–settlement and shear–displacement. Furthermore, leveraging the
multibody dynamics software RecurDyn, they performed dynamic simulations of vari-
ous walking conditions of tracked mining machines under special mechanical loads on
the seabed, laying the groundwork for the structural design optimization, performance
evaluation, and walking control research of underwater tracked mining machines. Sub-
sequently, scholars completed shear–displacement tests on soft seabed sediments and
analyzed the impact of track parameters on the traction performance of deep-sea tracked
mining machines [79–81].

4.3. Planetary Rover Mobility Prediction

To mitigate the risks of sinking and slipping during Mars rover travel, ref. [82] em-
ployed semi-empirical formulas from vehicle ground mechanics to develop an Adams-
based Mars rover ground mechanics and mobility interaction simulator. This simulator
predicts terrain traversability and has become a part of path planning and navigation for
Mars and lunar rovers. To determine the relationship between the normal force distribution
of Mars rover wheels and mobility, ref. [83] used numerical simulation methods to conclude
the impact of load distribution between Mars rover wheels on mobility.

4.4. Agricultural Vehicle Mobility Prediction

In agriculture, with the widespread and large-scale use of agricultural vehicles, the
compaction and destruction of farmland soil have become increasingly severe. Excessive
compaction affects the physical and chemical properties of the soil [84–86]. Ref. [87] used
experimental testing and semi-empirical mechanical models to comparatively study the
magnitude of vertical and horizontal stresses in soil under the compaction of wheeled and
tracked agricultural machinery. They also analyzed the impact of vehicle travel speed on
stress magnitude. The research results can provide references for the selection and use of
agricultural vehicle walking mechanisms to reduce soil compaction.
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5. Conclusions
Empirical methods are products of the early development of terramechanics and have

a certain application value, but they cannot deeply explain the mechanism of vehicle–soil
interaction and have significant limitations. Semi-empirical methods, based on classical
soil mechanics theory and a large number of simulation experiments, have proposed a
series of semi-empirical calculation formulas. This method has controllable experimental
conditions, providing repeatable and comparable results. Compared to the above two
methods, numerical simulation not only shortens the experimental cycle and improves
the accuracy of mobility prediction results in vehicle ground mechanics research but also
achieves certain trend predictions. In particular, multi-scale modeling that combines the
advantages of the finite element method and discrete element method will become an
important research method for analyzing vehicle–soil interaction relationships. Using ma-
chine learning methods to replace cumbersome mechanical solution formulas significantly
improves efficiency compared to numerical simulation methods; however, their results
have poor generalizability, and when used to test terrains that differ significantly from the
training data, the accuracy of the results is difficult to ensure.

6. Future Development Trends
6.1. Real-Time Mobility Prediction and Terrain Perception

The efficiency of vehicle mobility prediction is crucial for mission decision-making.
Current numerical simulation-based mobility prediction methods incur significant com-
putational costs due to the force–displacement transfer between soils, which involves
extensive iterative calculations, making real-time simulation of vehicle mobility challeng-
ing. Machine learning methods are being applied to enhance efficiency; however, their
training data still requires substantial numerical simulation, and they suffer from poor
generalizability. Therefore, achieving real-time prediction of vehicle mobility will be a
future research direction. Additionally, to obtain vehicle mobility prediction results, most
current methods evaluate and analyze known global terrains and combine empirical, semi-
empirical, numerical simulation, and machine learning methods to predict vehicle mobility
in a given area. However, the spatial variability of soil physical properties leads to uncer-
tainty in vehicle mobility prediction results, increasing the risk of vehicle obstruction. Thus,
real-time perception of soil mechanics parameters affecting vehicle mobility is necessary.
Although some methods using on-vehicle sensors to identify in real time local terrain
have been proposed [88–90], these perception methods are generally based on vehicles
with symmetrical and uniformly distributed loads along the axis, neglecting the impact of
vehicle tilt on non-uniformly distributed loads on the ground. To enable vehicles to avoid
the impact of uncertain factors in mobility prediction during actual travel, further research
in terrain real-time perception is required.

6.2. Path Planning for Deformable Terrain

Mobility prediction results determine the strategy for vehicle route planning (e.g.,
military operations, planetary exploration missions) [91], and a significant amount of re-
search on path planning has been conducted [92,93], mostly focusing on terrain undulation
factors and obstacle information. However, soil deformation caused by vehicle loads on
soft terrain, as well as the aforementioned uncertain factors, can affect vehicle posture,
speed, and slippage, which are essential for travel. Therefore, quantifying these factors, es-
tablishing appropriate cost functions for path planning algorithms, and developing suitable
decision-making methods will also be future research directions.
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6.3. Autonomous Mobility Prediction for Unmanned Vehicles

Current vehicle mobility prediction methods are based on manned vehicles, and how
to predict the autonomous mobility of unmanned vehicles is also one of the hot topics
in current research [94,95]. For unmanned autonomous vehicles, the impact of driving
smoothness on drivers is not very significant (except for vehicle component durability), but
it can reduce sensor performance and affect obstacle detection. Meanwhile, vehicle speed
affects sensor update rates and the time window for on-board algorithms, and vehicle
slippage may also affect the accuracy of vehicle state estimation. Therefore, the coupling
relationships between sensor performance, scene information, unmanned control algo-
rithms, and vehicle dynamics are an important factor affecting the autonomous mobility
of unmanned vehicles, bringing new challenges to the modeling of complex sensor suites,
environmental information, autonomous algorithms, and the closed-loop dynamics of the
vehicle system. On the other hand, to help mission decision-makers set driving modes
(manned driving, remote control, fully autonomous driving) for unmanned autonomous
vehicles, it is necessary to generate autonomy distribution maps based on mobility dis-
tribution maps, with vehicle models, geographic information, scene information, sensor
types, and autonomous algorithms as inputs. These maps will ultimately display the level
of autonomy in different areas.
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