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Abstract: Given the rapid development of technologies such as new energy vehicles,
autonomous driving, and vehicle-to-everything (V2X) communication, a mixed traffic
flow comprising connected and autonomous vehicles (CAVs) and human-driven vehicles
(HDVs) is anticipated to emerge. This necessitates the development of a daily dynamic
evolution model for mixed traffic flow to address the dynamic traffic management needs of
urban environments characterized by mixed traffic. The daily dynamic evolution model
can capture the temporal evolution of traffic flow in road networks, with a focus on the
daily path choice behavior of travelers and the evolving traffic flow in the network. First,
based on the travel characteristics of CAVs and HDVs, the user group in a connected
autonomous driving environment is classified into three categories, each adhering to the
system optimal (SO) criterion, the user equilibrium (UE) criterion, or the stochastic user
equilibrium (SUE) criterion. Next, the pure HDV traffic capacity BPR (Bureau of Public
Roads) function is adapted into a heterogeneous traffic flow travel time function to compute
the travel time cost for mixed traffic flow. Based on the energy consumption calculation
formula for HDVs, the impact of CAVs is fully considered to establish the travel energy
consumption cost for both CAVs and HDVs. The total individual travel cost for CAVs and
HDVs encompasses both travel time cost and energy consumption cost. Furthermore, a
daily dynamic evolution model for mixed traffic flow in a connected autonomous driving
environment is developed using the proportional-switch adjustment process (PAP) model.
The fundamental properties of the model are validated. Finally, numerical simulations
on an N-dimensional (N-D) network confirm the validity and effectiveness of the daily
evolution model for mixed traffic flow. A sensitivity analysis of traveler responses in
the daily evolution model reveals that, as the sensitivity of CAVs to impedance changes
increases, the fluctuations in mixed traffic flow during the early stages of evolution become
more pronounced, and the time required to reach a mixed-equilibrium state decreases.
Therefore, the PAP-based daily dynamic evolution model for mixed traffic flow effectively
captures the evolution process of CAV and HDV mixed traffic flow and supports urban
traffic management in a connected autonomous driving environment.
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1. Introduction
In recent years, with the rapid advancement of technologies such as new energy

vehicles, autonomous driving, and vehicle networking, connected and autonomous vehicles
(CAVs) have emerged as a novel mode of transportation. CAVs represent a new generation
of vehicles capable of autonomous driving and intelligent information exchange between
vehicles, roads, people, and the cloud, facilitated by advanced onboard equipment and the
integration of modern communication and network technologies. Compared to human-
driven vehicles (HDVs), CAVs minimize human involvement in the driving process, reduce
vehicle reaction time through onboard sensors, maintain shorter following distances, and
enable platoon driving. The introduction of CAVs is expected to increase road capacity and
alleviate traffic congestion and pollution. According to the “New Energy Vehicle Industry
Development Plan (2021–2035)”, by 2025, China aims to achieve a target where 30% of
new car sales consist of intelligent connected vehicles, and, by 2050, the penetration rate of
CAVs on the road is projected to reach 75% [1]. It is foreseeable that, in the future, a mixed
scenario involving CAVs and HDVs will emerge on the roads. Therefore, the coexistence
of autonomous and human-driven vehicles will increase the complexity of traffic flow
research, necessitating the optimization of studies on mixed-equilibrium flow.

Due to the advantages of intelligence and automation, the path selection criteria for
CAVs differ from those of HDVs, resulting in a mixed traffic equilibrium. Levin et al. modi-
fied the traditional four-stage model to analyze the impact of CAV penetration on travel,
mode, and route choice. They assumed that both CAVs and HDVs have access to complete
network information and adhere to Wardrop’s first principle in route choice. A mixed traffic
equilibrium distribution model was then developed based on variational inequalities [2].
Chen et al. examined the planning problem of CAV-dedicated lanes and developed a
mixed traffic equilibrium distribution model using nonlinear programming [3]. Li et al.
assumed that the path choice of CAV users is fully controllable and proposed a mixed
traffic equilibrium distribution model based on the “Stochastic User Equilibrium—System
Optimum” framework [4]. Zhang et al. assumed that the path choice of HDV users aims to
minimize actual travel impedance, while CAV users aim to reduce the total system cost.
They developed a “UE (User Equilibrium)—SO (System Optimum)” traffic equilibrium
distribution model based on variational inequality theory [5]. Wang et al. enhanced the
road section capacity by modeling it as a function of CAV penetration rate in the study
of mixed traffic distribution for CAVs and HDVs. They employed the nested logit model
to account for the perceived uncertainty and path overlap for HDVs and applied the UE
path selection criterion for CAVs, considering their accurate knowledge of road conditions.
Based on this, they proposed a mixed traffic equilibrium distribution model [6].

In real-world road networks, traffic volume evolves due to both external and internal
factors. As a result, static traffic distribution models are insufficient for capturing the
dynamic evolution of traffic flow and cannot predict the equilibrium state the network
will ultimately reach. Traffic flow within a network typically takes several days to reach
equilibrium, requiring traffic managers to analyze its dynamic evolution in order to formu-
late effective traffic control measures. Among these, the daily dynamic traffic evolution
model is the most effective approach for studying the transition of road network traffic flow
from a non-equilibrium state to equilibrium. Existing daily traffic flow dynamic evolution
models primarily focus on a single vehicle type, with limited research addressing the daily
dynamic evolution of mixed traffic flow. Cantarella et al. developed a daily dynamic
evolution model for a mix of cars and buses, incorporating the adjustment of bus routes
based on traffic demand and departure frequency [7]. Li and Yang developed a daily dy-
namic evolution model for mixed car and bus traffic, considering the acceptance capacity of
travelers [8]. Liu et al. developed a daily dynamic evolution model, incorporating travelers’
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departure times, traffic information, and passenger psychology [9]. Liang Ying developed a
daily dynamic evolution model by considering the influencing factors of car and bus travel
and also proposed a corresponding congestion charge model [10]. Kou Zhao developed
a dual-mode daily dynamic evolution model by accounting for the differences between
cars and buses [11]. Yi Yunfan developed a daily dynamic evolution model for mixed
CAV and HDV traffic, considering market penetration rates and travel costs for CAVs [12].
Xu Kai developed a daily dynamic evolution model for mixed autonomous vehicles and
conventional travelers, considering the impact of the proportion of autonomous vehicles
on network traffic [13].

2. Travel Cost of Mixed Traffic Flow
Mixed traffic flow refers to the simultaneous presence of connected and autonomous

vehicles (CAVs) and human-driven vehicles (HDVs) on a road network. The difference
in control mechanisms between CAVs and HDVs leads to a significant disparity in the
amount of information accessible to each vehicle type. Although CAVs acquire more infor-
mation and offer recommendations, there are instances in which travelers may not comply.
Accordingly, travelers can be classified into three categories: the first category consists
of travelers who fully comply with CAVs, following the system optimum (SO) criterion;
the second category includes travelers who do not fully comply with CAVs, adhering to
the user equilibrium (UE) criterion; and the third category comprises drivers of HDVs,
following the stochastic user equilibrium (SUE) criterion. Ultimately, the equilibrium state
of the road network will manifest in three forms: system optimum (SO), user equilibrium
(UE), and stochastic user equilibrium (SUE). Research suggests that there are distinct differ-
ences in the travel costs associated with CAVs and HDVs. Therefore, separate methods for
calculating the travel costs of CAVs and HDVs are developed, encompassing both travel
time costs and energy consumption costs.

2.1. Travel Time Cost

Based on the heterogeneous traffic flow characteristics of CAVs and HDVs, this paper
employs the Bureau of Public Roads (BPR) function, which directly adjusts traffic capacity
as the travel time function for heterogeneous traffic flow. Research has shown that, in
practice, CAVs maintain a smaller following distance, thereby increasing the road capacity.
Therefore, this paper assumes that the road capacity in sections with CAVs will be greater
than in sections with only HDVs. Accordingly, this paper introduces a road capacity
correction coefficient to adjust the road capacity in a pure HDV environment, where
ψa ⩾ 1.

Research has shown that, on the same road section, the free-flow time for CAVs is
shorter than that for HDVs. Therefore, this paper introduces a free-flow time correction
coefficient ξa to adjust the free-flow time for HDVs, where ξa ⩽ 1.

When only HDVs are present on the road section, the road travel time function can be
represented as the following BPR function model:

ta,H(d) = t0
a,H

[
1 + α

(
qa,H(d)

Sa,H

)β
]

(1)

In the formula, ta,H(d) represents the travel time of HDVs on the road section a on
day d, t0

a,H represents the free-flow time of HDVs on the road section a, qa,H(d) represents
the traffic volume of HDVs on the road section a on day d, and Sa,H represents the traffic
capacity of the road section with only HDVs.
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On mixed traffic sections with CAVs and HDVs, the road travel time functions for
CAVs and HDVs can be represented, respectively, as follows:

ta,H(d) = t0
a,H

[
1 + α

(
qa,H(d) + qa,C(d)

ψaSa,H

)β
]

(2)

ta,C(d) = ξat0
a,H

[
1 + α

(
qa,H(d) + qa,C(d)

ψaSa,H

)β
]

(3)

In the formula, ta,C(d) represents the travel time of CAVs on the road section a on day
d,t0

a,C represents the free-flow time of CAVs on the road section a, and qa,C(d) represents
the traffic volume of CAVs on the road section a on day d. Since the addition of CAVs
can increase the road capacity, the road capacity correction coefficient ψa is introduced to
directly correct the road capacity of the pure HDV section to represent this characteristic.

In summary, the travel time function of heterogeneous traffic flow of CAVs and HDVs
can be represented as follows:ta,m(d) = ξat0

a,H

[
1 + α

(
∑ qa,m(d)

ψaSa,H

)β
]

∀m ∈ M, ∀a ∈ A, d ⩾ 0
(4)

In the formula, ta,m(d) represents the travel time of type m vehicles on road section a
on day d, t0

a,H represents the free-flow time of HDVs on the road section a, qa,m(d) represents
the traffic volume of type m vehicles on road section a on day d, and Sa,H represents the
traffic capacity of the pure HDV section. When only HDVs are present on the road section,
ψa = 1 and ξa = 1.

Next, we can study the function form of the road capacity correction coefficient ψa.
Calvert [14] simulated the impact of CAV market penetration on traffic capacity. The
research results show that the traffic capacity of pure CAV sections is 68% of the traffic
capacity of pure HDVs. Using a univariate quadratic function to fit Calvert’s research
results, the function form of the road capacity correction coefficient ψa is as follows:

ψa = b1η2
a + b2ηa + b3 = 0.5239η2

a + 0.1443ηa + 1.0057, ∀a ∈ A (5)

In the formula, ηa represents the penetration rate of CAV on the road section a,
ηa =

qa,C(d)
qa,H(d)+qa,C(d)

; b1, b2, and b3 are the parameters of the univariate quadratic function.
According to the impedance function, the travel time costs of CAVs and HDVs can be

obtained as follows:

Ta,m(d) = ∑
d

∑
a

∑
m

VOTm · ta,m(d) · qa,m(d), ∀m ∈ M, ∀a ∈ A, d ⩾ 0 (6)

In the formula, Ta,m(d) represents the travel time cost of type m vehicles on road
section a on day d,VOTm represents the value of time per unit for type m vehicles, ta,m(d)
represents the impedance function of type m vehicles on road section a on day d, and
qa,m(d) represents the traffic volume of type m vehicles on road section a on day d.

2.2. Travel Energy Consumption Cost

This paper draws on the findings of Wadud [15], which indicate that the impact of
CAVs on energy consumption ranges from 5% to 20%. Building on the energy consumption
calculation formula for HDVs, as proposed by Zhang et al. [16], this paper defines the
travel energy consumption cost function for a mixed traffic of CAVs and HDVs as follows:
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Ea,m(d) = χµϕ

(
la

ta,m(d)

)−γ

la (7)

In the formula, Ea,m(d) is the cost of energy consumption per kilometer for type m
vehicles on road section a on day d, ta,m(d) is the travel time for type m vehicles on road
section a on day d, la is the distance of road section a, ϕ and γ are related coefficients,
according to the calibration of Zhang [16], whereby ϕ is taken as 147.92 and γ is 0.689, χ

is 7.8, and µ is the degree of CAVs’ impact on energy when calculating the travel energy
consumption of CAVs. µ can be taken as 90% when calculating the energy consumption of
HDVs, and, in this case, µ is taken as 1.

2.3. Total Travel Cost

In summary, the total personal travel cost for CAVs and HDVs encompasses travel time
costs, fixed costs, and energy consumption costs, as represented by the following formula:

Ca,m(d) = Ta,m(d) + Ea,m(d) (8)

In the formula, Ca,m(d) represents the total personal travel cost of type m vehicles on
road section a on day d, Ta,m(d) represents the travel time cost of type m vehicles on road
section a on day d, and E_(a,m) (d) is the cost of energy consumption per kilometer for type
m vehicles on road section a on day d.

The total travel cost of CAVs and HDVs on the path is as follows:

Cw
k,m(d) = ∑

a
Ca,m(d) · δw

a,k (9)

In the formula, Cw
k,m(d) represents the total travel cost of type m vehicles on path

k between the OD pair w on day d; δw
a,k is the section–path-related variable, that is, a

0–1 variable. If section a belongs to the k path between the OD pair w, then δw
a,k = 1;

otherwise, δw
a,k = 0.

3. Daily Dynamic Evolution Model for Mixed Traffic Flow
3.1. Development of a Day-by-Day Evolution Model for Mixed Traffic Flow

This paper presents a day-by-day dynamic evolution model of mixed traffic flow
consisting of CAVs and HDVs, based on the proportional adjustment model.

The path selection adjustment process of type m vehicles on path k between the OD
pair w on two consecutive days is as follows:

f w
k,m(d + 1)− f w

k,m(d) = ∑
l∈K

f w
l,m(d)ρ

w
lk,m(d)− f w

k,m(d) ∑
l∈K

ρw
kl,m(d)

∀k ∈ K, ∀w ∈ W, d ⩾ 0
(10)

In the formula, f w
k,m(d) represents the traffic volume of type m vehicles on path k

between the OD pair w on day d, where the difference in traffic volume of type m vehicles
on the same path on two consecutive days is equal to the input traffic volume on that path
minus the output traffic volume.

ρw
kl,m(d) represents the proportion of type m vehicles transferred from path k to path

l between the OD pair w on day d, that is, the traffic volume adjustment ratio. At the
same time, to avoid excessive adjustment, the traffic volume adjustment ratio needs to be
between 0 and 1.
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Assuming that ρw
kl,m(d) is a function of the difference in generalized travel costs

between the two paths, the traffic volume adjustment ratio formula is obtained as follows:

ρw
kl,m(d) = max

{
0, 1

|Rw
k (d)|+ζ

[
1 − exp

(
−θw

m
Cw

k,m(d)−Cw
l,m(d)

Cw
k,m(d)

)]}
∀k ∈ K, ∀l ∈ K, ∀w ∈ W, d ⩾ 0

(11)

The formula represents the number of target adjustment path set elements on path k
between the origin–destination (OD) pair w on day d. To avoid

∣∣Rw
k (d)

∣∣ = 0, an infinitesimal
positive number ζ is added to ensure that the denominator is not equal to 0; Cw

k,m(d)
represents the generalized travel cost of type m vehicles on path k between the OD pair w
on day d; θw

m is the sensitivity of vehicles, representing the sensitivity of type m vehicles to
impedance changes in the origin–destination (OD) pair w.

Simultaneously, to prevent non-negative adjustments, it is assumed that travelers shift
from paths with a high generalized travel cost to paths with a low generalized travel cost.
The formula for the target adjustment path k set between the origin–destination (OD) pair
w on day d is derived as follows:

Rw
k (d) =

{
l ∈ K : Cw

k,m(d)− Cw
l,m(d) > 0

}
, ∀k ∈ K, d ⩾ 0 (12)

The generalized travel cost for different types of travelers is defined as the sum of
the time value cost and the travel energy consumption cost. Given that CAVs possess a
certain degree of autonomous driving capability, the time values for HDVs and CAVs differ.
Therefore, the generalized travel cost formula for type m vehicles on path k between the
origin–destination (OD) pair w on day d is expressed as follows:

Cw
k,m(d) = ∑

a
Ca,m(d) · δw

a,k, ∀k ∈ K, d ⩾ 0 (13)

The generalized travel cost for the road section is expressed as follows:

Ca,m(d) = Ta,m(d) + Ea,m(d) (14)

In the formula, Ca,m(d) represents the total personal travel cost of type m vehicles on
road section a on day d, Ta,m(d) represents the travel time cost of type m vehicles on road
section a on day d, and Ea,m(d) is the energy consumption cost per kilometer for type m
vehicles on road section a on day d.

The section flow for different types of travelers is equal to the sum of the flow across
all paths through the section, meaning that path flow is additive. Therefore, the traffic
volume for type m vehicles on section a on day d is expressed as follows:

qa,m(d) = ∑
a

δw
a,k f w

k,m(d), ∀k ∈ K, d ⩾ 0 (15)

The origin–destination (OD) traffic demand for different types of travelers is equal to
the sum of the traffic volume for type m vehicles on all paths between the OD pair w on
day d, and the path flow is non-negative. Therefore, the traffic demand for type m vehicles
between the OD pair w is expressed as follows:

Qw
m = ∑

k
ϕw

k f w
k,m(d), ∀k ∈ K, ∀w ∈ W, d ⩾ 0, f w

k,m(d) ⩾ 0 (16)

In the formula, ϕw
k is the path–OD pair-related variable, a 0–1 variable. If path k

connects the OD pair w, then ϕw
k = 1; otherwise, ϕw

k = 0.
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3.2. Model Theoretical Analysis

In this section, we introduce the fundamental properties of the daily dynamic evolution
model within the connected autonomous driving environment and provide a formal proof.

Proposition 1. (No Excessive Adjustment): The traffic volume adjusted out of a path at any
single time step will not exceed the initial traffic volume of that path. This relationship is expressed
mathematically as follows:

0 ⩽ ∑
l

ρw
kl,m(d) ⩽ 1, ∀k ∈ K, ∀l ∈ K, ∀w ∈ W, d ⩾ 0 (17)

Proof of Proposition 1. Because

1 − exp

(
−θw

m
Cw

k,m(d)− Cw
l,m(d)

Cw
k,m(d)

)
⩽ 1 (18)

we obtain

0 ⩽ max

{
0, 1 − exp

(
−θw

m
Cw

k,m(d)− Cw
l,m(d)

Cw
k,m(d)

)}
⩽ 1∀k ∈ K, ∀l ∈ K, ∀w ∈ W, d ⩾ 0 (19)

hence, we have

∑
l

ρw
kl,m(d) = ∑

l
max

{
0,

1∣∣Rw
k (d)

∣∣+ ζ

[
1 − exp

(
−θw

m
Cw

k,m(d)− Cw
l,m(d)

Cw
k,m(d)

)]}
⩽

1∣∣Rw
k (d)

∣∣ ∣∣Rw
k (d)

∣∣ = 1
(20)

Then, the traffic volume adjustment ratio is ρw
kl,m(d) ∈ [0, 1], and there is no excessive

adjustment problem in the path selection adjustment process model. □

Proposition 2. (Solution Set Invariance): If the initial path selection and traffic volume allocation
scheme is feasible, then the path selection and traffic volume allocation scheme generated through
iterations of the path selection adjustment process model will also remain feasible. This property can
be expressed mathematically as follows:

Qw
m = ∑

k
ϕw

k f w
k,m(d), ∀k ∈ K, ∀w ∈ W, d ⩾ 0, f w

k,m(d) ⩾ 0 (21)

Proof of Proposition 2. Proof can be established based on two aspects: traffic volume
conservation and the non-negativity of the traffic volume.

Proof of traffic volume conservation:
Because

∑
k

∑
l

f w
l,m(d)ρ

w
lk,m(d) = ∑

k
∑

l
f w
k,m(d)ρ

w
kl,m(d) (22)

we obtain

∑
k∈K

f w
k,m(d + 1)

= ∑
k∈K

f w
k,m(d) + ∑

k∈K

(
∑

l∈K
f w
l,m(d)ρ

w
lk,m(d)− f w

k,m(d) ∑
l∈K

ρw
kl,m(d)

)
= ∑

k∈K
f w
k,m(d) + ∑

k
∑
l

f w
l,m(d)ρ

w
lk,m(d)− ∑

k
∑
l

f w
k,m(d)ρ

w
kl,m(d)

= ∑
k∈K

f w
k,m(d) + 0 = · · · = Qw

m

(23)
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Proof of non-negativity of traffic volume:
Because

0 ⩽ ∑
l

ρw
kl,m(d) ⩽ 1, ∀k ∈ K, ∀l ∈ K, ∀w ∈ W, d ⩾ 0 (24)

from Equation (1), we obtain

f w
k,m(d + 1) = f w

k,m(d) + ∑
l∈K

f w
l,m(d)ρ

w
lk,m(d)− f w

k,m(d) ∑
l∈K

ρw
kl,m(d)

⩾ f w
k,m(d) + ∑

l∈K
f w
l,m(d)ρ

w
lk,m(d)− f w

k,m(d)

= ∑
l∈K

f w
l,m(d)ρ

w
lk,m(d) ⩾ 0

(25)

By this recursive process, we can obtain the following:

f w
k,m(0) ⩾ 0, ∀k ∈ K, ∀l ∈ K, ∀w ∈ W (26)

Then, we obtain the following:

f w
k,m(d) ⩾ 0, ∀k ∈ K, ∀l ∈ K, ∀w ∈ W, d ⩾ 0 (27)

In summary, the path selection adjustment process model demonstrates solution set
invariance. □

Proposition 3. (Rational Behavior Adjustment Process): Under the condition of a fixed traffic
demand, each adjustment process reduces the expected total impedance of the traffic network. When
the traffic flow state on the network stabilizes, the network reaches equilibrium. The mathematical
expression is as follows:

∑
d

∑
w

∑
k

Cw
k,m(d)

(
f w
k,m(d + 1)− f w

k,m(d)
)
⩽ 0, ∀k ∈ K, ∀w ∈ W, d ⩾ 0 (28)

Proof of Proposition 3.

∑
d

∑
w

∑
k

Cw
k,m(d)

(
f w
k,m(d + 1)− f w

k,m(d)
)

= ∑
d

∑
w

∑
k

Cw
k,m(d)

(
∑

l∈K
f w
l,m(d)ρ

w
lk,m(d)− f w

k,m(d) ∑
l∈K

ρw
kl,m(d)

)
= ∑

d
∑
w

∑
k

∑
l∈K

Cw
k,m(d) f w

l,m(d)ρ
w
lk,m(d)− ∑

d
∑
w

∑
l∈K

∑
k

Cw
l,m(d) f w

l,m(d)ρ
w
lk,m(d)

= ∑
d

∑
w

∑
k

∑
l∈K

Cw
k,m(d) f w

l,m(d)ρ
w
lk,m(d)− ∑

d
∑
w

∑
k

∑
l∈K

Cw
l,m(d) f w

l,m(d)ρ
w
lk,m(d)

= ∑
d

∑
w

∑
k

∑
l∈K

(
Cw

k,m(d)− Cw
l,m(d)

)
f w
l,m(d)ρ

w
lk,m(d)

(29)

From Proposition 1, we obtain ∑
d

∑
w

∑
k

Cw
k,m(d)

(
f w
k,m(d + 1)− f w

k,m(d)
)
⩽ 0. □

Proposition 4. (Mixed User Equilibrium): Assuming that the traffic demand is fixed, when the
network is in a state of mixed user equilibrium, for any type mtraveler between any OD pair w,
all utilized paths between this OD pair have equal and minimum travel costs, and all unused path
impedances are greater than this minimum travel cost—that is, no type of traveler can reduce their
travel costs by changing their travel plan. The mathematical expression is as follows:{

Cw
k,m(d) = uw

m(d), i f f w
k,m(d) > 0

Cw
k,m(d) ⩾ uw

m(d), i f f w
k,m(d) = 0

∀k ∈ K, w ∈ W (30)
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where uw
m(d) represents the minimum generalized travel cost of the m-th type of traveler between

the OD pair w on day d.

Proposition 5. (Steady-State Path Flow Pattern): The steady-state path flow pattern is a set
composed of a series of network path flow states. If any element is extracted as the initial state, the
path selection adjustment process model will not adjust the flow. From Proposition 5, it can be
obtained that, when f w

k,m(d + 1) = f w
k,m(d), the path flow pattern f ∗ belongs to the steady-state

path flow pattern.

Proposition 6. The steady-state path flow pattern of the path selection adjustment process model is
equivalent to the mixed user equilibrium state.

Proof of Proposition 5. We hereby prove that f *
(

f w
k,m(d + 1) = f w

k,m(d),∀k ∈ K,∀w ∈ W, d ⩾ 0
)

is equivalent to the mixed user equilibrium state.
Sufficiency:
Assume Cw

k,m(d) ⩽ Cw
l,m(d), ∀k ∈ K, ∀l ∈ K, ∀w ∈ W, d ⩾ 0, and f w

k,m(d) ⩾ 0.
Then, we have ρw

kl,m(d) = 0; further, from Formula (30), we can obtain the following:
If f w

k,m(d + 1) = f w
k,m(d), then ∑ f w

l,m(d)ρ
w
lk,m(d) = 0; thus, ρw

lk,m(d) ⩾ 0 and f w
k,m(d) ⩾ 0

always hold. Hence, we obtain f w
l,m(d)ρ

w
lk,m(d) = 0. Since f w

l,m(d)ρ
w
lk,m(d) = 0, then

Cw
k,m(d) ⩽ Cw

l,m(d), f w
l,m(d) > 0, and, when f w

l,m(d) > 0, Cw
k,m(d) = Cw

l,m(d) holds. If we
set Cw

k,m(d) = uw
m(d), we can then obtain that, if f w

l,m(d) > 0, then Cw
k,m(d) = uw

m(d). If
f w
l,m(d) = 0, then Cw

l,m(d) ⩾ uw
m(d), thus proving that the path flow pattern f * meets the

conditions of mixed user equilibrium.
Necessity:
Assume f * is in the state of mixed user equilibrium. When f w

k,m(d) > 0, we have
Cw

k,m(d) = uw
m(d); when f w

k,m(d) = 0, we have Cw
k,m(d) ⩾ uw

m(d); further, from Formula (11),
we can obtain that, if f w

k,m(d) > 0, then Cw
k,m(d) ⩽ uw

m(d). If f w
k,m(d) > 0 and f w

l,m(d) > 0,
then Cw

k,m(d) = Cw
l,m(d), so, when f w

k,m(d) > 0, ρw
kl,m(d) = 0. When f w

k,m(d) > 0
and f w

l,m(d) > 0, then ρw
lk,m(d) = 0; hence, f w

k,m(d)∑ ρw
kl,m(d) = 0. According to For-

mula (11), we obtain the following: when f w
k,m(d) > 0, f w

k,m(d + 1) = f w
k,m(d); when

f w
k,m(d) = 0, we have f w

k,m(d)∑ ρw
kl,m(d) = 0; and, when f w

l,m(d) > 0, ρw
lk,m(d) = 0 and,

hence, ∑ f w
l,m(d)ρ

w
lk,m(d) = 0. Further, from Formula (11), we can infer that, if f w

k,m(d) = 0,
then f w

k,m(d + 1) = f w
k,m(d), i.e., the path flow pattern f * belongs to the steady-state path

flow pattern. □

4. Model Solving Algorithm
Step 1: Proceed with initialization and input the model parameters.
Step 2 : Let d = 0 and f w

k,m(0) = 0; calculate the generalized travel costs of each
segment to obtain the generalized travel costs of the path.

Step 3: Proceed with the flow adjustment ratio. According to the generalized travel
costs of different vehicles, calculate the proportion ρw

kl,m(d) of the m-th type of traveler from
path k to path l between the OD pair w on day d using Formula (11).

Step 4: Proceed with path choice adjustment. Based on the flow adjustment ratio,
calculate the traffic volume f w

k,m(d + 1) of the m-th type of traveler on path k between the
OD pair w on day d + 1 using Formula (10).

Step 5 : Conduct the convergence test. For the set convergence standard ε, if∣∣∣ f w
k,m(d + 1)− f w

k,m(d)
∣∣∣ ⩽ ε, then stop iteration; otherwise, go to step 2 and let d = d + 1.

Flow chart of the model calculation process is shown in Figure 1.
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5. Case Analysis
5.1. Parameter Settings

The Nguyen–Dupuis (N-D) network is used for the case analysis, as shown in Figure 2.
The N-D network consists of 13 nodes, 19 sections, 4 OD pairs, and 25 paths. The numbers
on the sections in the figure represent the section numbers, while the numbers inside the
circles represent the node numbers. Additional information about the network can be
found in the tables below.
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The traffic demand settings for the OD pairs in the N-D network are shown in Table 1.

Table 1. OD indicates the traffic requirement.

Origins
Destinations

5 6

1 1900 1500
2 1300 800

The section parameters and path information in the N-D network are shown in
Tables 2 and 3.

Table 2. Network section parameter.

Section Number Section Length
(km)

Free Flow Time
(h)

Passage Capacity
(pcu/h)

1 2 0.2 800
2 2 0.2 800
3 2 0.2 800
4 4 0.3 600
5 2 0.2 800
6 2 0.2 800
7 2 0.2 800
8 2 0.2 800
9 2 0.2 800

10 2 0.2 800
11 2 0.2 800
12 2 0.2 800
13 4 0.3 600
14 2 0.2 800
15 2 0.2 800
16 2 0.2 800
17 2 0.2 800
18 6 0.4 500
19 2 0.2 800

Table 3. Path information table.

OD Pair Path Number Passing Nodes Passing Sections

1–5

1 1–7–10–5 2–18–11
2 1–7–8–9–10–5 2–17–7–10–15
3 1–7–8–9–4–5 2–17–7–10–15
4 1–7–8–12–4–5 2–17–8–14–15
5 1–3–8–9–10–5 1–5–7–9–11
6 1–3–8–12–4–5 1–5–8–14–15
7 1–3–11–12–4–5 1–6–12–14–15
8 1–3–8–9–4–5 1–5–7–10–15

1–6

1 1–7–8–9–4–6 2–17–7–10–16
2 1–7–8–12–4–6 2–17–8–14–16
3 1–3–8–9–4–6 1–5–7–10–16
4 1–3–8–12–4–6 1–5–8–14–16
5 1–3–11–12–4–6 1–6–12–14–16
6 1–3–11–13–6 1–6–13–19
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Table 3. Cont.

OD Pair Path Number Passing Nodes Passing Sections

2–5

1 2–3–8–9–10–5 3–5–7–9–11
2 2–3–8–9–4–5 3–5–7–10–15
3 2–3–8–12–4–5 3–5–8–14–15
4 2–3–11–12–4–5 3–6–12–14–15
5 2–11–12–4–5 4–12–14–15

2–6

1 2–3–8–9–4–6 3–5–7–10–16
2 2–3–8–12–4–6 3–5–8–14–16
3 2–3–11–12–4–6 3–6–12–14–16
4 2–11–12–4–6 4–12–14–16
5 2–11–13–6 4–13–19
6 2–3–11–13–6 3–6–13–19

In this case study, the traffic volume is considered as the peak-hour traffic volume for
the day, with parameter values derived from the research of Kou Zhao [11], as shown in
the Table 4.

Table 4. Example parameter value.

Parameter Value Parameter Value

d 150 days VOTH 1 CNY/h
ζ 0.0000001 VOTC 0.5 CNY/h

θw
H 0.05 θw

C 0.5
ηw(0) 0.5 σw 0.5

β1 0.4 β2 0.7

5.2. Result Analysis

Using the parameter values mentioned above, we can derive the daily evolution
process of mixed traffic flow on each path in the case study network, the daily evolution of
generalized costs on each path, and the evolution of path flows for both CAVs and HDVs.

The daily evolution process of mixed traffic flow on each path for every OD pair is
shown in Figures 3–6.

World Electr. Veh. J. 2025, 16, x FOR PEER REVIEW 12 of 19 
 

4 1–3–8–12–4–6 1–5–8–14–16 

5 1–3–11–12–4–6 1–6–12–14–16 

6 1–3–11–13–6 1–6–13–19 

2–5 

1 2–3–8–9–10–5 3–5–7–9–11 

2 2–3–8–9–4–5 3–5–7–10–15 

3 2–3–8–12–4–5 3–5–8–14–15 

4 2–3–11–12–4–5 3–6–12–14–15 

5 2–11–12–4–5 4–12–14–15 

2–6 

1 2–3–8–9–4–6 3–5–7–10–16 

2 2–3–8–12–4–6 3–5–8–14–16 

3 2–3–11–12–4–6 3–6–12–14–16 

4 2–11–12–4–6 4–12–14–16 

5 2–11–13–6 4–13–19 

6 2–3–11–13–6 3–6–13–19 

In this case study, the traffic volume is considered as the peak-hour traffic volume 

for the day, with parameter values derived from the research of Kou Zhao [11], as shown 

in the Table 4. 

Table 4. Example parameter value. 

Parameter Value Parameter Value 

𝑑 150 days 𝑉𝑂𝑇𝐻 1 CNY/h 

𝜁 0.0000001 𝑉𝑂𝑇𝐶  0.5 CNY/h 

𝜃𝐻
𝑤 0.05 𝜃𝐶

𝑤 0.5 

𝜂𝑤(0) 0.5 𝜎𝑤 0.5 

𝛽1 0.4 𝛽2 0.7 

5.2. Result Analysis 

Using the parameter values mentioned above, we can derive the daily evolution pro-

cess of mixed traffic flow on each path in the case study network, the daily evolution of 

generalized costs on each path, and the evolution of path flows for both CAVs and HDVs. 

The daily evolution process of mixed traffic flow on each path for every OD pair is 

shown in Figure 3–6. 

 

Figure 3. The evolution process of OD traffic to paths 1–5. Figure 3. The evolution process of OD traffic to paths 1–5.



World Electr. Veh. J. 2025, 16, 53 13 of 18

World Electr. Veh. J. 2025, 16, x FOR PEER REVIEW 13 of 19 
 

 

Figure 4. The evolution process of OD traffic to paths 1–6. 

 

Figure 5. The evolution process of OD traffic to paths 2–5. 

 

Figure 6. The evolution process of OD traffic to paths 2–6. 

Figure 4. The evolution process of OD traffic to paths 1–6.

World Electr. Veh. J. 2025, 16, x FOR PEER REVIEW 13 of 19 
 

 

Figure 4. The evolution process of OD traffic to paths 1–6. 

 

Figure 5. The evolution process of OD traffic to paths 2–5. 

 

Figure 6. The evolution process of OD traffic to paths 2–6. 

Figure 5. The evolution process of OD traffic to paths 2–5.

World Electr. Veh. J. 2025, 16, x FOR PEER REVIEW 13 of 19 
 

 

Figure 4. The evolution process of OD traffic to paths 1–6. 

 

Figure 5. The evolution process of OD traffic to paths 2–5. 

 

Figure 6. The evolution process of OD traffic to paths 2–6. 
Figure 6. The evolution process of OD traffic to paths 2–6.

Based on the daily evolution process of mixed traffic flow on each path for every OD
pair, it is evident that the path flow between each OD pair in the case network converges to
the mixed-equilibrium state. The mixed flow exhibits more significant fluctuations during
the first 80 days, after which it stabilizes and reaches its equilibrium state.
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The evolution of generalized travel costs along each path over time for every OD pair
is illustrated in Figures 7–10.
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As observed in Figures 7–10, the evolution of path flows aligns with the changes in
generalized travel costs. During the initial 80 days, the generalized travel costs exhibit
significant fluctuations. Beyond this period, these costs for each path gradually stabilize
and converge to a consistent value. This indicates that, as the mixed flow evolves, the entire
traffic system achieves a state of mixed equilibrium. Similarly to real-world scenarios, in
the initial stages of implementing traffic management policies, drivers’ acquisition and
understanding of the policies, as well as their subsequent decisions, will all contribute to
fluctuations in generalized travel costs. After a period of time (approximately 80 days),
the majority of drivers on the road have fully grasped the policies and have solidified
their decisions based on their individual needs. Consequently, the generalized travel costs
gradually stabilize and converge.

Next, the evolution process of CAV and HDV path flows is analyzed using OD pair
1–5 as an example. Figures 11 and 12 illustrate the evolution of path flows for CAVs and
HDVs, respectively.
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Figures 11 and 12 demonstrate that the CAV flow experiences significant fluctuations
during the early stages, reaching a near-equilibrium state within 60 days. In contrast,
the HDV flow fluctuates less initially but requires a longer period to stabilize, achieving
near-equilibrium after 80 days. Using path 2 of OD pair 1–5 as an example, the HDV flow
decreases significantly during the first 40 days, while the CAV flow increases considerably.
Notably, the mixed flow shows minimal fluctuation during this period due to the joint
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evolution of CAV and HDV flows. Approaching the mixed-equilibrium state after 80 days,
the mixed flow is distributed across all paths, with the HDV flow dropping to zero on
paths 4, 6, and 7, and the CAV flow becoming zero on paths 1, 3, and 5. Both vehicle
types, however, maintain flows on paths 2 and 8. This distribution arises from the presence
of three user types and two vehicle types in the network, each following distinct path
selection criteria. Furthermore, the differences in parameter values within the case network
influence the generalized travel costs across paths. These variations, coupled with the
differing sensitivities of vehicle types to impedance changes, result in varying stabilization
times for path flows and generalized travel costs across OD pairs.
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5.3. Sensitivity Analysis

Next, we examine the impact of CAV sensitivity, θw
m, on the evolution process of mixed

flow. By keeping other parameters constant, the sensitivity θw
C of CAV is set to 0.3, 0.4, 0.5,

and 0.6, respectively. The evolution process of the mixed flow for OD pair 2–5 is analyzed
to assess how different sensitivity levels influence the dynamics. When the sensitivity of
CAV is 0.5, the evolution process is illustrated in Figure 5. Additionally, the evolution
processes corresponding to other sensitivity levels are depicted in Figures 13–15.
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As can be seen from Figures 12–14, when θw
C is 0.3, the evolution of path flow is

relatively smooth, and the network does not reach a mixed-equilibrium state after 150 days;
when θw

C is 0.4, the mixed flow fluctuates more obviously in the first 40 days, and the
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network reaches a mixed-equilibrium state after 100 days. As can be seen from Figure 6,
when θw

C is 0.5, the path flow fluctuates significantly in the first 50 days, and the network
reaches a mixed-equilibrium state after 80 days; when θw

C is 0.6, the path flow fluctuates even
more strongly in the first 30 days, and the network reaches a mixed-equilibrium state after
60 days. From this, it can be found that different traveler response sensitivities θw

C of CAV
can change the evolution process of mixed flow. That is, as the response sensitivity of CAV
to impedance changes increases, the fluctuation of mixed traffic volume in the early stage
of evolution increases, and the time required for the network to reach a mixed-equilibrium
state decreases.
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6. Chapter Summary
Firstly, based on the travel characteristics of CAVs and HDVs, user groups in the

connected autonomous driving environment are categorized into three types. The first type
consists of users who fully comply with CAV operations and follow the system optimal (SO)
criterion. The second type includes users who do not fully comply with CAV operations
and follow the user equilibrium (UE) criterion. The third type comprises HDV drivers
who adhere to the stochastic user equilibrium (SUE) criterion. A method for calculating
travel costs for CAVs and HDVs is developed, incorporating both travel time and energy
consumption costs. The proportional-switch adjustment process (PAP) is employed to
establish a daily evolution model of mixed traffic flow in the connected autonomous
driving environment, and the fundamental properties of this model are formally proven.
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Finally, numerical simulations are performed on the N-D network to validate the rationality
and effectiveness of the proposed daily evolution model of mixed traffic flow, and a
sensitivity analysis is conducted to examine the impact of vehicles’ response sensitivity
within the model.
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