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Abstract: Simultaneous localization and mapping (SLAM) is one of the key technologies
for mobile robots to achieve autonomous driving, and the lidar SLAM algorithm is the
mainstream research scheme. Firstly, this paper introduces the overall framework of lidar
SLAM, elaborates on the functions of front-end scan matching, loop closure detection,
back-end optimization, and map building module, and summarizes the algorithms used.
Then, the classical representative SLAM algorithms are described and compared from
three aspects: pure lidar SLAM algorithm, multi-sensor fusion SLAM algorithm, and deep
learning lidar SLAM algorithm. Finally, the challenges faced by the lidar SLAM algorithm
in practical use are discussed. The development trend of the lidar SLAM algorithm is
prospected from five dimensions: lightweight, multi-sensor fusion, combination of new
sensors, multi-robot collaboration, and deep learning. This paper can provide a brief
guide for novices entering the field of SLAM and provide a comprehensive reference for
experienced researchers and engineers to explore new research directions.

Keywords: simultaneous localization and mapping; lidar; multi-sensor fusion; deep
learning; development tendency

1. Introduction
With the release of China’s 2035 vision goal outline and the proposal of new quality

productivity, mobile robot technology has also received extensive attention. Simultaneous
localization and mapping technology is a mobile robot in an unfamiliar environment using
its various sensors to carry out environmental data acquisition, attitude estimation, and self-
positioning to build the surrounding environment map [1]. The term “SLAM” was initially
proposed by Smith and Cheeseman at the IEEE Robotics and Automation Conference. The
technology has been in development for over three decades. The current mainstream SLAM
algorithms are mainly divided into three categories, depending on the type of sensors used:
lidar SLAM, visual SLAM, and multi-sensor fusion SLAM. Lidar SLAM technology has
been widely used in many fields in recent years, especially in autonomous driving and
exploration robots [2]. In the autonomous driving system, lidar SLAM uses lidar to scan
the surrounding environment, collect three-dimensional point cloud data, and build a high-
precision environmental map to help autonomous vehicles perceive surrounding obstacles,
road signs, road markings, traffic signals, and other information in a complex environment.
In mines and tunnels, lidar SLAM can help explore robots to avoid obstacles, plan safe
paths, and ensure that robots can work smoothly in small or irregular environments. In
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space exploration, SLAM technology helps the exploration robot to perform self-positioning
and map construction on the surface of the unknown planet to ensure the smooth progress
of the exploration mission.

Visual SLAM mainly uses the camera as the core sensor [3]. The camera is favored by
many researchers because of its rich texture information, simple operation, and low cost [4].
The camera is mainly divided into a monocular camera, a binocular camera, and a depth
camera. The monocular camera uses a single camera to obtain environmental information.
Its advantages are a simple structure and low cost. However, due to structural limitations,
the depth information of the object cannot be obtained. The binocular camera can estimate
the depth information of the object by calibration and matching, but the calibration process
is complex, and the calculation load is large [5]. The depth camera can obtain the depth
information and color of the object, and the information collection speed is fast, but its cost
is high [6]. Due to the limitation of field of view and resolution, the depth camera is mainly
used in indoor scenes.

Visual SLAM relies on the camera to obtain environmental information. In the dark
and strong light environment, the image quality captured by the camera is poor, which
leads to inaccurate feature extraction and affects the accuracy of positioning and mapping.
Visual SLAM makes it difficult to extract effective feature points in low-texture regions,
failing feature matching. Compared with visual SLAM, lidar SLAM has the advantages of
high-ranging accuracy, insusceptibility to external interference such as illumination and
perspective changes, and stable and accurate map construction. It is widely used in the
construction of large-scale complex indoor and outdoor scene maps [7]. It is widely used
in the construction of large-scale complex indoor and outdoor scene maps. Lidar SLAM
mainly uses 2D lidar or 3D lidar to collect information. Two-dimensional lidar can identify
obstacles in the lidar scanning plane with fast scanning speed and low cost. However,
2D lidar cannot obtain the height information of the object, so it is often used in indoor
service robots [8]. The 3D lidar uses multiple laser beams to scan the environment to obtain
three-dimensional structural information, such as the distance and shape of the object, but
the measurement distance is greatly affected by the weather and is expensive.

Inertial measurement unit (IMU), millimeter wave radar, ultrasonic radar, and GPS
are also used in multi-sensor fusion SLAM. IMU can measure the acceleration and attitude
angle of the carrier and can provide the initial value for the prior pose estimation. However,
as the running time increases, the cumulative error is large. Millimeter wave radar has
a strong penetration ability to haze, rain, and other weather, but its accuracy is low [9].
Ultrasonic radar is easy to install and suitable for close-range accurate detection, but the
ultrasonic transmission speed is easily affected by the environment, and it is difficult to
detect objects in non-linear directions. GPS can provide accurate positioning information
for mobile robots with a fast update speed and high precision, but trees and buildings may
block GPS signals [10]. The advantages and disadvantages of various sensors in the lidar
SLAM algorithm are shown in Table 1.

SLAM technology has been continuously developed and improved in recent years.
Many scholars have summarized the related research of SLAM, described the basic prob-
lems, models, frameworks, and technical difficulties of SLAM, reviewed the progress of
related improved algorithms, and discussed the development trend of the SLAM algorithm.
Among them, most of the literature reviews mainly introduce the application of visual
SLAM algorithms or SLAM algorithms in specific scenarios, and there are few reviews
on lidar SLAM algorithms. Kazerouni et al. [11] provide an overview of recent research
advances in visual SLAM for mobile robots and introduce machine vision algorithms for
feature extraction and matching. Zhu et al. [12] summarize the formation of state esti-
mators in SLAM algorithms and give the current state of research on multi-sensor fusion
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algorithms, but do not expand on this in the context of specific SLAM algorithms. Yarovoi
et al. [13] discuss the background information of SLAM algorithms, and the challenges
faced, and summarize the recent SLAM directions. However, they only discuss the appli-
cation of SLAM algorithms in the construction industry. Saleem et al. [14] analyze recent
advances in neural network techniques for SLAM-based ground vehicle localization but
only summarize the localization module of the SLAM algorithmic framework.

Table 1. Analysis table of advantages and disadvantages of each sensor.

Sensor Type Advantages Disadvantages

Camera
Monocular camera Simple structure and low cost Depth information cannot

be obtained

Binocular camera Depth information can be
measured

The calibration process is complex
and the calculation load is large

Depth camera Depth information and the color of
the object can be obtained

High cost, limited by field angle and
resolution

Lidar
2D lidar Fast scanning speed and low cost The height information of an object

cannot be measured

3D lidar

Three-dimensional structure
information such as the distance

and shape of an object can
be obtained

Affected by the weather, the price
is high

Inertial measurement unit The acceleration and attitude angle
of the carrier can be measured Easy to produce cumulative errors

Millimeter wave radar Strong penetration for rain, snow,
and haze Low data accuracy

Ultrasonic radar Easy to install, suitable for
close-range accurate detection

Easy to be affected by the
environment, it is difficult to detect

objects in a non-linear direction

GPS
Can provide accurate positioning

information, update speed,
high precision

GPS signals may be blocked by trees
and buildings

This paper systematically introduces the system architecture of the lidar SLAM al-
gorithm and the current mainstream lidar SLAM algorithm scheme and summarizes the
challenges and future development trends of the lidar SLAM algorithm. The main contri-
butions of this paper are as follows.

(1) In this paper, the system architecture of the lidar SLAM algorithm is analyzed com-
prehensively. The article introduces in detail the four key modules of scan matching,
loop closure detection, back-end optimization, and map construction in the SLAM
algorithm framework.

(2) The current mainstream lidar SLAM algorithm is summarized and described. The
principles, advantages, and disadvantages of various SLAM algorithms are compared
and analyzed from three aspects: pure lidar SLAM algorithm, multi-sensor fusion
SLAM algorithm, and deep learning SLAM algorithm.

(3) The challenges and future development trends of the lidar SLAM algorithm are dis-
cussed and summarized. In practical applications, the lidar SLAM algorithm faces the
problems of difficult effective fusion of multiple sensor data, inherent measurement
problems of lidar, and poor robustness. Five major trends in the future development
of the lidar SLAM algorithm are summarized.
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The rest of this review is organized as follows. In Section 2, the overall framework of
the lidar SLAM algorithm is described in detail. Section 3 describes and summarizes the
latest representative lidar SLAM algorithms. Section 4 discusses the challenges faced by
the lidar SLAM algorithm. Section 5 summarizes the future development trend of lidar
SLAM. Section 6 is the conclusion of this paper.

2. Lidar SLAM System Architecture
Lidar measures the location and shape of objects in the surrounding environment by

transmitting a laser beam and receiving the signal that the laser beam reflects from the
object, calculating the distance of the beam to the target. In 2D lidar SLAM, lidar measures
in a single horizontal plane to obtain the plane structure of the environment and generate a
plane map. In 3D lidar SLAM, the lidar measures in multiple horizontal planes to obtain
the three-dimensional structural information of the object and generate a three-dimensional
map. Lidar measurements can provide accurate range information and improve the 3D
localization capability of lidar SLAM. Lidar measurements do not depend on the lighting
conditions in the environment and can ensure that lidar SLAM can work stably at night, in
haze, strong light, or poor lighting environments.

The SLAM system architecture can be roughly divided into four key parts: sensor
data scanning and matching, loop closure detection, back-end optimization, and map
construction. The SLAM system needs to obtain environmental data through various
sensors. The type and number of sensors directly affect the performance and accuracy of
the SLAM system. Common sensors include lidar, camera, and IMU. The sensor module
sends the collected environmental data to the SLAM front-end for processing and analysis.
In the front end, noise outlier removal and environmental feature extraction are performed
through data preprocessing. According to these environmental characteristics, point cloud
registration is performed between continuous data frames to estimate the pose transforma-
tion between adjacent lidar data frames, but the calculated pose contains cumulative errors.
The back-end optimization is responsible for global trajectory optimization, obtaining
accurate pose, and constructing a global consistency map. Common back-end optimization
methods are graph optimization and filtering-based methods. Throughout the SLAM
process, loopback detection has been performed, which is used to identify historically
identical scenes, achieve closed loops, and eliminate cumulative errors [15]. The system
architecture of SLAM is shown in Figure 1.

World Electr. Veh. J. 2025, 16, x FOR PEER REVIEW 5 of 30 
 

 

Figure 1. System framework of SLAM. 

2.1. Scan Matching 

The accuracy and computational efficiency of the scan matching algorithm directly 
affect the accuracy of trajectory estimation and map construction of the SLAM algorithm, 
which provides the initial value of the robot state and constraint relationship for the back-
end optimization module. Scan matching algorithms can be broadly categorized into iter-
ative closest point (ICP)-based algorithms, geometric feature-based algorithms, and math-
ematical feature-based algorithms. 

2.1.1. ICP-Based Matching Algorithm 

The ICP matching algorithm was originally proposed by Best [16] and Chen et al. 
[17]. The algorithm’s principle is to find the best pose transformation relationship between 
two scanning points of adjacent frames using continuous iteration with the minimum dis-
tance error as the objective function. The algorithm is simple and easy to implement, but 
it is easy to fall into local optimization, and the computational cost is too high when the 
number of scanning points increases. 

The ICP algorithm finds the optimal rotation and translation transformation between 
the source point cloud and the target point cloud in an iterative manner to minimize the 
matching error between the two. The specific steps of ICP registration are as follows. Input 
two point cloud sets, the source point cloud set P = { p1, p2, p3,..., pn } and the target point 
cloud set Q = { q1, q2, q3,..., qn }. The KD-Tree algorithm is used to find the corresponding 
point of pi in the source point cloud in the target point cloud qi so that the Euclidean dis-
tance between the two is minimized. According to the corresponding points, the rotation 
matrix R and the translation matrix T are calculated by the least square method to mini-
mize the error function. 

( ) ' 2

1

1,
n

i i
i

E p q
n =

= −R T ‖ ‖  (1)

The source point cloud is updated to p’ according to the rotation matrix and the trans-
lation matrix. 

iP p′ = +R T  (2)

Calculate the square distance between the corresponding points. When the distance 
error dk is less than the threshold or reaches the number of iterations, the iterative calcula-
tion is stopped, otherwise, it returns to Formula 1. According to the final R and T, the 

Figure 1. System framework of SLAM.



World Electr. Veh. J. 2025, 16, 56 5 of 29

2.1. Scan Matching

The accuracy and computational efficiency of the scan matching algorithm directly
affect the accuracy of trajectory estimation and map construction of the SLAM algorithm,
which provides the initial value of the robot state and constraint relationship for the back-
end optimization module. Scan matching algorithms can be broadly categorized into
iterative closest point (ICP)-based algorithms, geometric feature-based algorithms, and
mathematical feature-based algorithms.

2.1.1. ICP-Based Matching Algorithm

The ICP matching algorithm was originally proposed by Best [16] and Chen et al. [17].
The algorithm’s principle is to find the best pose transformation relationship between two
scanning points of adjacent frames using continuous iteration with the minimum distance
error as the objective function. The algorithm is simple and easy to implement, but it is easy
to fall into local optimization, and the computational cost is too high when the number of
scanning points increases.

The ICP algorithm finds the optimal rotation and translation transformation between
the source point cloud and the target point cloud in an iterative manner to minimize the
matching error between the two. The specific steps of ICP registration are as follows. Input
two point cloud sets, the source point cloud set P = {p1, p2, p3,. . ., pn} and the target point
cloud set Q = {q1, q2, q3,. . ., qn}. The KD-Tree algorithm is used to find the corresponding
point of pi in the source point cloud in the target point cloud qi so that the Euclidean distance
between the two is minimized. According to the corresponding points, the rotation matrix
R and the translation matrix T are calculated by the least square method to minimize the
error function.

E(R, T) =
1
n

n

∑
i=1

∥p′i − qi∥2 (1)

The source point cloud is updated to p′ according to the rotation matrix and the
translation matrix.

P′ = Rpi + T (2)

Calculate the square distance between the corresponding points. When the distance
error dk is less than the threshold or reaches the number of iterations, the iterative calculation
is stopped, otherwise, it returns to Formula 1. According to the final R and T, the point cloud
P is converted to the coordinate system of point cloud Q to complete the final registration.

dk =
1
n

n

∑
i=1

∥p′i − qi∥2 (3)

To solve the problem that the traditional ICP algorithm makes it easy to fall into local
optimization and to improve the accuracy and efficiency of registration, many researchers
have proposed an improved ICP algorithm. The improved algorithm optimizes the ICP
algorithm steps utilizing point selection, matching, weighting, eliminating false associa-
tions, and minimizing cost functions. The ICP matching algorithms which are suitable
for lidar SLAM include PL-ICP (point-to-line ICP) [18], PP-ICP (point-to-plane ICP) [19],
GICP (generalized ICP) [20], NICP (normal ICP) [21], etc. The PL-ICP algorithm takes the
distance from the point to the line as the error value, while the PP-ICP algorithm takes
the distance from the point to the surface as the error cost. The GICP algorithm combines
the ICP algorithm and the PL-ICP algorithm to perform point cloud registration on the
probabilistic framework model, which improves the accuracy of matching. The NICP
algorithm applies the normal vector and curvature information of the point cloud surface
to the ICP algorithm, which improves the robustness of the registration. The ICP algorithm
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needs to calculate the nearest points between all points in the point cloud and the target
point cloud at each iteration, which will increase the amount of calculation, especially for
large point cloud data. When processing a point cloud of thousands to tens of thousands of
points, the registration time of ICP is from about tens of milliseconds to seconds. For larger
point clouds, if the number of iterations is more, the time may increase to a few seconds to
tens of seconds. The ICP algorithm is very sensitive to noise. If there are a large number of
outliers or wrong matching points in the point cloud, the algorithm may converge to the
wrong result.

The Go-ICP algorithm [22] introduces global 3D Euclidean point cloud matching based
on the branch and bound algorithm, which solves the problem that the ICP algorithm is
sensitive to initial values. The GP-ICP algorithm [23] introduces ground plane constraints
for ICP scan matching of ground vehicle point clouds. The algorithm is based on the
boundary of height information to find the corresponding relationship between two frames
of point clouds, which overcomes the problem of ground slope change. The Faster-GICP
algorithm [24] filters the lidar points through a two-step point filter. First, the lidar points
are filtered, only the points in the plane are retained, and then further filtered according to
the contribution to the optimized objective function. With the help of a two-step point filter,
the Faster-GICP algorithm improves the efficiency and accuracy of point cloud matching.
A large number of iterations, requirements for initial values, and sensitivity to noise limit
the ICP and its variant algorithms, and the computational cost of directly using the original
point cloud matching is usually high.

2.1.2. Geometric Feature-Based Matching Algorithm

The geometric feature-based scan matching algorithm speeds up the efficiency of point
cloud matching by extracting object edge features and planar features from the scanned
point cloud and matching the corresponding features. Scan matching based on geometric
features is shown in Figure 2.
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Lidar odometry and mapping (LOAM) [25] extracts the corner points and plane points
of the current frame and the matching frame based on the local curvature of the point cloud
constructs the constraints through point-line and point-surface, takes the point-line distance
and point-surface distance as the error function, and performs point cloud matching and
pose optimization based on the nonlinear least squares method.
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The LOAM algorithm sorts the lidar point cloud according to the curvature size to
extract the edge feature points and the plane feature points. The curvature calculation
formula of point cloud features is as follows:

c =
1

|S| ·
∥∥∥PL

(k,i)

∥∥∥
∥∥∥∥∥ ∑

j∈S,j ̸=i

(
PL
(k,i) − PL

(k,j)

)∥∥∥∥∥ (4)

In the formula, S is the neighborhood of the k-frame point cloud, pL
(k,i) and pL

(k,j) are
two lidar points in the neighborhood S, and L is the lidar coordinate system.

R-LOAM [26] combines the point features in the LOAM algorithm and the grid
features in the reference object to achieve fast matching of the corresponding point cloud
features. However, the algorithm has higher requirements for the positioning accuracy of
the reference object and the three-dimensional grid. E-LOAM [27] extends the pre-extracted
geometric feature information to the local point cloud information around the geometric
feature points for matching, which improves the registration accuracy of the algorithm. To
solve the problem of sparse geometric features in unstructured environments, the E-LOAM
algorithm uses the intensity information of the point cloud to extract points with large
intensity changes as additional feature points for matching. Surfel is a point cloud-based
representation method that uses point clouds rather than polygonal meshes to represent
three-dimensional shapes but requires GPU processing [28]. SuIn-LIO [29] combines the
invariant extended Kalman filter state estimator with the map based on the facet feature,
which can not only achieve the accuracy of state estimation and map construction but also
realize the real-time registration of lidar scanning frames.

The matching algorithm based on geometric features does not need the prior informa-
tion on the point cloud transformation relationship and only uses the geometric features of
the point cloud for the iterative solution. It has good real-time performance and is widely
used. In structured scenes, the feature-based scan matching method can achieve better
scan matching, but there are also some problems. For sparse scanning point clouds or
unstructured environments, it is difficult to extract reliable features, which can easily lead to
mismatches [30]. Compared with the ICP algorithm, the registration accuracy of the match-
ing algorithm based on geometric features is poor, and the extraction of robust features
requires a higher computational cost [31]. Given the above problems, adopting a coarse-to-
fine hybrid scan matching method has gradually become a trend. Firstly, the initial pose
estimation is obtained by using the feature-based method, and then the ICP algorithm is
run to further correct the pose and to obtain an accurate pose finally. He et al. [32] propose
an ICP registration algorithm based on point cloud local features. The algorithm combines
the density, curvature, and normal information of the point cloud to design an efficient and
robust three-dimensional local feature descriptor. Then, according to the feature descriptor,
the initial registration result of the point cloud is found. Finally, the result is used as the
initial value of the ICP algorithm to achieve accurate point cloud registration.

2.1.3. Mathematical Feature-Based Matching Algorithm

Mathematical feature-based matching algorithms are scan matching methods that use
mathematical properties to describe the point cloud data and the pose changes between
frames, and the most famous one is the matching algorithm based on the normal distribu-
tion transform (NDT). The NDT algorithm [33] divides the point cloud into grids, calculates
the normal distribution of each grid to represent point cloud features, and then calculates
the relative positional relationship between point clouds, which has the advantages of
fast matching speed and good stability. The NDT algorithm divides the point cloud into
small voxels and performs registration by optimizing these voxel models. Since NDT
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usually only needs to consider the distribution of voxel models rather than each point in
the optimization process, the computational efficiency is relatively higher, especially when
dealing with large-scale point cloud data. For hundreds of thousands of point clouds, the
NDT registration time is usually only a few seconds. Since NDT focuses on the distribution
of points within each voxel, rather than the exact pairing between each point, outliers and
noise have little effect on the registration results.

The NDT algorithm is calculated by the gridding and normal distribution of the point
cloud, and the transformation matrix is solved according to the probability distribution
function of the two frame point clouds. The specific process of NDT matching is as follows.
The point cloud space is divided into 3D cube cells with uniform size, and the Gaussian
probability distribution function is used to represent the probability distribution of lidar
points in the cube cells. The expression is as follows:

p(x) =
1
a

exp

[
− (xi − q)TC−1(xi − q)

2

]
(5)

In the formula, xi is the point in each cell, C is the covariance matrix of each cell, q is
the mean vector of each cell, and a is a constant. C and q in each cell data can be expressed
as follows:

q =
1
n

n

∑
i−1

xi (6)

C =
1

n − 1

n

∑
i−1

(xi − q)(xi − q)T (7)

where xi (i = 1, 2, 3, . . ., n) is all the points in the cube cell.
The points in the point cloud to be registered are converted to the reference point

cloud coordinate system, and then the probability distribution of each projection point is
solved and summed.

s(p) =
n

∑
i=1

exp

[
−
(x′i − q)TC−1(x′i − q)

2

]
(8)

In the formula, x′i represents the projection point of each point in the point cloud to be
registered in the reference point cloud coordinate system.

The Newton iterative optimization method is used to optimize the objective function
s(p), and the pose rotation matrix and translation vector are obtained. Let f = s(p). To
minimize the objective function f, the following processing should be carried out in each
iterative optimization process.

H∆p = −g (9)

where g is the transpose gradient of function f, and H is the Hessian matrix of function f.
SRG-NDT [34] is a segmented region-growing NDT algorithm. The algorithm first re-

moves the ground points in the scanned point cloud to speed up the point cloud registration
and then performs Gaussian clustering on the remaining point clouds to ensure the match-
ing accuracy of the algorithm. In MI-NDT [35], the reference scan voxel is transformed
into a multi-scale voxel based on the optimal plane ratio criterion. The pose obtained from
the coarse voxel is used as the input of the fine voxel, and it is refined to the finest voxel
level. The final pose parameter is the best transformation. The MI-NDT algorithm has
greatly improved the registration accuracy and robustness. NDT-6D [36] is a color-based
normal distribution transformation point cloud registration method. The algorithm uses
geometric and color information to calculate the correspondence between point clouds
and uses three-dimensional geometric dimensions to minimize the distance of these corre-
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spondences, which improves the robustness of the algorithm to noise. NDT-LOAM [37]
proposes a method combining weighted NDT and local features to match point clouds and
estimate the motion of the lidar. The algorithm has the characteristics of low drift, high
precision, and strong real-time performance.

The ICP algorithm has higher accuracy when registering between adjacent frame point
clouds, but the initial pose has higher requirements. The matching algorithm based on
geometric features can balance computational efficiency and matching accuracy, but it is
not suitable for sparse point clouds and unstructured scenes. The calculation efficiency of
the NDT algorithm is relatively high, but the matching accuracy is not as good as the ICP
algorithm. The characteristics of the typical lidar scan matching algorithm are summarized
as shown in Table 2.

Table 2. Features of typical scan matching methods.

Features ICP-Type Methods Feature-Based
Methods

NDT-Type
Methods

Iteration Need Optional Need
Initial value Need No need Need
Domain of

convergence Small Large Medium

Operating speed Slow Fast Medium
Robustness Poor Medium Good

Precision High, Affected by
outliers and noise

Low, Related to
feature extraction

accuracy

Medium, Related to
voxel size

Scope of
application Wide Structured scene Wide

The matching effect of different lidar scan matching algorithms is shown in Figure 3.
Figure 3a is a two-frame point cloud with a large difference in initial position. It can be
seen from Figure 3b that the ICP algorithm is sensitive to the initial position of the point
cloud, which leads to the failure of point cloud matching. Figure 3c is the matching result
based on feature matching. Under the condition of extracting enough feature points, the
method based on feature matching has better accuracy. Figure 3d is the matching result of
the NDT algorithm. The NDT algorithm has strong robustness and realizes the point cloud
registration effect, but the accuracy is not as good as the method based on feature matching.
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Based on the characteristics of different matching algorithms, some scholars have
proposed a combined scan-matching algorithm. Wang et al. [38] use the NDT point cloud
registration algorithm to roughly estimate the pose of the unmanned vehicle and then use
the ICP point cloud registration algorithm to correct the registered point cloud to achieve
an accurate estimation of the pose of the unmanned vehicle. Yang et al. [39] propose a
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point cloud registration algorithm based on 3D NDT-ICP, which uses a 3D NDT algorithm
to solve the coordinate transformation of the point cloud in the roadway and optimizes
the unit resolution of the algorithm according to the environmental characteristics of the
roadway, introduces kd-tree in the ICP algorithm for the search of point pairs, and optimizes
the nonlinear objective function of the algorithm by using the Gauss–Newton method to
complete the point cloud of the roadway with accurate alignment.

2.2. Closed Loop Detection

Both scan matching at the front end and map building at the back end of the SLAM
algorithm generate computational errors due to deviations in sensor information, which
accumulate over runtime. Loop closure detection is a key module that can avoid error
accumulation, which is very important for SLAM systems running in large environments
with many loops over a long period of time. The main goal of loop closure detection is to
detect whether the robot has visited the same position or not, thus correcting localization
errors due to drift or environmental changes [40]. If the closed loop is correctly identified,
the global pose and map information errors can be corrected. If the two frames of point
clouds that are far apart are mistakenly identified as closed loops, it may cause a large
deviation in pose estimation and even lead to map construction failure. The process of loop
closure detection is shown in Figure 4.
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Tomono [41] uses coarse-to-fine point cloud registration to detect the closed-loop
constraints of the robot. The coarse estimation used geometric constraints such as planes
and lines to shorten the time of loop closure detection and then used the iterative closest
point algorithm for fine estimation. Meng et al. [42] developed a loop closure detection
algorithm based on a point cloud histogram in multi-resolution mode. This algorithm can
accurately detect the closed-loop in the process of vehicle driving, obtain accurate attitude
information, and map through global optimization. However, the recognition accuracy is
poor in scenes with large vertical changes.

In addition to the direct matching of two sets of point cloud frames, another approach
is to construct descriptors with geometric information, intensity information, or others, and
then compare the descriptors to measure the similarity of the loop closure detection, which
is based on both artificial design and deep learning. The former can directly process the 3D
point cloud, including local-based descriptors, global-based descriptors, and hybrid-based
descriptors, while the latter requires representing the 3D point cloud into a format that
can be processed by deep learning, such as preprocessing it into a structured, fixed-size
representation. Effectively extracting feature descriptors with discriminative ability and
robustness is also one of the issues that scholars focus on and study [43].
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The local descriptor is extracted from the position of each feature point and matched
based on the historical scene, which improves the efficiency of loop closure detection. Some
key point detection methods and local descriptors are proposed, such as 3DSift, 3DHarris,
3D-SURF, ISHOT, and FPFH [44]. MF-LIO [45] uses the fast point feature histogram
feature descriptor to perform loop closure detection, which improves the positioning and
mapping accuracy of the SLAM algorithm. FELC-SLAM [46] introduces a variety of feature
descriptors at the back end of the SLAM algorithm for loop closure detection, which
effectively solves the problem of sparse point clouds at the remote end.

Local descriptors ignore the relationship between local features and lack robustness
when facing scenes with sparse lidar point clouds and insufficient features. The global
descriptor can make full use of point cloud data and improve the accuracy of loop closure
detection. Inspired by the Mercator projection and depth map, Wang et al. [47] propose
a new global Mercator descriptor to improve the accuracy and recall rate of loop closure
detection. Kim et al. [48] propose a method based on scanning context, Scan Context, which
is a non-histogram global descriptor. It divides each frame of the point cloud into several
regions, selects representative points, and saves them to a two-dimensional array. The
kd-tree is used to find the historical Scan Context descriptor, for similarity calculation, and
detect whether to loop back. The Scan Context algorithm is not affected by the change of
lidar viewpoint and can still achieve efficient loop closure detection in real environments
such as large scenes, noise, and partial occlusion.

In recent years, many scholars have integrated the intensity features, semantic infor-
mation, and deep learning of lidar into the loop closure detection module to achieve robust
and efficient results. Zhang et al. [49] propose a new Intensity Cylindrical Projection Shape
Context (ICPSC) descriptor and ICPSC-based row-column similarity estimation and use a
double-valued ring candidate verification strategy to achieve accurate loop closure detec-
tion in sparse scenes. Li et al. [50] propose a semantic scanning context location recognition
method that uses semantic descriptors to encode scene information and uses two-step
global ICP to eliminate the influence of rotation and translation on descriptor matching.

2.3. Back-End Optimization

In the lidar SLAM algorithm, the back-end optimization is a process of integrating the
lidar pose and inter-frame motion constraints of each frame to achieve overall optimization
and generate an environment map based on the scanning data provided by the front end.
According to different key algorithm theories, lidar SLAM can be divided into filter-based
lidar SLAM and graph-based lidar SLAM. The filter method mainly uses the Kalman filter
or extended Kalman filter to obtain the optimal state estimation. There are problems such
as slow update efficiency, poor environmental adaptability, and a lack of loop closure
detection modules. It is difficult to apply in large-scale long-distance and multi-loop
scenarios. The method based on graph optimization will consider all the sensing data for
global optimization. Although the calculation amount is large, it can make full use of the
data collected by the sensor, and the fusion accuracy is high.

2.3.1. Algorithm Based on Filtering

The filter-based back-end optimization algorithm is mainly based on Bayesian estima-
tion, and the posterior probability is calculated by prior probability, sensor measurement,
and state transition model. In the state estimation, the commonly used filtering algorithms
are the Kalman filter (KF) [51], extended Kalman filter (EKF) [52], unscented Kalman fil-
ter (UKF) [53], error state Kalman filter (ESKF) [54], and particle filter (PF) [55]. Table 3
summarizes several filtering algorithms.
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Table 3. Filtering algorithm in back-end optimization.

Filtering Algorithm Description Limitation

Kalman filter (KF) Recursive optimal estimation of
linear Gaussian system Only applicable to linear systems

Extended Kalman filter (EKF)

The first-order Taylor is used to
linearize the nonlinear system to
solve the nonlinear problem to a

certain extent.

When it is far away from the working
point, the degree of linearization is not

enough, which will have a
greater impact.

Unscented Kalman filter (UKF)
The Sigma sampling points are used

to approximate the nonlinear
Gaussian transform.

Depending on the number of sampling
points, it can deal with nonlinear

problems but has high
computational complexity.

Error state Kalman filter (ESKF)

The error state variable is used
instead of the original variable for
iterative update, which has small

dimension and high
linearization degree.

It is sensitive to initial estimates and has
accumulated errors.

Particle filter (PF)

Based on the Monte Carlo method, a
set of particles is constructed to

approximate the target state
distribution and update the particles.

There is a particle dissipation problem,
and the computational complexity is

proportional to the number of particles.

To balance efficiency and accuracy, Gao et al. [56] propose a GNSS-LiDAR-inertial
state estimator based on the iterative error state Kalman filter algorithm, which fuses
GNSS, LiDAR, and IMU data to achieve coarse-to-fine state estimation and improves the
accuracy and stability of the SLAM system. EKF-LOAM [57] uses the extended Kalman
filter algorithm to fuse the wheel odometer and IMU data into the LeGO-LOAM algorithm,
which improves the positioning ability of the mobile robot in the absence of GPS data.
FAST-LIO [58] uses a tightly coupled iterative extended Kalman filter to fuse lidar feature
points with IMU data to achieve navigation in fast motion or noisy environments. This
algorithm proposes a new Kalman gain calculation formula, which makes the calculation
amount depend on the state dimension rather than the measurement dimension, which
greatly improves the operation efficiency of the algorithm. Compared with the traditional
extended Kalman filter algorithm, researchers are more inclined to use the variants of the
EKF algorithm to improve efficiency and state estimation accuracy.

2.3.2. Algorithm Based on Graph Optimization

The main disadvantage of the filtering algorithm is that the computational complexity
is significantly increased due to the growth of the state vector. Another disadvantage is that
the cumulative error cannot be corrected, and long-term operation in the scene with large
noise and multiple loops will cause serious error drift. Graph optimization uses the method
of graph theory to model and solve the system. It is an optimization scheme adopted by
most SLAM algorithms at present, and it is deeply loved by the majority of researchers.
Factor graph optimization is a special graph optimization method. It represents the pose
state of the robot with nodes and represents the constraint relationship between nodes with
edges. The nonlinear least squares method is used to iteratively optimize the cumulative
error in the mapping process.

The factor graph is composed of the state node xk representing the optimization
variable and the factor node fk representing the observation constraint. When the state
change of the mobile robot exceeds a certain threshold, new state nodes and corresponding
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constraint factor nodes will be added to the factor graph to form the objective function as
shown below.

F(xk) =∥ f I
k (xk−1, xk) ∥2 CI

k+ ∥ f L
k (xk−1, xk) ∥2 CL

k
+ ∥ f G

k (xk−1, xk) ∥2 CG
k + ∥ f B

k (xk−1, xk) ∥2 CB
k

(10)

In the formula, f I
k (·) is the IMU pre-integration factor, f L

k (·) is the lidar odometer
factor, f G

k (·) is the ground constraint factor, f B
k (·) is the loop closure detection factor, and

C·
k is the covariance matrix of different factors.

The Baidu Apollo automatic driving platform performs automatic driving in a complex
urban environment, involving multi-lane, long-distance, and high-density road conditions,
requiring high-precision real-time positioning and map construction. The Apollo platform
first uses the EKF method to optimize the back end of SLAM. However, in the case of many
obstacles and large road fluctuations, the EKF is prone to filter error accumulation, resulting
in a decrease in positioning accuracy. To overcome the error accumulation problem of the
filtering method, the Apollo platform introduces a back-end optimization method based
on graph optimization. Graph optimization globally optimizes vehicle positioning and
map construction by minimizing the error of all constraints, which improves positioning
accuracy and reduces map drift.

The core idea of the graph optimization algorithm is to use the graph optimization
framework to estimate the pose and construct the map in real-time. The graph optimiza-
tion algorithm transforms the SLAM problem into an optimization problem of the graph
structure, where the nodes of the graph represent the robot pose, and the edges represent
the constraint relationship between different nodes. When the closed-loop is detected, the
graph optimization introduces new global constraints, performs global optimization, elimi-
nates the previous cumulative error, and obtains more accurate maps and trajectories. It can
be applied to outdoor and indoor large-scale environments with good robustness, but the
amount of calculation is too large. Lang et al. [59] designed a dynamic weight estimation
algorithm based on sensor and loop closure detection information. The algorithm uses the
different accuracies of LiDAR, IMU, and loop closure detection in different scenarios to
calculate the dynamic weight of the graph optimization edge, which improves the accuracy
of the back-end state optimization. Du et al. [60] use the nonlinear least squares method to
optimize the factor graph composed of the INS factor, camera factor, lidar odometer factor,
and motion model factor to improve the attitude estimation accuracy of the algorithm in
the sparse feature outdoor environment.

At present, the open-source optimization algorithm libraries based on graph opti-
mization include iSAM (incremental smoothing and mapping), GTSAM (Georgia tech
smoothing and mapping), G2O (general graph optimization), Ceres, BA (bundle adjust-
ment), etc. [61]. With the help of these optimization libraries, the time of back-end iteration
to solve the optimization value can be saved. Using these open-source algorithm libraries,
developers can focus on the construction of system graph models rather than specific
mathematical calculations to achieve the purpose of simple and efficient development.

2.4. Map Construction

The map constructed by the lidar SLAM algorithm is a model of the surrounding
environment of the mobile robot and a prerequisite for positioning and autonomous
navigation [62]. In the field of SLAM, the constructed map is mainly divided into point
cloud map, octree map, semantic map, and so on [63].

The point cloud map is a collection of three-dimensional space points obtained by
sensors such as lidar. Each point represents an actual position in the space, and each
point usually contains position coordinates (x, y, z), and sometimes includes additional
information such as color, reflection intensity, etc. The point cloud map has high precision
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and can reconstruct the three-dimensional structure of the real environment, but there are
problems with large amounts of data and a lack of semantic information. The octree map is
a spatial data structure. Based on the principle of octree, the three-dimensional space is
recursively divided into small cube regions. Each node corresponds to a space area, and
the state information of the area, such as occupancy or not, is usually stored in the node.
The octree map can effectively save storage space, but the construction process of the octree
is more complicated. The semantic map contains not only the structural information of the
environment but also the semantic information of the objects in the scene (such as object
category, function, state, etc.). Semantic maps can provide rich environmental information,
but data acquisition is complex and computing resources are consumed.

The 2D lidar SLAM generally uses a grid map to represent the surrounding obstacle
information. The 3D lidar SLAM algorithm intuitively describes the surrounding environ-
ment information through the point cloud map, as shown in Figure 5a. The point cloud map
has a large amount of data, which generally needs to be downsampled by voxel filtering to
display normally. A simple point cloud map cannot distinguish obstacle information and
cannot be used for path planning and obstacle avoidance, but it can be used for point cloud
registration research. Mesh maps represent a 3D model of the environment by capturing
key points and features in the environment and generating a mesh consisting of triangular
facets, as shown in Figure 5b. The mesh map can be used for path planning, but it needs
to filter out sensor noise. OctoMap is a three-dimensional spatial map representation
method based on an octree data structure, which efficiently processes and stores large-scale
environmental information by recursively decomposing three-dimensional space into eight
equal sub-units, as shown in Figure 5c. The octree map is a special occupancy grid map. In
this structure, the grids with the same occupancy probability can be merged to reduce the
storage space of the map, which is suitable for obstacle avoidance and path planning. The
semantic map uses semantic segmentation to classify objects in the environment. It not only
contains spatial information but also integrates a semantic understanding of various ele-
ments in the environment, as shown in Figure 5d. Semantic maps combine geometric and
semantic information to improve the ability of mobile robots to perceive the environment,
which is conducive to the efficient execution of tasks in complex environments.

Tsai et al. [64] use point cloud data preprocessing and feature extraction methods
such as ground segmentation to improve the recognition accuracy of vertical objects,
reduce rotation and translation errors, and construct an accurate global point cloud map.
Ruetz et al. [65] propose a local three-dimensional environment representation method
for unmanned ground vehicle navigation, the visible point cloud mesh (OVPC Mesh).
This method uses local point cloud data to generate 3D meshes to represent the free space
around the robot, which balances the representation accuracy and computational efficiency.
Cai et al. [66] propose an efficient occupancy grid map D-Map based on an octree map.
The algorithm uses a depth image to determine the area occupancy state and deletes the
known state of the grid when updating the state, ensuring low memory consumption and
high operating efficiency. Hu et al. [67] designed a neural network architecture RandLA-
Net, using random sampling and local feature clustering methods to achieve semantic
segmentation of large-scale 3D point clouds.
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2.5. Dynamic Point Cloud Recognition

There will inevitably be dynamic objects in the actual working scene of lidar SLAM,
which will affect the positioning and mapping of the algorithm. Therefore, identifying and
removing dynamic point clouds is also one of the key technologies of lidar SLAM. The
conventional lidar SLAM assumes that the environment is static, and the scanned point
cloud is directly spliced into a map. The trajectory of the dynamic object motion will be
retained in the point cloud map to form a residual shadow that does not exist in the real
environment. Figure 6 is a schematic diagram of the point cloud of the dynamic object. The
red point cloud in the figure is the residual shadow left by the dynamic object. This will
affect the subsequent navigation and path planning of autonomous vehicles. It is necessary
to identify and remove the dynamic point cloud in the point cloud map so that only the
static point cloud is retained in the map.
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According to the principle, the dynamic point cloud recognition method is mainly
divided into grid-based, visibility-based, and deep learning-based methods. The principle
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of the grid-based method is to divide the three-dimensional space into a spatial grid; the
lidar point cloud falls into different grids according to the coordinates and the dynamic
object is identified by comparing the situation of the grid being hit and penetrated. The
principle of the visibility-based method is to compare the point clouds of the current frame
and the historical frame. If the point cloud of the historical frame passes through the
point cloud of the current frame, it can be considered that the point cloud of the historical
frame is dynamic. This kind of method does not need to establish a grid map and has low
requirements for computing resources. The principle of the deep learning method is to
semantically segment the lidar point cloud through a neural network, classify each point
in the point cloud, and identify and remove dynamic points according to the category of
points. Identifying and removing dynamic point clouds can not only improve the accuracy
of lidar SLAM but also provide a static environment map with practical application value
for subsequent path planning and control.

3. SLAM Algorithm Scheme Based on Lidar
3.1. SLAM Algorithm Based on Pure Lidar

The pure lidar SLAM algorithm can be divided into a 2D lidar SLAM algorithm and a
3D lidar SLAM algorithm according to the type of lidar used.

In the 2D lidar SLAM algorithm, Lee et al. [68] propose the Fast SLAM algorithm,
which is a SLAM algorithm based on a particle filter. The algorithm decomposes the
SLAM problem into two independent problems: robot pose estimation and map coordinate
point posterior probability distribution estimation. The robot pose estimation is realized
by particle filter, and the map coordinates posterior probability distribution is estimated
by an extended Kalman filter. Fast-SLAM can deal with nonlinear systems due to the
use of particle filtering technology. However, in a large environment, more particles are
needed to obtain better estimation, and the resampling of particles will also lead to particle
dissipation. GMapping [69] improves based on particle filter and alleviates the risk of
memory explosion by reducing the number of particles. The selective resampling method
is used to rank the importance weights of particles, and the particles with low weights are
resampled to solve the problem of particle dissipation in the Rao–Blackwellized Particle
Filter algorithm. The Gmapping algorithm has good real-time performance and high
mapping accuracy in the indoor environment. It is one of the most commonly used SLAM
algorithms, but it lacks loop closure detection, and there is a large cumulative error in
long-term operation in large outdoor scenes.

Karto [70] is the first open-source algorithm based on graph optimization which makes
full use of the sparsity of the system. In the front end, correlation scan matching is used to
match the data frame with the local map to calculate the pose. In the back end, the graph-
based optimization method is used for global optimization. The loop closure detection uses
the candidate data frame to construct the local map and uses the scan-to-map method to
match and detect the closed loop. Hector [71] uses the Gauss–Newton method to directly
perform scan-to-map matching to construct a 2D grid map. Due to the lack of loop closure
detection in Hector, once the map is wrong, it will affect the subsequent mapping effect,
and, since the scan-to-map method has a large amount of calculation, the robot must move
at a lower speed. In 2016, the Google team open-sourced the Cartographer [72] algorithm,
adding sensor time synchronization and laser data preprocessing, introducing the concept
of submap, using a combination of correlative scan matching and gradient optimization to
match frames with submaps, using branch-and-bound to accelerate loopback detection,
and combining with lazy decision making to reduce the likelihood of loopback errors.
Table 4 is a summary of the 2D lidar SLAM algorithm.
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Table 4. Two-dimensional lidar SLAM algorithm.

Algorithm Name Algorithm
Framework

Loop
Closure

Detection
Merits and Demerits

Fast-SLAM Particle filter No

Pose estimation and mapping
are optimized separately; it can
deal with nonlinear problems;
but there is a problem of
particle degradation.

Gmapping Particle filter No Improve particle degradation; it
cannot build large-scale maps.

Karto Graph
optimization Yes

The first open-source SLAM
based on graph optimization,
with loopback detection function;
poor real-time performance

Hector Gauss-
Newton No

Without a loop closure detection
function, it is easy to drift when
rotating too fast.

Cartographer Graph
optimization Yes

High precision and strong
real-time, accelerate loop closure
detection; high requirements for
computing resources

LOAM is a classic and representative 3D lidar SLAM algorithm, and many other
algorithms are improved based on it. The framework of the LOAM algorithm is shown
in Figure 7. LOAM divides the SLAM problem into high-frequency, low-precision motion
estimation and low-frequency, high-precision map construction. Then, it fuses the two
pieces of data to obtain an accurate point cloud map. The shortcoming of the LOAM
algorithm is the lack of back-end optimization and loop closure detection, which will cause
drift in large-scale and multi-loop scenarios. LeGO-LOAM [73] is a lightweight SLAM
algorithm that projects three-dimensional point clouds onto two-dimensional images to
separate ground points and non-ground points to remove noise. The algorithm divides the
ground point cloud before feature extraction, which speeds up the operation efficiency and
enables it to work on low-power embedded systems.
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With the emergence of new sensors, Lin of the University of Hong Kong proposes
the Loam-livox algorithm for the new solid-state lidar scanning characteristics [74]. The
algorithm is optimized in terms of effective point screening and iterative pose optimization,
which is of great significance for the subsequent research of other solid-state lidar SLAM
algorithms. The traditional SLAM algorithm based on lidar mainly focuses on geometric
features and time information, while ignoring the intensity information of lidar reflection.
Wang et al. propose the Intensity-SLAM algorithm using geometric and intensity fea-
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tures [75]. The algorithm uses intensity information to construct an intensity map to assist
feature point extraction and pose estimation. In the closed-loop module, a Scan Context
descriptor based on intensity information is used to be robust to rotation.

3.2. Lidar SLAM Algorithm Based on Multi-Sensor Fusion

A single sensor cannot independently complete the global map construction in all
scenarios, and the fusion of multiple sensors can solve the limitations of a single sensor
and obtain a more accurate, efficient, and adaptable SLAM effect [76].

The fusion of lidar and IMU can overcome the problems of low update frequency
and motion distortion of lidar in the lidar SLAM algorithm. According to the data fu-
sion method, the fusion of lidar and IMU can be divided into loose coupling and tight
coupling. Loose coupling is used to process the lidar and IMU data separately and then
combine the parameters estimated by both for fusion. Compared with loose coupling, tight
coupling uses lidar data and IMU data to jointly construct parameter vectors in the data
processing process and then estimates and optimizes them, showing better robustness and
accuracy. Tight coupling is also one of the research hotspots of the multi-sensor fusion
SLAM algorithm.

LIO-mapping [77] is a tightly coupled fusion algorithm of lidar and IMU proposed for
the first time. By jointly optimizing the measurement data of IMU and lidar, there is no
obvious drift, even in the case of lidar degradation. The mapping accuracy of the algorithm
is improved, but the complexity of the tightly coupled algorithm is high. Pan et al. [78] use
the lidar inertial odometry of the iterative extended Kalman filter to fuse lidar keyframes
and IMU information. In loop closure detection, the global descriptor of the scanning
context is constructed by using the de-distortion feature points of the front-end IMU to
improve the accuracy of the loop closure detection. In the back end, GTSAM is used
for global optimization and GPS constraints are introduced to obtain globally consistent
trajectories and maps. LIO-SAM [79] follows the idea of the LOAM algorithm to extract
feature points, using IMU data to correct point cloud distortion and provide the initial value
of pose transformation. The back end uses a factor graph-optimized architecture, as shown
in Figure 8. The algorithm uses the factor graph framework to fuse the IMU pre-integration
factor, the lidar odometer factor, the GPS factor, and the loop closure detection factor, which
can obtain better accuracy and real-time performance. However, in unstructured scenes,
there will be a lack of effective feature points and failure. FAST-LIO2 [80] inherits the
tightly coupled architecture of FAST-LIO. It makes full use of the subtle features in the
environment by updating the map directly using the original lidar points and reduces the
computational complexity significantly by using the ikd-tree data structure. In summary,
the study of lidar inertial tight coupling mainly improves the accuracy, efficiency, and
robustness of mapping through the tight coupling of lidar and IMU. However, the joint
calibration method for lidar and IMU is not yet mature.

Lidar cannot work normally in degraded scenes and has a poor global positioning
ability, while the camera has a good global positioning ability and can obtain rich image
texture information. The fusion of the two can improve the accuracy and application
scenarios of the SLAM system [81]. V-LOAM [82] is a general architecture combining a
lidar odometer and a visual odometer. The block diagram of the algorithm system is shown
in Figure 9. The algorithm uses a visual odometer to process fast motion, while the lidar
odometer guarantees low drift and robustness under poor lighting conditions. V-LOAM
ranks first in the average translation and rotation error benchmark test of the KITTI dataset
but lacks a loop closure detection module. LVI-SAM [83] is a SLAM framework for tightly
coupled lidar–vision–inertial odometry, which consists of a lidar–inertial system (LIS)
and a visual–inertial system (VIS). The architecture of the tightly coupled lidar–visual–
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inertial system is shown in Figure 10. LIS provides accurate depth information for VIS
and improves the accuracy of VIS. In turn, LIS uses the initial pose estimation of VIS to
perform point cloud scan matching. The advantage of the algorithm is that, if one of the
VIS or LIS fails, the LVI-SAM can also work normally, which makes the algorithm have
better robustness in an environment with less texture and a lack of features. R2LIVE [84]
uses the error state iterative Kalman filter to fuse the measurement data of lidar, vision,
and inertial sensors for state estimation and further improves the overall accuracy through
factor graph optimization. However, the visual system in the algorithm adopts the feature
point method, which easily fails in an unstructured environment. To improve the accuracy
and robustness of the algorithm, R3LIVE is proposed. R3LIVE [85] improves the visual
system by using the optical flow method instead of the original feature point method. It
effectively fuses the visual data by minimizing the photometric error from the frame to the
map and renders the RGB color for the map. Experiments show that R3LIVE has stronger
robustness and accuracy in state estimation than existing systems.

World Electr. Veh. J. 2025, 16, x FOR PEER REVIEW 19 of 30 
 

and reduces the computational complexity significantly by using the ikd-tree data struc-
ture. In summary, the study of lidar inertial tight coupling mainly improves the accuracy, 
efficiency, and robustness of mapping through the tight coupling of lidar and IMU. How-
ever, the joint calibration method for lidar and IMU is not yet mature. 

 

Figure 8. The system architecture of factor graph optimization. 

Lidar cannot work normally in degraded scenes and has a poor global positioning 
ability, while the camera has a good global positioning ability and can obtain rich image 
texture information. The fusion of the two can improve the accuracy and application sce-
narios of the SLAM system [81]. V-LOAM [82] is a general architecture combining a lidar 
odometer and a visual odometer. The block diagram of the algorithm system is shown in 
Figure 9. The algorithm uses a visual odometer to process fast motion, while the lidar 
odometer guarantees low drift and robustness under poor lighting conditions. V-LOAM 
ranks first in the average translation and rotation error benchmark test of the KITTI da-
taset but lacks a loop closure detection module. LVI-SAM [83] is a SLAM framework for 
tightly coupled lidar–vision–inertial odometry, which consists of a lidar–inertial system 
(LIS) and a visual–inertial system (VIS). The architecture of the tightly coupled lidar–vis-
ual–inertial system is shown in Figure 10. LIS provides accurate depth information for VIS 
and improves the accuracy of VIS. In turn, LIS uses the initial pose estimation of VIS to 
perform point cloud scan matching. The advantage of the algorithm is that, if one of the 
VIS or LIS fails, the LVI-SAM can also work normally, which makes the algorithm have 
better robustness in an environment with less texture and a lack of features. R2LIVE [84] 
uses the error state iterative Kalman filter to fuse the measurement data of lidar, vision, 
and inertial sensors for state estimation and further improves the overall accuracy through 
factor graph optimization. However, the visual system in the algorithm adopts the feature 
point method, which easily fails in an unstructured environment. To improve the accu-
racy and robustness of the algorithm, R3LIVE is proposed. R3LIVE [85] improves the visual 
system by using the optical flow method instead of the original feature point method. It 
effectively fuses the visual data by minimizing the photometric error from the frame to 
the map and renders the RGB color for the map. Experiments show that R3LIVE has 
stronger robustness and accuracy in state estimation than existing systems. 

Figure 8. The system architecture of factor graph optimization.
World Electr. Veh. J. 2025, 16, x FOR PEER REVIEW 20 of 30 
 

 

Figure 9. Block diagram of V-LOAM algorithm system. 

 

Figure 10. Lidar–visual–inertial tightly coupled system architecture. 

To cope with fast motion, noise, and complex application scenarios, many research-
ers have begun to integrate different types of sensors into the SLAM system [86]. Ra-
darSLAM [87] is a SLAM system suitable for frequency-modulated continuous wave ra-
dar. The algorithm uses radar to track the geometric structure reliably and compensates 
for the motion distortion through joint optimization. It can also work stably under extreme 
weather conditions such as heavy snow and fog. GR-LOAM [88] fuses the measurement 
data of wheel encoder, lidar, and IMU in a tightly coupled way and estimates the pose 
change of the robot through IMU and wheel encoder. The algorithm detects abnormal 
data by adjusting the optimal weight of each sensor and eliminates the moving point 
cloud of dynamic objects but does not integrate camera data. Liu et al. [89] propose a 
multi-sensor SLAM fusion framework integrating GPS, IMU, lidar, and camera. Different 
sensor data are fused in a tightly coupled manner and then optimized by a factor graph. 
The algorithm reduces the error of the sensor due to accidental changes through the vis-
ual–lidar automatic calibration method and uses the target detection module to establish 
a semantic map, which provides rich map information for navigation and obstacle avoid-
ance. 

3.3. Lidar SLAM Algorithm Based on Deep Learning 

The combination of deep learning and the lidar SLAM algorithm is mainly applied 
to several modules in SLAM architecture, such as feature extraction and registration of 
point clouds, loop closure detection, and the construction of semantic maps. The method 
based on deep learning uses data-driven learning to obtain more accurate results than 
manual design [90]. The application of deep learning in feature extraction and loop clo-
sure detection improves the efficiency, accuracy, and robustness of the SLAM algorithm. 
Constructing semantic maps through deep learning methods can improve the ability of 
mobile robots to perceive the surrounding environment and adapt to different environ-
ments. 

Figure 9. Block diagram of V-LOAM algorithm system.

World Electr. Veh. J. 2025, 16, x FOR PEER REVIEW 20 of 30 
 

 

Figure 9. Block diagram of V-LOAM algorithm system. 

 

Figure 10. Lidar–visual–inertial tightly coupled system architecture. 

To cope with fast motion, noise, and complex application scenarios, many research-
ers have begun to integrate different types of sensors into the SLAM system [86]. Ra-
darSLAM [87] is a SLAM system suitable for frequency-modulated continuous wave ra-
dar. The algorithm uses radar to track the geometric structure reliably and compensates 
for the motion distortion through joint optimization. It can also work stably under extreme 
weather conditions such as heavy snow and fog. GR-LOAM [88] fuses the measurement 
data of wheel encoder, lidar, and IMU in a tightly coupled way and estimates the pose 
change of the robot through IMU and wheel encoder. The algorithm detects abnormal 
data by adjusting the optimal weight of each sensor and eliminates the moving point 
cloud of dynamic objects but does not integrate camera data. Liu et al. [89] propose a 
multi-sensor SLAM fusion framework integrating GPS, IMU, lidar, and camera. Different 
sensor data are fused in a tightly coupled manner and then optimized by a factor graph. 
The algorithm reduces the error of the sensor due to accidental changes through the vis-
ual–lidar automatic calibration method and uses the target detection module to establish 
a semantic map, which provides rich map information for navigation and obstacle avoid-
ance. 

3.3. Lidar SLAM Algorithm Based on Deep Learning 

The combination of deep learning and the lidar SLAM algorithm is mainly applied 
to several modules in SLAM architecture, such as feature extraction and registration of 
point clouds, loop closure detection, and the construction of semantic maps. The method 
based on deep learning uses data-driven learning to obtain more accurate results than 
manual design [90]. The application of deep learning in feature extraction and loop clo-
sure detection improves the efficiency, accuracy, and robustness of the SLAM algorithm. 
Constructing semantic maps through deep learning methods can improve the ability of 
mobile robots to perceive the surrounding environment and adapt to different environ-
ments. 

Figure 10. Lidar–visual–inertial tightly coupled system architecture.



World Electr. Veh. J. 2025, 16, 56 20 of 29

To cope with fast motion, noise, and complex application scenarios, many re-
searchers have begun to integrate different types of sensors into the SLAM system [86].
RadarSLAM [87] is a SLAM system suitable for frequency-modulated continuous wave
radar. The algorithm uses radar to track the geometric structure reliably and compensates
for the motion distortion through joint optimization. It can also work stably under extreme
weather conditions such as heavy snow and fog. GR-LOAM [88] fuses the measurement
data of wheel encoder, lidar, and IMU in a tightly coupled way and estimates the pose
change of the robot through IMU and wheel encoder. The algorithm detects abnormal data
by adjusting the optimal weight of each sensor and eliminates the moving point cloud of
dynamic objects but does not integrate camera data. Liu et al. [89] propose a multi-sensor
SLAM fusion framework integrating GPS, IMU, lidar, and camera. Different sensor data
are fused in a tightly coupled manner and then optimized by a factor graph. The algorithm
reduces the error of the sensor due to accidental changes through the visual–lidar automatic
calibration method and uses the target detection module to establish a semantic map, which
provides rich map information for navigation and obstacle avoidance.

3.3. Lidar SLAM Algorithm Based on Deep Learning

The combination of deep learning and the lidar SLAM algorithm is mainly applied to
several modules in SLAM architecture, such as feature extraction and registration of point
clouds, loop closure detection, and the construction of semantic maps. The method based
on deep learning uses data-driven learning to obtain more accurate results than manual
design [90]. The application of deep learning in feature extraction and loop closure detection
improves the efficiency, accuracy, and robustness of the SLAM algorithm. Constructing
semantic maps through deep learning methods can improve the ability of mobile robots to
perceive the surrounding environment and adapt to different environments.

Traditional point cloud matching methods have achieved good matching results in
some scenes, but they have the problems of high requirements on initial values, poor
matching accuracy, and an inability to adapt to the whole scene. With the rapid develop-
ment of deep learning technology, researchers apply deep learning to point cloud feature
extraction and point cloud matching to solve the drawbacks of traditional point cloud
matching [91]. Sun et al. [92] innovatively propose an MLP_GCN module that combines
a multi-layer perceptron and a graph convolutional network. The MLP_GCN module is
integrated into the point cloud registration detector and descriptor. The detector is used
to extract key points, and the descriptor is used to describe the depth features of each key
point, which improves the accuracy of point cloud registration. Based on deep learning,
Poiesi et al. [93] propose a GeDi descriptor for point cloud registration. The deep learning
network uses a quaternion conversion module to ensure that the 3D descriptor can cope
with different scaling and rotation and has strong robustness. Zheng et al. [94] designed
a PBNet that combines a point cloud network with global optimization. The network
first uses the feature information of the target for coarse registration, then searches the
entire three-dimensional motion space and performs the branch and bound method and
iterative closest point method. PBNet reduces the influence of initial values on point cloud
registration, but there is a local optimal problem. Deep learning brings certain convenience
to SLAM and improves the accuracy and robustness of point cloud matching and feature
extraction. However, deep learning models require data for training and also consume
GPU resources [95].

Accurate loop closure detection can eliminate the cumulative error of the SLAM
algorithm and improve the accuracy of the algorithm. The traditional loop closure detection
is mostly detected by manually setting closed-loop features, which has the problems of
low recognition accuracy and large amounts of calculation. Compared with the method of
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manually designing loop closure detection features, deep learning can extract features with
high discrimination and improve the accuracy of the closed loop through a large amount of
data training and a reasonable network model [96].

In recent years, loop closure detection algorithms based on deep learning have been
continuously developed. DeLightLCD [97] is a deep and lightweight loop closure detection
neural network. The network includes a Siamese feature extraction module and a dual at-
tention difference module. Based on the dual attention feature difference network, a feature
difference map is generated to identify the difference between the two frame point clouds.
A fast selection method of closed-loop candidate points is used to extract closed-loop candi-
date points from a large number of lidar scanning sequences. The DeLightLCD can perform
efficient loop closure detection without pre-pose, but the input of the network must be
a two-dimensional depth image after point cloud conversion. Wang et al. [98] propose
a loop closure detection method based on a multi-scale point cloud feature transformer.
This method uses voxel sparse convolution to obtain the features of original point clouds
with different resolutions and uses a transformer network to establish the relationship
between different resolution features to realize multi-scale feature fusion and to obtain
global descriptors. This method uses the Euclidean distance between point cloud descrip-
tors to measure the similarity between point clouds and does not need to manually create
descriptors, which improves the detection efficiency. The Overlap-Transformer [99] is a
lightweight transformer network, which uses the distance image of a 3D point cloud pro-
jection and transformer attention mechanism to generate yaw angle invariant descriptors
for loop closure detection.

Semantic SLAM can accurately identify and classify target objects, and deep learning
is precisely the most advantageous object recognition method at present. Therefore, the
combination of deep learning and semantic SLAM has received extensive attention [100].
SuMa++ [101] uses the fully convolutional neural network to extract the semantic informa-
tion in the point cloud and combines the geometric information of the lidar point cloud to
improve the accuracy of pose estimation. The algorithm filters the point cloud of moving
objects through semantic segmentation and improves the accuracy of point cloud match-
ing. Wen et al. [102] study a semantic segmentation neural network architecture, Hybrid
CNN-LSTM, which combines the advantages of the CNN network and LSTM network.
The LSTM network is used to segment the point cloud image obtained by PointNet, and the
image block is input into the LSTM network according to the Hilbert curve sequence, which
improves the segmentation accuracy of the neural network for smaller targets, but the real-
time performance of the algorithm is poor. Li et al. [103] propose the neural radiation field
convolution (NeRFConv) method for large-scale point cloud semantic segmentation. The
algorithm clusters the features by learning the density distribution and adaptive weights
of the point cloud and preserves the spatial information and semantic features as much
as possible. Luo et al. [104] propose a multi-scale region relation feature segmentation
network, MS-RRFSegNet, for urban scenes. The original point cloud is reorganized by
uniform super voxels, which effectively reduces the computational complexity. The region
relation feature inference module based on super voxels is used to extract the local region
context information, and then the semantic segmentation point cloud map of the scene
is obtained.

4. Challenges of the Lidar SLAM Algorithm
Through the combing and analysis of different lidar SLAM algorithms, it can be

seen that the system framework and related theories of lidar SLAM have developed more
maturely, but, in practical applications, the process of realizing lidar SLAM technology
from theory to practice still faces many challenges.
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(1) Difficulty in fusing data from different sensors.
Relying on a single sensor to perceive the surrounding environment has certain limita-

tions that cannot meet the SLAM mapping algorithm in different scenarios. Reasonable
fusion of multi-sensor measurement data can improve the performance of the mapping
algorithm, but it is necessary to calibrate the relative pose transformation and timestamp
between different sensors before fusion. Due to the different measurement frequencies of
different sensors to problem arises that the data sampling time is not synchronized [105].
In the actual use process, the external parameters of different sensors will affect the relative
pose matrix due to mechanical deformation and changes in the external environment, which
makes it difficult to effectively synchronize the data of different sensors. Li et al. [106]
propose a method to calibrate the parameters between lidar and IMU in time and space.
By querying the accurate transformation on the continuous time trajectory, the deforma-
tion point and the time displacement point are modeled to realize the effective fusion of
sensor data.

(2) Inherent problems of lidar measurement.
When lidar is used to scan the surrounding environment and output a 3D point cloud,

a huge amount of data is often generated. Although a large amount of point cloud data
provides rich environmental information, it seriously affects the real-time performance
of the algorithm and brings challenges to the lidar SLAM algorithm. Lidar will distort
the scanning point cloud due to the rapid movement of the carrier, which will affect the
matching effect of the point cloud. Yang et al. [107] designed a point cloud distortion
correction method that combines lidar and a camera. The camera is used to provide dense
angular resolution for the lidar, and the probabilistic Kalman filter method is used to match
the real-time speed of the moving object with the correct point cloud to complete the point
cloud distortion correction. In an environment with sparse or repetitive features, due
to the limitation of the detection distance of the lidar, the point cloud scan matching is
mismatched, which, in turn, affects the accuracy of the algorithm pose estimation.

(3) Robustness in complex scenes.
Real-time localization is a very important problem in the lidar SLAM algorithm [108].

In the process of switching between indoor scenes and outdoor scenes, how to ensure
accurate positioning is a huge challenge for the algorithm. There are a large number of
dynamic objects in some scenes, such as vehicles, electric bicycles, pedestrians, and other
traffic participants [109]. The lidar SLAM algorithm needs to realize real-time detection
and tracking of these dynamic objects and separate them from static obstacles during
the construction of the map to ensure the accuracy and stability of the map [110]. DL-
SLOT [111] is a tightly coupled dynamic lidar SLAM method. The algorithm uses object
detection to identify point clouds of all potential dynamic objects and uses point clouds that
filter out dynamic objects for map construction. The state of the vehicle, stationary object,
and dynamic object is jointly estimated by the sliding window graph optimization method.

5. The Development Trend of Lidar SLAM Algorithm
In recent years, with the development of robot technology and the progress of sensor

technology, robot technology has been integrated into people’s daily lives. As a technical
support in the field of robotics, the development of SLAM technology is crucial to many
fields. This section summarizes the future development of lidar SLAM technology.

(1) Lightweight and miniaturization.
At present, sensors such as the multi-beam lidar, high-precision IMU, and differential

GPS positioning modules used in the lidar SLAM algorithm are expensive, which limits
the popular application of SLAM technology. Therefore, it is a development trend for the
lidar SLAM algorithm in the future to realize the stable operation of the lidar SLAM algo-
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rithm embedded or on small equipment and improve the popularization of its applicable
objects [112]. The purpose of the lidar SLAM algorithm is to realize the application of the
underlying motion module, such as navigation, teaching, and service. At the same time, the
SLAM algorithm also provides positioning and mapping functions for the upper module,
which does not consume a lot of computing resources [113]. The pursuit of lightweight
products and the miniaturization of the lidar SLAM algorithm application is a direction in
its future development process.

(2) Multi-source sensor information fusion.
In the face of a complex surrounding environment, multi-source information fusion

of different sensors is an inevitable trend in the lidar SLAM algorithm. Single-sensor
information has certain limitations and cannot meet the mapping needs of complex envi-
ronments [114]. To make up for the shortcomings of a single sensor, domestic and foreign
scholars have designed a variety of multi-sensor fusion algorithms to build high-precision
and highly robust maps. MSF-SLAM [115] is a multi-sensor fusion SLAM algorithm for
complex dynamic scenes. At the front end of the system, the lidar point cloud provides
three-dimensional information for the camera’s image feature points. Image-based moving
object detection can remove the moving point cloud in the lidar. At the system’s back end, a
multi-constraint factor graph of different sensors is constructed, and nonlinear optimization
is performed to obtain the system’s optimal state estimation. Many SLAM algorithms based
on multi-sensor fusion have been proposed, but related research is still one of the research
hotspots and development trends of the lidar SLAM algorithm.

(3) SLAM algorithm combined with the new sensor.
With the continuous development of sensor technology, more functional and efficient

sensors continue to appear. The appearance of new sensors can inject new vitality into the
further development of SLAM technology. The data acquired by new sensors occupy a
small amount of memory, are of high quality, and do not require much processing, which
can improve the operational efficiency of SLAM algorithms. For example, the Event Camera
is beginning to be used in the SLAM field with the advantages of low power consumption
and a high frame rate [116]. The use of new sensors provides more possibilities for the
development of lidar SLAM algorithms.

(4) Multi-robot collaborative SLAM algorithm.
The multi-robot collaborative SLAM algorithm is the current research hotspot and

development direction. The multi-robot collaborative SLAM is a collaborative operation of
multiple agents in an unknown environment. It exchanges information such as maps and
self-positioning obtained by each other through communication protocols to achieve rapid
perception of the environment, precise positioning, and map construction. However, multi-
robot collaborative SLAM technology has the problems of communication bandwidth
limitation and data sharing delay, which affects the real-time nature and accuracy of
collaborative mapping. The distributed multi-robot cooperative SLAM system should
have strong robustness and fault tolerance and be able to deal with the problems of single-
robot failure and network communication interruption. Therefore, designing a SLAM
algorithm with multi-sensor data fusion, distributed function, and coordinated allocation
of robot resources is one of the future development directions. At present, the multi-
robot cooperative SLAM algorithms with better performance include DiSCo-SLAM [117],
Swarm-SLAM [118], and LAMP 2.0 [119].

(5) SLAM algorithm combined with deep learning.
Combining deep learning with the lidar SLAM algorithm can improve the efficiency

and robustness of the system. Deep learning can be applied to feature extraction and
matching, semantic SLAM, and loop closure detection modules in lidar SLAM algorithms.
Deep learning improves the efficiency and matching accuracy of feature point recognition
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in the front-end matching of lidar point clouds [120]. The addition of semantic infor-
mation realizes the classification and labeling of point cloud objects and enriches map
information [121]. The loop closure detection combined with deep learning has signifi-
cantly improved accuracy, robustness, and intelligence. At present, there are still some
shortcomings in the SLAM algorithm based on deep learning. Deep learning requires a
lot of training data and GPU resources, and it is difficult to run in real time on embedded
platforms. In the future, the lidar SLAM algorithm based on deep learning is still a research
hotspot for many scholars.

6. Conclusions
The SLAM algorithm is an effective means for mobile robots to construct an unknown

environment map and obtain its pose information to achieve autonomous driving. It can
assist robots in performing tasks such as path planning, autonomous exploration, and
navigation. Starting from the system framework of lidar SLAM, this paper systematically
introduces each module of the lidar SLAM system, then expounds and summarizes the
mainstream lidar SLAM algorithm scheme, and, finally, discusses and summarizes the
challenges and future development directions of lidar SLAM. The conclusions of this paper
are as follows.

(1) Based on the lidar SLAM algorithm, the overall system architecture of SLAM
is introduced. The functions of front-end matching, loop closure detection, back-end
optimization, and map construction modules are described in detail, and the algorithms
used are summarized.

(2) With the development of lidar technology, lidar SLAM algorithms have also
achieved rich research results. The classical SLAM algorithm schemes are sorted out
from the pure lidar SLAM algorithm, multi-sensor fusion SLAM, and deep learning SLAM.

(3) The algorithm scheme of lidar SLAM has been developed maturely, but there
are still some defects in its practical use, such as the difficulty of the fusion of different
sensor data, the inherent defects of lidar measurement, and the lack of robustness in
complex scenes. Lightweight, multi-sensor data fusion, in combination with new sensors,
multi-robot collaboration, and deep learning, will be the main directions for the future
development of lidar SLAM algorithms.

Author Contributions: Conceptualization, Y.L. (Yong Li) and J.A.; methodology, J.A.; software, J.A.
and Y.L. (Yong Li); validation, J.A.; formal analysis, N.H. and Y.L. (Yong Li); investigation, J.A. and Y.L.
(Yong Li); resources, Z.H. and Z.C.; data curation, J.A. and Y.Q.; writing—original draft preparation,
J.A.; writing—review and editing, J.A. and Y.L. (Yong Li); visualization, Y.Q. and Z.C; supervision,
Z.H. and Y.L. (Yanbo Li); project administration, N.H. and Y.L. (Yong Li); funding acquisition, Y.L.
(Yong Li). All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by National Natural Science Foundation of China (Grant No.
51705213), State Key Laboratory of Intelligent Green Vehicle and Mobility (Grant No. KFY2409), Key
Laboratory for Crop Production and Smart Agriculture of Yunnan Province (Grant No. 2023ZHNY02),
Key Laboratory of Agricultural Equipment Technology for Hilly and Mountainious Areas, Ministry
of Agriculture and Rural Affairs (Grant No. 2023KLOP05), Opening Project of Automotive New
Technique of Anhui Province Engineering Technology Research Center (Grant No. QCKJ202201A).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: Yanbo Li, Zhenyu Han, and Zishan Chen are employees of Lingyun Industrial
Co., Ltd. The paper reflects the views of the scientists, and not the company.



World Electr. Veh. J. 2025, 16, 56 25 of 29

References
1. Cai, Y.; Lu, Z.; Wang, H.; Chen, L.; Li, Y. A lightweight feature map creation method for intelligent vehicle localization in urban

road environments. IEEE Trans. Instrum. Meas. 2022, 71, 8503115. [CrossRef]
2. Jin, Y.; Liu, J.; Xu, Z.; Yuan, S.; Li, P.; Wang, J. Development status and trend of agricultural robot technology. Int. J. Agric. Biol.

Eng. 2021, 14, 1–19. [CrossRef]
3. Chen, J.; Song, J.; Guan, Z.; Lian, Y. Measurement of the distance from grain divider to harvesting boundary based on dynamic

regions of interest. Int. J. Agric. Biol. Eng. 2021, 14, 226–232. [CrossRef]
4. Jiang, Z.; Gao, X.; Li, Y.; Wang, H.; Zhang, Y.; Fang, X. Multilayer map construction and vision-only multi-scale localization for

intelligent vehicles in underground parking. Meas. Sci. Technol. 2022, 33, 115021. [CrossRef]
5. Zhang, X.; Yan, Y.; Liu, Y.; Yuan, C. Vision detection method of car body relative parking position based on close-range images of

binocular lens. J. Jiangsu Univ. (Nat. Sci. Ed.) 2023, 44, 262–269.
6. Rao, Z.; Cai, Y.; Wang, H.; Chen, L.; Li, Y. A multi-stage model for bird’s eye view prediction based on stereo-matching model and

RGB-D semantic segmentation. IET Intell. Transp. Syst. 2023, 18, 2552–2564. [CrossRef]
7. Li, S.; Sun, X.; Zhang, M. Vehicle recognition technology at urban intersection based on fusion of LiDAR and camera. J. Jiangsu

Univ. (Nat. Sci. Ed.) 2023, 45, 621–628.
8. Wu, C.; Li, X. Autonomous navigation method of orchard robot based on single laser. J. Jiangsu Univ. (Nat. Sci. Ed.) 2023, 44,

530–539.
9. Yang, S.; Dai, Z.; Yang, X.; Tang, L. Bridge state evaluation and numerical simulation analysis based on millimeter-wave radar

measurement and control. J. Jiangsu Univ. (Nat. Sci. Ed.) 2023, 44, 606–613.
10. Yuan, C.; Zhu, H.; He, Y.; Jie, S.; Chen, L. Autonomous navigation algorithm for intelligent vehicle in weak GPS environment. J.

Jiangsu Univ. (Nat. Sci. Ed.) 2023, 44, 22–28.
11. Kazerouni, I.A.; Fitzgerald, L.; Dooly, G.; Toal, D. A survey of state-of-the-art on visual SLAM. Expert Syst. Appl. 2022, 205, 117734.

[CrossRef]
12. Zhu, J.; Li, H.; Zhang, T. Camera, LiDAR, and IMU based multi-sensor fusion SLAM: A survey. Tsinghua Sci. Technol. 2023, 29,

415–429. [CrossRef]
13. Yarovoi, A.; Cho, Y.K. Review of simultaneous localization and mapping (SLAM) for construction robotics applications. Autom.

Constr. 2024, 162, 105344. [CrossRef]
14. Saleem, H.; Malekian, R.; Munir, H. Neural network-based recent research developments in SLAM for autonomous ground

vehicles: A review. IEEE Sens. J. 2023, 23, 13829–13858. [CrossRef]
15. Chen, S.; Zhou, B.; Jiang, C.; Xue, W.; Li, Q. A lidar/visual slam backend with loop closure detection and graph optimization.

Remote Sens. 2021, 13, 2720. [CrossRef]
16. Best, P.J. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Vis. 1992, 14, 239–256.
17. Chen, Y.; Medioni, G. Object modelling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155. [CrossRef]
18. Censi, A. An ICP variant using a point-to-line metric. In Proceedings of the 2008 IEEE International Conference on Robotics and

Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 19–25.
19. Low, K.L. Linear Least-Squares Optimization for Point-to-Plane icp Surface Registration; University of North Carolina: Chapel Hill,

NC, USA, 2004; Volume 4, pp. 1–3.
20. Chen, Z.; Xu, Y.; Yuan, S.; Xie, L. iG-LIO: An incremental Gicp-based tightly-coupled LiDAR-inertial odometry. IEEE Robot.

Autom. Lett. 2024, 9, 1883–1890. [CrossRef]
21. Serafin, J.; Grisetti, G. NICP: Dense normal based point cloud registration. In Proceedings of the 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 742–749.
22. Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern Anal.

Mach. Intell. 2015, 38, 2241–2254. [CrossRef]
23. Kim, H.; Song, S.; Myung, H. GP-ICP: Ground plane ICP for mobile robots. IEEE Access 2019, 7, 76599–76610. [CrossRef]
24. Wang, J.; Xu, M.; Foroughi, F.; Dai, D.; Chen, Z. Fastergicp: Acceptance-rejection sampling based 3d lidar odometry. IEEE Robot.

Autom. Lett. 2021, 7, 255–262. [CrossRef]
25. Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. In Robotics: Science and Systems; MIT Press: Cambridge,

MA, USA, 2014; Volume 2, pp. 1–9.
26. Oelsch, M.; Karimi, M.; Steinbach, E. R-LOAM: Improving LiDAR odometry and mapping with point-to-mesh features of a

known 3D reference object. IEEE Robot. Autom. Lett. 2021, 6, 2068–2075. [CrossRef]
27. Guo, H.; Zhu, J.; Chen, Y. E-LOAM: LiDAR odometry and mapping with expanded local structural information. IEEE Trans.

Intell. Veh. 2022, 8, 1911–1921. [CrossRef]
28. Zuo, C.; Feng, Z.; Xiao, X. CMDS-SLAM: Real-time efficient centralized multi-robot dense surfel SLAM. Meas. Sci. Technol. 2024,

35, 116303. [CrossRef]

https://doi.org/10.1109/TIM.2022.3181903
https://doi.org/10.25165/j.ijabe.20211404.6821
https://doi.org/10.25165/j.ijabe.20211404.6138
https://doi.org/10.1088/1361-6501/ac87c6
https://doi.org/10.1049/itr2.12367
https://doi.org/10.1016/j.eswa.2022.117734
https://doi.org/10.26599/TST.2023.9010010
https://doi.org/10.1016/j.autcon.2024.105344
https://doi.org/10.1109/JSEN.2023.3273913
https://doi.org/10.3390/rs13142720
https://doi.org/10.1016/0262-8856(92)90066-C
https://doi.org/10.1109/LRA.2024.3349915
https://doi.org/10.1109/TPAMI.2015.2513405
https://doi.org/10.1109/ACCESS.2019.2921676
https://doi.org/10.1109/LRA.2021.3124072
https://doi.org/10.1109/LRA.2021.3060413
https://doi.org/10.1109/TIV.2022.3151665
https://doi.org/10.1088/1361-6501/ad64fa


World Electr. Veh. J. 2025, 16, 56 26 of 29

29. Zhang, H.; Xiao, R.; Li, J.; Yan, C.; Tang, H. A High-Precision LiDAR-Inertial Odometry via Invariant Extended Kalman Filtering
and Efficient Surfel Mapping. IEEE Trans. Instrum. Meas. 2024, 73, 8502911. [CrossRef]

30. Liu, H.; Gong, J.; Zhang, Y. Extraction method of small agricultural AGV navigation baseline based on crop row characteristics. J.
Jiangsu Univ. (Nat. Sci. Ed.) 2022, 43, 296–301.

31. Fan, Y.; Shi, L.; Su, W.; Yan, H. Lane detection algorithm based on PINet + RESA network. J. Jiangsu Univ. (Nat. Sci. Ed.) 2023, 44,
373–378.

32. He, Y.; Yang, J.; Hou, X.; Pang, S.; Chen, J. ICP registration with DCA descriptor for 3D point clouds. Opt. Express 2021, 29,
20423–20439. [CrossRef] [PubMed]

33. Biber, P.; Straßer, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 27–31 October 2003;
Volume 3, pp. 2743–2748.

34. Das, A.; Waslander, S.L. Scan registration using segmented region growing NDT. Int. J. Robot. Res. 2014, 33, 1645–1663. [CrossRef]
35. Shen, Y.; Zhang, B.; Wang, J.; Zhang, Y.; Wu, Y.; Chen, Y.; Chen, D. MI-NDT: Multi-scale Iterative Normal Distribution Transform

for Registering Large-scale Outdoor Scans. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5705513. [CrossRef]
36. Gupta, H.; Lilienthal, A.J.; Andreasson, H.; Kurtser, P. NDT-6D for color registration in agri-robotic applications. J. Field Robot.

2023, 40, 1603–1619. [CrossRef]
37. Chen, S.; Ma, H.; Jiang, C.; Zhou, B.; Xue, W.; Xiao, Z.; Li, Q. NDT-LOAM: A real-time LiDAR odometry and mapping with

weighted NDT and LFA. IEEE Sens. J. 2021, 22, 3660–3671. [CrossRef]
38. Wang, Q.; Zhang, J.; Liu, Y.; Zhang, X. Point Cloud Registration Algorithm Based on Combination of NDT and ICP. Comput. Eng.

Appl. 2020, 56, 88–95.
39. Yang, J.; Wang, C.; Luo, W.; Zhang, Y.; Chang, B.; Wu, M. Research on point cloud registering method of tunneling roadway based

on 3D NDT-ICP algorithm. Sensors 2021, 21, 4448. [CrossRef] [PubMed]
40. Jiang, H.; Chen, Y.; Shen, Q.; Yin, C.; Cai, J. Semantic closed-loop based visual mapping algorithm for automated valet parking.

Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 238, 2091–2104. [CrossRef]
41. Tomono, M. Loop detection for 3D LiDAR SLAM using segment-group matching. Adv. Robot. 2020, 34, 1530–1544. [CrossRef]
42. Meng, Q.; Guo, H.; Zhao, X.; Cao, D.; Chen, H. Loop-closure detection with a multiresolution point cloud histogram mode in

lidar odometry and mapping for intelligent vehicles. IEEE/ASME Trans. Mechatron. 2021, 26, 1307–1317. [CrossRef]
43. Shang, G.; Jiang, K.; Han, J.; Ni, W. An environmental fruit detection method for light weight orchard. J. Jiangsu Univ. (Nat. Sci.

Ed.) 2024, 45, 46–52.
44. Liu, L.; Bai, Y.; Wang, Y.; Sun, Z. Point cloud registration method based on 3DSIFT and BSHOT features. Laser Infrared 2021, 51,

848–852.
45. Song, S.; Shi, X.; Ma, C.; Mei, X. MF-LIO: Integrating multi-feature LiDAR inertial odometry with FPFH loop closure in SLAM.

Meas. Sci. Technol. 2024, 35, 086308. [CrossRef]
46. Gao, R.; Li, Y.; Li, B.; Li, G. FELC-SLAM: Feature extraction and loop closure optimized lidar SLAM system. Meas. Sci. Technol.

2024, 35, 115112. [CrossRef]
47. Wang, Z.; Xie, D.; Wu, Y.; Wu, H.; Qi, X.; Huang, D.; Zhong, R. Mercator Descriptor: A Novel Global Descriptor for Loop Closure

Detection in LiDAR SLAM. IEEE Sens. J. 2024, 24, 35730–35742. [CrossRef]
48. Kim, G.; Kim, A. Scan context: Egocentric spatial descriptor for place recognition within 3d point cloud map. In Proceedings

of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018;
pp. 4802–4809.

49. Zhang, X.; Zhang, H.; Qian, C.; Li, B.; Cao, Y. A LiDAR-intensity SLAM and loop closure detection method using an intensity
cylindrical-projection shape context descriptor. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103419. [CrossRef]

50. Li, L.; Kong, X.; Zhao, X.; Huang, T.; Liu, Y. Semantic scan context: A novel semantic-based loop-closure method for LiDAR
SLAM. Auton. Robot. 2022, 46, 535–551. [CrossRef]

51. Qin, Y.; Zhang, C. Optimization of automatic navigation control system of unmanned working ship. J. Jiangsu Univ. (Nat. Sci. Ed.)
2024, 45, 417–425.

52. Zhou, Z.; Wang, D.; Xu, B. A multi-innovation with forgetting factor based EKF-SLAM method for mobile robots. Assem. Autom.
2021, 41, 71–78. [CrossRef]

53. Bahraini, M. On the efficiency of SLAM using adaptive unscented Kalman filter. Iran. J. Sci. Technol. Trans. Mech. Eng. 2020, 44,
727–735. [CrossRef]

54. Xu, Z.; Li, H.; Zi, Y.; Guo, S.; Cui, G. An ESKF Based SLAM Approach with Millimeter Wave Radar and IMU. In Proceedings of
the International Conference on Autonomous Unmanned Systems, Xi’an, China, 23–25 September 2022; pp. 2301–2310.

55. Zhang, Z.; Liang, J.; Zhang, Z.; Chen, X.; Chen, L.; Wei, W.; Li, H. Cooperative tracking of multiple maneuvering targets based on
AIMM-PF. J. Jiangsu Univ. (Nat. Sci. Ed.) 2024, 45, 434–440.

https://doi.org/10.1109/TIM.2024.3382751
https://doi.org/10.1364/OE.425622
https://www.ncbi.nlm.nih.gov/pubmed/34266132
https://doi.org/10.1177/0278364914539404
https://doi.org/10.1109/TGRS.2024.3437162
https://doi.org/10.1002/rob.22194
https://doi.org/10.1109/JSEN.2021.3135055
https://doi.org/10.3390/s21134448
https://www.ncbi.nlm.nih.gov/pubmed/34209739
https://doi.org/10.1177/09544070231167639
https://doi.org/10.1080/01691864.2020.1824809
https://doi.org/10.1109/TMECH.2021.3062647
https://doi.org/10.1088/1361-6501/ad4385
https://doi.org/10.1088/1361-6501/ad6e0c
https://doi.org/10.1109/JSEN.2024.3464855
https://doi.org/10.1016/j.jag.2023.103419
https://doi.org/10.1007/s10514-022-10037-w
https://doi.org/10.1108/AA-01-2020-0002
https://doi.org/10.1007/s40997-019-00294-z


World Electr. Veh. J. 2025, 16, 56 27 of 29

56. Gao, J.; Sha, J.; Wang, Y.; Wang, X.; Tan, C. A fast and stable GNSS-LiDAR-inertial state estimator from coarse to fine by iterated
error-state Kalman filter. Robot. Auton. Syst. 2024, 175, 104675. [CrossRef]

57. Júnior, G.P.C.; Rezende, A.M.; Miranda, V.R.; Fernandes, R.; Azpúrua, H.; Neto, A.A.; Freitas, G.M. EKF-LOAM: An adaptive
fusion of LiDAR SLAM with wheel odometry and inertial data for confined spaces with few geometric features. IEEE Trans.
Autom. Sci. Eng. 2022, 19, 1458–1471. [CrossRef]

58. Xu, W.; Zhang, F. Fast-lio: A fast, robust lidar-inertial odometry package by tightly-coupled iterated kalman filter. IEEE Robot.
Autom. Lett. 2021, 6, 3317–3324. [CrossRef]

59. Lang, F.; Ming, R.; Yuan, Z.; Xu, X.; Wu, K.; Yang, X. Adaptive Global Graph Optimization for LiDAR-Inertial SLAM. IEEE Robot.
Autom. Lett. 2024, 9, 9868–9875. [CrossRef]

60. Du, T.; Shi, S.; Zeng, Y.; Yang, J.; Guo, L. An integrated INS/LiDAR odometry/polarized camera pose estimation via factor graph
optimization for sparse environment. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [CrossRef]

61. Guo, J.; He, B. Improved iSAM based on flexible re-linearization threshold and error learning model for AUV in large scale areas.
IEEE Trans. Intell. Transp. Syst. 2020, 22, 7678–7687. [CrossRef]

62. Zhao, C.; Ma, W.; Su, D.; Xu, H.; Tan, Y. Development of harvesting and handling robot system for hilly citrus orchard. J. Jiangsu
Univ. (Nat. Sci. Ed.) 2024, 45, 167–172.

63. Sousa, R.; Sobreira, H.; Moreira, A. A systematic literature review on long-term localization and mapping for mobile robots. J.
Field Robot. 2023, 40, 1245–1322. [CrossRef]

64. Tsai, T.C.; Peng, C.C. Ground segmentation based point cloud feature extraction for 3D LiDAR SLAM enhancement. Measurement
2024, 236, 114890. [CrossRef]

65. Ruetz, F.; Hernández, E.; Pfeiffer, M.; Oleynikova, H.; Cox, M.; Lowe, T.; Borges, P. Ovpc mesh: 3d free-space representation
for local ground vehicle navigation. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),
Montreal, QC, Canada, 20–24 May 2019; pp. 8648–8654.

66. Cai, Y.; Kong, F.; Ren, Y.; Zhu, F.; Lin, J.; Zhang, F. Occupancy grid mapping without ray-casting for high-resolution LiDAR
sensors. IEEE Trans. Robot. 2024, 40, 172–192. [CrossRef]

67. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Markham, A. Learning semantic segmentation of large-scale point clouds
with random sampling. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 8338–8354. [CrossRef] [PubMed]

68. Lee, S.; Eoh, G.; Lee, B. Relational FastSLAM: An improved Rao-Blackwellized particle filtering framework using particle swarm
characteristics. Robotica 2016, 34, 1282–1296. [CrossRef]

69. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans.
Robot. 2007, 23, 34–46. [CrossRef]

70. Konolige, K.; Grisetti, G.; Kümmerle, R.; Burgard, W.; Limketkai, B.; Vincent, R. Efficient sparse pose adjustment for 2D mapping.
In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October
2010; pp. 22–29.

71. Kohlbrecher, S.; Von Stryk, O.; Meyer, J.; Klingauf, U. A flexible and scalable SLAM system with full 3D motion estimation. In
Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1–5 November
2011; pp. 155–160.

72. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278.

73. Shan, T.; Englot, B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In
Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 4758–4765.

74. Lin, J.; Zhang, F. Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV. In
Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 3126–3131.

75. Wang, H.; Wang, C.; Xie, L. Intensity-slam: Intensity assisted localization and mapping for large scale environment. IEEE Robot.
Autom. Lett. 2021, 6, 1715–1721. [CrossRef]

76. Li, Z.; Ma, L.; Han, C.; Wang, S. Obstacle detection method of lawn mowing robot based on multi-sensor fusion. J. Jiangsu Univ.
(Nat. Sci. Ed.) 2024, 45, 160–166.

77. Ye, H.; Chen, Y.; Liu, M. Tightly coupled 3d lidar inertial odometry and mapping. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3144–3150.

78. Pan, H.; Liu, D.; Ren, J.; Huang, T.; Yang, H. LiDAR-IMU Tightly-Coupled SLAM Method Based on IEKF and Loop Closure
Detection. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2024, 17, 6986–7001. [CrossRef]

79. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
NV, USA, 24 October–24 January 2020; pp. 5135–5142.

https://doi.org/10.1016/j.robot.2024.104675
https://doi.org/10.1109/TASE.2022.3169442
https://doi.org/10.1109/LRA.2021.3064227
https://doi.org/10.1109/LRA.2024.3460413
https://doi.org/10.1109/TIM.2022.3156976
https://doi.org/10.1109/TITS.2020.3007149
https://doi.org/10.1002/rob.22170
https://doi.org/10.1016/j.measurement.2024.114890
https://doi.org/10.1109/TRO.2023.3323936
https://doi.org/10.1109/TPAMI.2021.3083288
https://www.ncbi.nlm.nih.gov/pubmed/34033533
https://doi.org/10.1017/S0263574714002264
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/LRA.2021.3059567
https://doi.org/10.1109/JSTARS.2024.3357536


World Electr. Veh. J. 2025, 16, 56 28 of 29

80. Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. Fast-lio2: Fast direct lidar-inertial odometry. IEEE Trans. Robot. 2022, 38, 2053–2073.
[CrossRef]

81. Li, C.; Jiang, H.; Wang, C.; Ma, S. Estimation method of vehicle position and attitude based on sensor information fusion. J.
Jiangsu Univ. (Nat. Sci. Ed.) 2022, 43, 636–644.

82. Zhang, J.; Singh, S. Visual-lidar odometry and mapping: Low-drift, robust, and fast. In Proceedings of the 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2174–2181.

83. Shan, T.; Englot, B.; Ratti, C.; Rus, D. Lvi-sam: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;
pp. 5692–5698.

84. Lin, J.; Zheng, C.; Xu, W.; Zhang, F. R2LIVE: A Robust, Real-Time, LiDAR-Inertial-Visual Tightly-Coupled State Estimator and
Mapping. IEEE Robot. Autom. Lett. 2021, 6, 7469–7476. [CrossRef]

85. Lin, J.; Zhang, F. R3LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping
package. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27
May 2022; pp. 10672–10678.

86. Liu, J.; Hou, G. Application prospect of voice technology in agricultural intelligence. J. Jiangsu Univ. (Nat. Sci. Ed.) 2021, 42,
540–545.

87. Hong, Z.; Petillot, Y.; Wallace, A.; Wang, S. RadarSLAM: A robust simultaneous localization and mapping system for all weather
conditions. Int. J. Robot. Res. 2022, 41, 519–542. [CrossRef]

88. Su, Y.; Wang, T.; Shao, S.; Yao, C.; Wang, Z. GR-LOAM: LiDAR-based sensor fusion SLAM for ground robots on complex terrain.
Robot. Auton. Syst. 2021, 140, 103759. [CrossRef]

89. Liu, X.; Wen, S.; Jiang, Z.; Tian, W.; Qiu, T.Z.; Othman, K. A multi-sensor fusion with automatic vision-LiDAR calibration based
on Factor graph joint optimization for SLAM. IEEE Trans. Instrum. Meas. 2023, 72, 9513809. [CrossRef]

90. Ma, Z.; Jiang, H.; Ma, S.; Li, Y. Intelligent Parking Control Method Based on Multi-Source Sensory Information Fusion and
End-to-End Deep Learning. Appl. Sci. 2023, 13, 5003. [CrossRef]

91. Niu, J.; Qian, K.; Bu, X. Place recognition method based on YOLOv3 and deep features. J. Jiangsu Univ. (Nat. Sci. Ed.) 2021, 42,
733–737.

92. Sun, L.; Zhang, Z.; Zhong, R.; Chen, D.; Zhang, L.; Zhu, L.; Wang, Y. A weakly supervised graph deep learning framework for
point cloud registration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [CrossRef]

93. Poiesi, F.; Boscaini, D. Learning general and distinctive 3D local deep descriptors for point cloud registration. IEEE Trans. Pattern
Anal. Mach. Intell. 2022, 45, 3979–3985. [CrossRef] [PubMed]

94. Zheng, Y.; Li, Y.; Yang, S.; Lu, H. Global-PBNet: A novel point cloud registration for autonomous driving. IEEE Trans. Intell.
Transp. Syst. 2022, 23, 22312–22319. [CrossRef]

95. Liu, W.; Hu, J.; Liu, J.; Yue, R.; Zhang, T.; Yao, M.; Li, J. Method for the navigation line recognition of the ridge without crops via
machine vision. Int. J. Agric. Biol. Eng. 2024, 17, 230–239.

96. Wang, W.; Luo, S.; Geng, G.; Liu, J. Pedestrian trajectory and intention estimation under low brightness based on human key
points. J. Jiangsu Univ. (Nat. Sci. Ed.) 2022, 43, 400–406.

97. Xiang, H.; Zhu, X.; Shi, W.; Fan, W.; Chen, P.; Bao, S. Delightlcd: A deep and lightweight network for loop closure detection in
lidar slam. IEEE Sens. J. 2022, 22, 20761–20772. [CrossRef]

98. Wang, S.; Zheng, D.; Li, Y. LiDAR-SLAM loop closure detection based on multi-scale point cloud feature transformer. Meas. Sci.
Technol. 2023, 35, 036305. [CrossRef]

99. Ma, J.; Zhang, J.; Xu, J.; Ai, R.; Gu, W.; Chen, X. Overlaptransformer: An efficient and yaw-angle-invariant transformer network
for lidar-based place recognition. IEEE Robot. Autom. Lett. 2022, 7, 6958–6965. [CrossRef]

100. Li, Y.; Feng, F.; Cai, Y.; Li, Z.; Sotelo, M.A. Localization for intelligent vehicles in underground car parks based on semantic
information. IEEE Trans. Intell. Transp. Syst. 2023, 25, 1317–1332. [CrossRef]

101. Chen, X.; Milioto, A.; Palazzolo, E.; Giguere, P.; Behley, J.; Stachniss, C. Suma++: Efficient lidar-based semantic slam. In
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 4530–4537.

102. Wen, S.; Wang, T.; Tao, S. Hybrid CNN-LSTM architecture for LiDAR point clouds semantic segmentation. IEEE Robot. Autom.
Lett. 2022, 7, 5811–5818. [CrossRef]

103. Li, W.; Zhan, L.; Min, W.; Zou, Y.; Huang, Z.; Wen, C. Semantic Segmentation of Point Cloud With Novel Neural Radiation Field
Convolution. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6501705. [CrossRef]

104. Luo, H.; Chen, C.; Fang, L.; Khoshelham, K.; Shen, G. MS-RRFSegNet: Multiscale regional relation feature segmentation network
for semantic segmentation of urban scene point clouds. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8301–8315. [CrossRef]

105. Fu, X.; He, Z.; Huang, B.; Pei, B.; Yang, F. Slope identification algorithm based on multi-information data fusion filtering. J. Jiangsu
Univ. (Nat. Sci. Ed.) 2021, 42, 173–179.

https://doi.org/10.1109/TRO.2022.3141876
https://doi.org/10.1109/LRA.2021.3095515
https://doi.org/10.1177/02783649221080483
https://doi.org/10.1016/j.robot.2021.103759
https://doi.org/10.1109/TIM.2023.3323964
https://doi.org/10.3390/app13085003
https://doi.org/10.1109/TGRS.2022.3145474
https://doi.org/10.1109/TPAMI.2022.3175371
https://www.ncbi.nlm.nih.gov/pubmed/35576421
https://doi.org/10.1109/TITS.2022.3153133
https://doi.org/10.1109/JSEN.2022.3206506
https://doi.org/10.1088/1361-6501/ad147a
https://doi.org/10.1109/LRA.2022.3178797
https://doi.org/10.1109/TITS.2023.3320088
https://doi.org/10.1109/LRA.2022.3153899
https://doi.org/10.1109/LGRS.2023.3307421
https://doi.org/10.1109/TGRS.2020.2985695


World Electr. Veh. J. 2025, 16, 56 29 of 29

106. Li, S.; Wang, L.; Li, J.; Tian, B.; Chen, L.; Li, G. 3D LiDAR/IMU calibration based on continuous-time trajectory estimation in
structured environments. IEEE Access 2021, 9, 138803–138816. [CrossRef]

107. Yang, W.; Gong, Z.; Huang, B.; Hong, X. Lidar with velocity: Correcting moving objects point cloud distortion from oscillating
scanning lidars by fusion with camera. IEEE Robot. Autom. Lett. 2022, 7, 8241–8248. [CrossRef]

108. Ma, Z.; Yang, S.; Li, J.; Qi, J. Research on slam localization algorithm for orchard dynamic vision based on YOLOD-SLAM2.
Agriculture 2024, 14, 1622. [CrossRef]

109. Tian, L.; Jin, J.; Zheng, Q. Road scene pedestrian detection based on detection-enhanced YOLOv3-tiny. J. Jiangsu Univ. (Nat. Sci.
Ed.) 2024, 45, 441–448.

110. Gong, J.; Chen, T.; Zhang, Y.; Lan, Y. An improved interframe differential target detection and tracking algorithm based on
multi-region information fusion constraints. J. Jiangsu Univ. (Nat. Sci. Ed.) 2022, 43, 302–309.

111. Tian, X.; Zhu, Z.; Zhao, J.; Tian, G.; Ye, C. Dl-slot: Tightly-coupled dynamic lidar slam and 3d object tracking based on collaborative
graph optimization. IEEE Trans. Intell. Veh. 2023, 9, 1017–1027. [CrossRef]

112. Zhang, T.; Zhou, J.; Liu, W.; Yue, R.; Shi, J.; Zhou, C.; Hu, J. SN-CNN: A Lightweight and Accurate Line Extraction Algorithm for
Seedling Navigation in Ridge-Planted Vegetables. Agriculture 2024, 14, 1446. [CrossRef]

113. Yuan, C.; Song, J.; He, Y.; Jie, S.; Chen, L.; Weng, S. Active collision avoidance algorithm of autonomous vehicle based on
pedestrian trajectory prediction. J. Jiangsu Univ. (Nat. Sci. Ed.) 2021, 42, 1–8.

114. Ren, X.; Duan, N.; Cheng, Y.; Miao, Z. Statistics method of basic seedling based on machine vision. J. Jiangsu Univ. (Nat. Sci. Ed.)
2022, 43, 191–194.

115. Lv, X.; He, Z.; Yang, Y.; Nie, J.; Dong, Z.; Wang, S.; Gao, M. MSF-SLAM: Multi-Sensor-Fusion-Based Simultaneous Localization
and Mapping for Complex Dynamic Environments. IEEE Trans. Intell. Transp. Syst. 2024, 25, 19699–19713. [CrossRef]

116. Cui, M.; Zhu, Y.; Liu, Y.; Liu, Y.; Chen, G.; Huang, K. Dense depth-map estimation based on fusion of event camera and sparse
LiDAR. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [CrossRef]

117. Huang, Y.; Shan, T.; Chen, F.; Englot, B. DiSCo-SLAM: Distributed scan context-enabled multi-robot lidar slam with two-stage
global-local graph optimization. IEEE Robot. Autom. Lett. 2021, 7, 1150–1157. [CrossRef]

118. Lajoie, P.Y.; Beltrame, G. Swarm-slam: Sparse decentralized collaborative simultaneous localization and mapping framework for
multi-robot systems. IEEE Robot. Autom. Lett. 2023, 9, 475–482. [CrossRef]

119. Chang, Y.; Ebadi, K.; Denniston, C.E.; Ginting, M.F.; Rosinol, A.; Reinke, A.; Carlone, L. LAMP 2.0: A robust multi-robot
SLAM system for operation in challenging large-scale underground environments. IEEE Robot. Autom. Lett. 2022, 7, 9175–9182.
[CrossRef]

120. Yu, Q.; Wang, K.; Wang, H. A multi-scale YOLOv3 detection algorithm of road scene object. J. Jiangsu Univ. (Nat. Sci. Ed.) 2021,
42, 628–633.

121. Wang, L.; Mou, C. Few shot semantic segmentation algorithm based on meta-learning. J. Jiangsu Univ. (Nat. Sci. Ed.) 2024, 45,
574–580.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2021.3114618
https://doi.org/10.1109/LRA.2022.3187506
https://doi.org/10.3390/agriculture14091622
https://doi.org/10.1109/TIV.2023.3317308
https://doi.org/10.3390/agriculture14091446
https://doi.org/10.1109/TITS.2024.3451996
https://doi.org/10.1109/TIM.2022.3144229
https://doi.org/10.1109/LRA.2021.3138156
https://doi.org/10.1109/LRA.2023.3333742
https://doi.org/10.1109/LRA.2022.3191204

	Introduction 
	Lidar SLAM System Architecture 
	Scan Matching 
	ICP-Based Matching Algorithm 
	Geometric Feature-Based Matching Algorithm 
	Mathematical Feature-Based Matching Algorithm 

	Closed Loop Detection 
	Back-End Optimization 
	Algorithm Based on Filtering 
	Algorithm Based on Graph Optimization 

	Map Construction 
	Dynamic Point Cloud Recognition 

	SLAM Algorithm Scheme Based on Lidar 
	SLAM Algorithm Based on Pure Lidar 
	Lidar SLAM Algorithm Based on Multi-Sensor Fusion 
	Lidar SLAM Algorithm Based on Deep Learning 

	Challenges of the Lidar SLAM Algorithm 
	The Development Trend of Lidar SLAM Algorithm 
	Conclusions 
	References

