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Abstract: As the world transitions towards sustainable transportation, the advancement
of electric vehicles (EVs) has become imperative. Wireless power transfer (WPT) tech-
nology presents a promising solution to enhance the convenience and efficiency of EV
charging while alleviating the challenges associated with traditional wired systems. This
paper conducts an in-depth exploration of WPT technologies for EVs, focusing on their
theoretical foundations, practical implementation, optimization strategies, development
trends, and limitations. The theoretical principles of wireless charging are first elucidated,
categorizing them into near-field methods, such as inductive and capacitive charging, and
far-field methods, including microwave and laser-based charging. A comparative analysis
reveals the advantages and limitations inherent to each technology. The implementation
section examines various charging strategies, encompassing stationary, dynamic, and
quasi-dynamic wireless charging, assessing their feasibility and effectiveness in practical
applications. Furthermore, optimization techniques aimed at enhancing WPT system per-
formance are examined in depth, with particular emphasis on coil structure optimizations,
anti-misalignment solutions, compensation topology optimizations, modulation strategy
optimizations, and parameter identifications. The discussion section outlines current devel-
opment trends in wireless charging technologies for EVs, highlighting the limitations that
hinder the widespread adoption of wireless charging technologies in the EV market. Finally,
potential research directions and the implications of wireless charging technology on the
development of EVs are summarized. This critical review aims to provide valuable insights
for researchers and practitioners dedicated to advancing the field of wireless charging
for EVs.

Keywords: wireless charging; electrical vehicles; inductive power transfer; capacitive
power transfer; stationary-charging; dynamic-charging

1. Introduction
The rapid proliferation of electric vehicles (EVs) signifies a profound transformation

within the automotive industry, driven by an urgent need for sustainable transportation
solutions and a reduction in reliance on fossil fuels. According to the “Global EV Outlook
2024” published by the International Energy Agency (IEA) [1], EV sales are poised for
continued growth. In 2023, global EV sales reached approximately 14 million units and
are expected to reach around 17 million by the end of 2024, accounting for more than
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one-fifth of global car sales. EVs will become mainstream products in more countries. In
the first quarter of 2024, EV sales increased by about 25% compared to the same period in
2023, mirroring the growth rate from 2022. With intense competition among automakers,
declining prices for EV batteries and vehicles, and ongoing policy support, EV market
penetration could reach 45% in China, 25% in Europe, and over 11% in the United States
by 2024.

As global demand for EVs continues to rise, the quest for efficient, convenient, and
user-friendly charging solutions becomes increasingly vital [2]. Wireless power transfer
(WPT) technology emerges as one of the most promising innovations in this domain [3], [4].
It transmits electrical energy without the need for physical connections, offering an alterna-
tive to traditional plug-in charging methods.

WPT technology transmits energy through the air, eliminating the hassle of wiring [5].
Its notable feature is the ability to provide users with a seamless charging experience, ad-
dressing challenges faced by traditional charging infrastructure, such as the inconvenience
of physically accessing charging stations and handling cables [6]. This approach not only
streamlines the charging process but also enables the possibility of charging electric vehicles
while in motion. Dynamic wireless charging technology allows vehicles to charge while
in motion via embedded road charging devices, significantly alleviating range anxiety—a
primary barrier to widespread EV adoption [7]. By integrating WPT technology into ur-
ban infrastructure, cities can create a more EV-friendly ecosystem, thereby promoting the
adoption and use of EVs.

On a technical level, WPT technology is categorized into near-field and far-field
WPTs [8], where the inductive power transfer system of near-field WPT shows great po-
tential for EV charging [9]. Specifically, static charging solutions in parking lots allow EVs
to charge automatically while parked, providing greater convenience for users. Addition-
ally, dynamic wireless charging on urban roads enables EVs to charge while in motion,
effectively extending their driving range and reducing downtime. To enhance the charging
efficiency, researchers are exploring ways to optimize coil design, improve power transfer
efficiency, and reduce power loss [10]. Additionally, addressing vehicle and charging device
misalignment is a key focus to ensure stable and reliable charging. Despite its advantages,
WPT technology faces challenges in safely transmitting high-power energy without interfer-
ing with other electronics and achieving standardization across various vehicle models and
manufacturers. These issues necessitate further research and international collaboration.

This review aims to conduct an in-depth evaluation of various wireless charging tech-
nologies applicable to EVs, categorizing them into near-field and far-field methods. Within
these categories, inductive and capacitive charging technologies, as well as microwave-
and laser-based systems, will be explored for a comprehensive understanding of their theo-
retical principles and practical applications. Furthermore, different EV wireless charging
modes, including stationary, dynamic, and quasi-dynamic systems, will be analyzed in
detail to highlight their potential to enhance the EV charging ecosystem. Additionally, opti-
mization strategies aimed at improving the performance of wireless charging systems will
be conducted, focusing on advancements in coil structure design, mechanisms to counteract
misalignment, advanced compensation networks, modulation methods to enhance system
efficiency, and the identification of key parameters. Finally, a broader discussion of current
trends and limitations in EV wireless charging technology will be given. By synthesizing
existing research and emphasizing future directions, this paper aims to provide valuable
insights for the ongoing development of wireless charging systems, ultimately supporting
the transition to a more sustainable and convenient EV landscape.
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2. Theoretical Principle of Wireless Charging Technologies
WPT is a technology that utilizes a transmitter to convert electrical energy into another

form of relay energy (e.g., electromagnetic field energy, lasers, and microwaves) and then
transmits the relay energy over certain distances and then converts it back into electrical
energy through a receiver, thus achieving wireless power transmission. Currently, the
mainstream WPT technologies can be classified into three main categories based on the
type of relay energy as follows: magnetic coupling, electric field coupling, and electro-
magnetic radiation [11]. In addition, WPT can be categorized based on the distance from
the transmitter and receiver, typically using a wavelength as the dividing criterion. This
classification distinguishes between the near-field WPT and far-field WPT [12], as shown in
Figure 1.
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2.1. Near-Field Wireless Charging

Near-field WPT technologies utilize the near-field effect of electromagnetic fields,
which can be divided into the following two main methods: magnetic field coupling and
electric field coupling [13]. Magnetic field-coupled WPT can be further subdivided into
inductive power transfer (IPT) [14] and magnetic resonance WPT (MR-WPT) [15]. In the
near-field region, energy is concentrated within the localized vicinity of the transmitter.
If the receiver is not positioned correctly or within an effective range, efficient coupling
between the receiver and transmitter cannot be achieved, hindering effective power transfer.
The effective range of near-field WPT depends on the physical dimensions of the transmitter
and receiver and the degree of coupling. Moreover, electric field coupling realizes power
transfer through high-frequency electric fields, while magnetic field coupling utilizes
high-frequency alternating magnetic fields [16]. Notably, electric field coupling is subject
to stringent distance limitations, whereas magnetic field coupling, especially MR-WPT,
demonstrates the capability to transmit energy over greater distances, showcasing enhanced
flexibility and practicality in real-world applications [17].

2.1.1. Inductive Wireless Charging Technology

Inductive power transfer (IPT) is a wireless charging technology based on the prin-
ciple of electromagnetic induction [18]. Its fundamental operation involves the following
two primary components: the transmitter coil and the receiver coil. The transmitter coil
generates a varying magnetic field through alternating current, which, according to Fara-
day’s law of electromagnetic induction, induces an electromotive force in the receiver coil,
thereby generating current and enabling the wireless transfer of energy [19]. Figure 2
shows the schematic diagram of the IPT system, where the transmitter-side high-frequency
alternating current is generated by the inverter, and then the high-frequency alternating
current produced by the receiver coil is converted into direct current by a rectifier to charge
a load, such as a battery [20].
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The advantages of IPT lie in its efficient and reliable energy transmission capabilities,
particularly suited for short-distance charging. The efficiency of energy transfer depends on
the degree of alignment and distance between the coils, with optimal performance typically
achieved when their relative positions are favorable [21]. In addition, the design of IPT
systems is relatively straightforward, effectively preventing contact wear and enhancing the
reliability of the equipment. However, as the distance increases, the transmission efficiency
may decline significantly, thereby limiting its applications [22].

2.1.2. Magnetic Resonance Wireless Charging Technology

Magnetic resonance wireless power transfer (MR-WPT) is an emerging WPT technol-
ogy that leverages the principle of electromagnetic resonance to achieve efficient power
transfer over longer distances and at higher power levels [23]. The core of MR-WPT lies
in the resonant design of the transmitter and receiver coils. As shown in Figure 3, the
coupling mechanism resembles a loosely coupled transformer, with the distance between
the coils being greater than in traditional IPT systems, typically resulting in a coupling
coefficient below 0.3 [24]. When the transmitter coil generates a varying magnetic field
through alternating current, the receiver coil can harness energy at the resonant frequency,
thereby maximizing energy transfer efficiency. MR-WPT can transmit over distances of up
to several meters, and its capability to penetrate walls and non-metallic obstacles enhances
its flexibility in complex environments [25]. Furthermore, the efficient power transfer
capabilities make MR-WPT suitable for applications in EVs, consumer electronics, and
industrial settings, allowing simultaneous charging of multiple devices [26].
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The most advanced MR-WPT systems have achieved efficiencies exceeding 95%, rival-
ing traditional wired power transmission [27]. Additionally, power levels have reached
hundreds of kilowatts, with megawatt capabilities attainable through the parallel use of
multiple modules or the deployment of multi-phase systems [28]. Despite its significant
advantages, the design and implementation of MR-WPT remain relatively complex, ne-
cessitating precise control of the resonant frequency and the relative positioning of the
coils. As technology advances, MR-WPT is expected to play a pivotal role in future wireless
charging solutions for electric vehicles.

2.1.3. Capacitive Wireless Charging Technology

The electric field-coupled WPT system is known as the capacitive power transfer
(CPT) system [29]. A typical structure of a CPT system is illustrated in Figure 4, which
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comprises a power supply, high-frequency inverter, resonant network at the transmitter
end, coupling mechanism, resonant network at the receiver end, rectifier filter, and load [30].
CPT technology facilitates power transfer through electric field coupling by incorporating
metallic plates on both the transmitter side and receiver side to form 2 capacitors. Under
the excitation of high-frequency alternating voltage, displacement current is generated
between the metallic plates. With the aid of the compensation network at the receiver
side, electrical energy is converted into the desired output voltage and current, which
is then rectified and filtered into direct current for the load, thereby enabling wireless
energy transmission [31]. The use of aluminum plates as coupling mechanisms offers a
cost-effective solution with strong resistance to misalignment [32]. However, electric field
coupling also presents challenges such as limited transmission distances and potential
hazards from leakage fields.
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In addition, parallel plate capacitors typically possess a relatively small coupling
capacitance, which negatively impacts the power transmission capability of CPT [33]. To
address this issue, the CPT system described in [34] is capable of transmitting 2.4 kW of
power across a 150 mm air gap. Additionally, Sinha et al. achieved a power transfer of
19.6 kW/m2 at a 120 mm air gap and a resonant frequency of 6.78 MHz [35]. Overall, CPT
technology can reach power transmission levels of several kilowatts. However, high-power
CPT systems continue to face challenges.

To effectively supply power over larger air gaps, Zhang et al. successfully increased the
operating frequency to 13.56 MHz, thereby boosting the power density to 29.5 kW/m2 [36].
In contrast, MR-WPT technology can achieve a power density of up to 160 kW/m2, with
multi-phase magnetic couplers further enhancing this capability. One potential solution
is to raise the operating frequency further; however, the ultra-high switching frequencies
and high-power capabilities of power switches are constrained by existing semiconductor
technology. Additionally, high-frequency operation inevitably subjects compensation
components to excessive voltage and current stresses. The enhanced voltage tolerance of
gallium nitride (GaN) switch technology is expected to drive the development of future
high-power CPT systems [37,38].

It should be pointed out that CPT systems require two pairs of metal plates to form a
complete electrical circuit for the power transfer from the transmitter to the receiver [39].
However, the use of two pairs of coupling plates often leads to the following issues:

1. The cross-coupling between multiple coupling plates becomes more pronounced as
the coupling distance increases, adversely affecting power transfer efficiency.

2. When a metal obstacle spans the coupling region of the two pairs of plates, the
system struggles to transmit power through the metal barrier.

3. The parallel coupling mechanism occupies considerable space, while the design of
stacked coupling mechanisms is complex.

In contrast, a single-capacitor CPT system requires only one pair of coupling plates
to achieve wireless power transmission, effectively overcoming the aforementioned chal-
lenges [40–42]. Its simplified circuit is illustrated in Figure 5. In a single-capacitor CPT
system, only one metal plate is employed as an electrode at both the transmitter and receiver
sides, effectively addressing the issues associated with dual coupling plates. Lu et al. uti-
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lized the stray capacitance between the vehicle chassis and the ground to provide a current
return path for power transmission, which can replace the two plates in traditional four-
plate CPT systems, realizing wireless charging for electric vehicles using single-capacitor
CPT technology [41]. Therefore, the coupling mechanism of single-capacitor CPT systems
is simpler and more flexible, facilitating power transmission across metallic barriers [43].
Moreover, by using fewer components, manufacturing and deployment costs are reduced,
and the simplified design makes the installation process more intuitive, lowering labor costs.
Importantly, single-capacitor CPT can offer flexible charging solutions in space-constrained
or complex environments. However, the transmission mechanism of single-capacitor CPT
systems remains to be fully elucidated, necessitating a comprehensive analysis of its energy
transfer mechanisms.
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2.2. Far-Field Wireless Charging

Electromagnetic radiation-based wireless power transfer technology has garnered
widespread research interest due to its exceptional long-distance transmission capabili-
ties [44]. This technology harnesses the far-field characteristics of electromagnetic waves,
allowing power transfer distances to significantly exceed the dimensions of the devices
themselves. Since energy radiates outward, precise energy transfer typically requires the
use of directional devices to ensure accurate delivery. There are primarily two forms,
namely, microwave power transfer (MWPT) and laser power transfer (LPT).

2.2.1. Microwave Wireless Charging Technology

Microwave wireless power transfer (MWPT) technology uses microwaves within
electromagnetic waves to transmit power over long distances, as shown in Figure 6. A
microwave power source converts direct current into microwaves, which are transmitted
via an antenna into free space. The receiving antenna then captures these microwaves and
converts them back into direct current through a rectifying circuit to charge batteries or
power loads [45]. Power losses mainly occur due to environmental factors like obstructions
and atmospheric dust. MWPT is notable for its long transmission distances and high-
power capacity, making it suitable for medium- to long-range applications [46]. Research
into 2.45 GHz microwave technology began as early as 1988, initially powering model
airplanes. Subsequent explorations have included applications such as space-based solar
power stations, microwave-powered aircraft, and interisland wireless energy transmission,
highlighting the potential of microwave technology in various scenarios [47].
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2.2.2. Laser Wireless Charging Technology

Laser power transfer (LPT) technology uses lasers for wireless energy transmission
over medium to long distances [48]. The process involves powering a laser with electricity,
which converts electrical energy into laser light. This laser is directed onto a photovoltaic
array, where a photovoltaic converter transforms the laser light into electrical energy
for charging storage devices, as shown in Figure 7. LPT systems offer advantages such
as small transmission and reception apertures, high flexibility, elevated energy density,
good directionality, and immunity to electromagnetic interference (EMI). However, overall
efficiency can be impacted by tracking precision and atmospheric conditions [49]. Safety
measures are also essential to prevent hazards and energy loss from misdirected laser
beams [50].
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2.3. Comparative Analysis

The fundamental principles of IPT and MR-WPT are increasingly viewed as identical,
differing only in the use of resonant networks. Both fall under the category of magnetic
coupling wireless power transfer technology [51]; therefore, this discussion will refer to
both collectively as IPT. In this technology, resonance at the transmitter side can enhance
power transfer, while resonance at the receiver side can improve transmission efficiency [52].
Moreover, IPT also presents several challenges:

1. To mitigate the effects of proximity and skin effect, high-frequency Litz wire is
typically used to wind the coils, necessitating magnetic core structures and aluminum
plates to reduce magnetic field leakage and avoid external interference, which results in
higher material costs.

2. The high-frequency magnetic fields generated can induce eddy currents in metals,
leading to energy losses.

3. This technology lacks the ability to penetrate metal barriers.
4. The coupling coils have low redundancy in terms of positional offset; when the

coil positions shift, significant power fluctuations can occur, interfering with the normal
operation of power electronic converters and requiring specialized designs to counteract
positional shifts.

CPT technology employs alternating electric fields as the medium for wireless en-
ergy transfer, utilizing 2 coupled capacitors formed from plate-like electrodes on both the
transmitter and receiver sides as the energy transmission path. The advantages of CPT
technology include a simple coupling mechanism, low cost, and insensitivity to surround-
ing metallic objects [53]. Nevertheless, CPT also has its limitations, such as high voltage
stress and short transmission distances.

In comparison to near-field WPT technologies, electromagnetic radiation-based WPT
demonstrates clear advantages in transmission power and efficiency over longer distances.
However, until safety concerns regarding electromagnetic radiation are adequately ad-
dressed, the use of far-field WPT for charging EVs remains impractical [54]. Table 1
provides a detailed comparison of the above WPT technologies, including the advantages
and disadvantages of each method.
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Table 1. Comparison of different WPT technologies.

WPT Methods Advantages Disadvantages

Near-field WPT

Inductive
Simple structure Short transmission distance
High efficiency at short range Low efficiency at long range
Relatively safe High alignment requirements

Magnetic resonant
Relatively long transfer range Heat dissipation issues
Misalignment insensitive EMI issues
High efficiency and power level Relatively high cost

Capacitive

Medium power transmission High resonant frequency

Lightweight coupler Cumbersome coupler with
4 plates

Power transfer through metal High voltage and current stress

Far-field WPT

Microwave
Long transfer distances High cost and difficult

to implement
High-power possibilities No bidirectional transmission
Highly efficient possibilities Biologically unsafe

Laser
Long transfer range Biological unsafety
High-power possibilities Low efficiency
Small transmitter and receiver Vulnerability to obstacles

Note: EMI: electromagnetic interference.

3. Implementation of Wireless Charging for EVs
Wireless charging technology for electric vehicles (EVs) mainly includes the following

three forms: stationary, dynamic, and quasi-dynamic [55]. Stationary wireless charging
requires the EVs to be parked over a charging platform, where energy transfer is realized
by coupling electric or magnetic fields between the transmitting and receiving units. This
approach is straightforward and widely implemented [56]. Dynamic wireless charging
allows EVs to charge in real-time while in motion, making it suitable for public transporta-
tion systems. It can significantly extend the vehicle’s range; however, it comes with high
implementation costs and demanding infrastructure requirements [57]. Quasi-dynamic
wireless charging lies between stationary and dynamic wireless charging, enabling vehi-
cles to receive energy at specific segments of the road or designated parking areas. This
approach enhances charging flexibility but is still in the developmental stage regarding its
technical maturity [58].

3.1. Stationary Wireless Charging

Stationary wireless charging (SWC) offers a convenient charging experience, allowing
vehicles to automatically connect to charging platforms while parked, eliminating the need
for manual cable connections [59]. Furthermore, artificial intelligence can intelligently
schedule charging times and locations, thereby reducing peak demand for electricity and
enhancing charging efficiency [60]. Moreover, the integration of stationary wireless charg-
ing systems with autonomous driving enables precise docking of vehicles in parking lots or
dedicated charging areas, ensuring both efficiency and safety in the charging process [61].
Ultimately, this integration not only enhances user convenience but also prolongs battery
life, reduces operational costs, and contributes to more sustainable transportation solutions.
Currently, IPT and CPT technologies represent the most promising advancements in sta-
tionary wireless power transmission for EVs [62], as they offer advantages such as high
efficiency, enhanced safety, and user convenience. In contrast, technologies like microwave
and laser wireless charging may suffer from low efficiency, safety concerns, and high costs,
which limit their application in the wireless charging of EVs.
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Table 2 summarizes the fundamental characteristics of IPT and CPT couplers. Induc-
tive couplers consist of two coils, Lp and Ls, which transfer power through an intercoupled
magnetic field. Inductive couplers are typically characterized by self-inductance as well as
mutual inductance (or coupling coefficient kL) [63]. A typical capacitive coupler comprises
four metal plates, P1 to P4, generally represented by six coupling capacitors and mutual
capacitance (or coupling coefficient kc) [64].

Table 2. Fundamental characteristics of IPT and CPT couplers.
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Although IPT and CPT differ in their coupling mechanisms and forms, they also share
numerous similarities [65]. For instance, in IPT systems, there are four fundamental compen-
sation circuits as follows: series-series (SS) compensation, series-parallel (SP) compensation,
parallel-series (PS) compensation, and parallel-parallel (PP) compensation [66–69], as il-
lustrated in Table 3. Similarly, for CPT couplers with the same configuration, four basic
compensation circuits have also been proposed, as detailed in Table 4.
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Table 4. Four fundamental compensation circuits of CPT.
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In IPT systems, to achieve zero reactive power, only the series-series (SS) 
compensation topology can fulfill this requirement. Moreover, the resonant frequency of 
the SS-compensated IPT system is independent of the coupling coefficient, making it the 
optimal choice for IPT systems [66]. Conversely, in CPT systems, zero reactive power 
circulation can only be achieved under parallel-parallel (PP) compensation, which 
similarly does not have its resonant frequency affected by the coupling coefficient [70]. 
However, the PP-compensation CPT topology is rarely employed in practical applications 
due to the limitations imposed by the actual input and output voltages on the port voltage 
of capacitive couplers, resulting in lower power transfer capabilities. Overall, while IPT 
and CPT systems exhibit similarities, the series and parallel compensation of capacitors in 
IPT circuits corresponds to the parallel and series compensation of inductors in CPT 
circuits. Currently, IPT technologies have garnered more extensive research on wireless 
charging for EVs, as they offer higher transmission power and efficiency compared to CPT 
systems. 

Figure 8 shows a schematic of stationary charging of IPT for EVs. The IEC 61980 
standard outlines requirements and guidelines for EV wireless charging systems [71]. The 
SAE J2954 standard defines various power levels and their corresponding power supply 
requirements for wireless EV charging systems [72]. Specifically, WPT 1 supports a 
maximum input power of 3.7 kW, while WPT 2 and WPT 3 provide power levels of 7.7 
kW and 11 kW, respectively. WPT 4 supports a power level of up to 22 kW, utilizing a 
three-phase power supply. Additionally, for heavy-duty applications, the SAE J2954/2 is 
designed with a power range of 22 to 150 kW [73]. These standards offer flexible charging 
solutions for different types of EVs, catering to the diverse needs of both light and heavy-
duty vehicles, thereby facilitating the widespread adoption of wireless charging 
technology. Furthermore, Table 5 provides a comprehensive summary of the various 
power levels for stationary inductive charging systems for EVs. 
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In IPT systems, to achieve zero reactive power, only the series-series (SS) 
compensation topology can fulfill this requirement. Moreover, the resonant frequency of 
the SS-compensated IPT system is independent of the coupling coefficient, making it the 
optimal choice for IPT systems [66]. Conversely, in CPT systems, zero reactive power 
circulation can only be achieved under parallel-parallel (PP) compensation, which 
similarly does not have its resonant frequency affected by the coupling coefficient [70]. 
However, the PP-compensation CPT topology is rarely employed in practical applications 
due to the limitations imposed by the actual input and output voltages on the port voltage 
of capacitive couplers, resulting in lower power transfer capabilities. Overall, while IPT 
and CPT systems exhibit similarities, the series and parallel compensation of capacitors in 
IPT circuits corresponds to the parallel and series compensation of inductors in CPT 
circuits. Currently, IPT technologies have garnered more extensive research on wireless 
charging for EVs, as they offer higher transmission power and efficiency compared to CPT 
systems. 

Figure 8 shows a schematic of stationary charging of IPT for EVs. The IEC 61980 
standard outlines requirements and guidelines for EV wireless charging systems [71]. The 
SAE J2954 standard defines various power levels and their corresponding power supply 
requirements for wireless EV charging systems [72]. Specifically, WPT 1 supports a 
maximum input power of 3.7 kW, while WPT 2 and WPT 3 provide power levels of 7.7 
kW and 11 kW, respectively. WPT 4 supports a power level of up to 22 kW, utilizing a 
three-phase power supply. Additionally, for heavy-duty applications, the SAE J2954/2 is 
designed with a power range of 22 to 150 kW [73]. These standards offer flexible charging 
solutions for different types of EVs, catering to the diverse needs of both light and heavy-
duty vehicles, thereby facilitating the widespread adoption of wireless charging 
technology. Furthermore, Table 5 provides a comprehensive summary of the various 
power levels for stationary inductive charging systems for EVs. 
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In IPT systems, to achieve zero reactive power, only the series-series (SS) 
compensation topology can fulfill this requirement. Moreover, the resonant frequency of 
the SS-compensated IPT system is independent of the coupling coefficient, making it the 
optimal choice for IPT systems [66]. Conversely, in CPT systems, zero reactive power 
circulation can only be achieved under parallel-parallel (PP) compensation, which 
similarly does not have its resonant frequency affected by the coupling coefficient [70]. 
However, the PP-compensation CPT topology is rarely employed in practical applications 
due to the limitations imposed by the actual input and output voltages on the port voltage 
of capacitive couplers, resulting in lower power transfer capabilities. Overall, while IPT 
and CPT systems exhibit similarities, the series and parallel compensation of capacitors in 
IPT circuits corresponds to the parallel and series compensation of inductors in CPT 
circuits. Currently, IPT technologies have garnered more extensive research on wireless 
charging for EVs, as they offer higher transmission power and efficiency compared to CPT 
systems. 

Figure 8 shows a schematic of stationary charging of IPT for EVs. The IEC 61980 
standard outlines requirements and guidelines for EV wireless charging systems [71]. The 
SAE J2954 standard defines various power levels and their corresponding power supply 
requirements for wireless EV charging systems [72]. Specifically, WPT 1 supports a 
maximum input power of 3.7 kW, while WPT 2 and WPT 3 provide power levels of 7.7 
kW and 11 kW, respectively. WPT 4 supports a power level of up to 22 kW, utilizing a 
three-phase power supply. Additionally, for heavy-duty applications, the SAE J2954/2 is 
designed with a power range of 22 to 150 kW [73]. These standards offer flexible charging 
solutions for different types of EVs, catering to the diverse needs of both light and heavy-
duty vehicles, thereby facilitating the widespread adoption of wireless charging 
technology. Furthermore, Table 5 provides a comprehensive summary of the various 
power levels for stationary inductive charging systems for EVs. 
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In IPT systems, to achieve zero reactive power, only the series-series (SS) 
compensation topology can fulfill this requirement. Moreover, the resonant frequency of 
the SS-compensated IPT system is independent of the coupling coefficient, making it the 
optimal choice for IPT systems [66]. Conversely, in CPT systems, zero reactive power 
circulation can only be achieved under parallel-parallel (PP) compensation, which 
similarly does not have its resonant frequency affected by the coupling coefficient [70]. 
However, the PP-compensation CPT topology is rarely employed in practical applications 
due to the limitations imposed by the actual input and output voltages on the port voltage 
of capacitive couplers, resulting in lower power transfer capabilities. Overall, while IPT 
and CPT systems exhibit similarities, the series and parallel compensation of capacitors in 
IPT circuits corresponds to the parallel and series compensation of inductors in CPT 
circuits. Currently, IPT technologies have garnered more extensive research on wireless 
charging for EVs, as they offer higher transmission power and efficiency compared to CPT 
systems. 

Figure 8 shows a schematic of stationary charging of IPT for EVs. The IEC 61980 
standard outlines requirements and guidelines for EV wireless charging systems [71]. The 
SAE J2954 standard defines various power levels and their corresponding power supply 
requirements for wireless EV charging systems [72]. Specifically, WPT 1 supports a 
maximum input power of 3.7 kW, while WPT 2 and WPT 3 provide power levels of 7.7 
kW and 11 kW, respectively. WPT 4 supports a power level of up to 22 kW, utilizing a 
three-phase power supply. Additionally, for heavy-duty applications, the SAE J2954/2 is 
designed with a power range of 22 to 150 kW [73]. These standards offer flexible charging 
solutions for different types of EVs, catering to the diverse needs of both light and heavy-
duty vehicles, thereby facilitating the widespread adoption of wireless charging 
technology. Furthermore, Table 5 provides a comprehensive summary of the various 
power levels for stationary inductive charging systems for EVs. 
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In IPT systems, to achieve zero reactive power, only the series-series (SS) compen-
sation topology can fulfill this requirement. Moreover, the resonant frequency of the
SS-compensated IPT system is independent of the coupling coefficient, making it the
optimal choice for IPT systems [66]. Conversely, in CPT systems, zero reactive power
circulation can only be achieved under parallel-parallel (PP) compensation, which similarly
does not have its resonant frequency affected by the coupling coefficient [70]. However,
the PP-compensation CPT topology is rarely employed in practical applications due to
the limitations imposed by the actual input and output voltages on the port voltage of
capacitive couplers, resulting in lower power transfer capabilities. Overall, while IPT and
CPT systems exhibit similarities, the series and parallel compensation of capacitors in IPT
circuits corresponds to the parallel and series compensation of inductors in CPT circuits.
Currently, IPT technologies have garnered more extensive research on wireless charging
for EVs, as they offer higher transmission power and efficiency compared to CPT systems.

Figure 8 shows a schematic of stationary charging of IPT for EVs. The IEC 61980
standard outlines requirements and guidelines for EV wireless charging systems [71].
The SAE J2954 standard defines various power levels and their corresponding power
supply requirements for wireless EV charging systems [72]. Specifically, WPT 1 supports
a maximum input power of 3.7 kW, while WPT 2 and WPT 3 provide power levels of
7.7 kW and 11 kW, respectively. WPT 4 supports a power level of up to 22 kW, utilizing a
three-phase power supply. Additionally, for heavy-duty applications, the SAE J2954/2 is
designed with a power range of 22 to 150 kW [73]. These standards offer flexible charging
solutions for different types of EVs, catering to the diverse needs of both light and heavy-
duty vehicles, thereby facilitating the widespread adoption of wireless charging technology.
Furthermore, Table 5 provides a comprehensive summary of the various power levels for
stationary inductive charging systems for EVs.

In terms of economics, Longo et al. estimated the economic viability of wired and
wireless charging in Italy and Europe using classical economic indicators [74]. The estimates
indicated that in the Italian market, the price of wireless chargers would need to be reduced
by 39% compared to their actual value, while in the European market, a reduction of 33%
would be necessary for wireless charging to become more economically viable. However,
this survey ignores consumer awareness, preferences, and the competitive landscape.
A comprehensive cost-benefit analysis, including long-term savings and environmental
impact, is also needed. Regulatory support and infrastructure readiness also play a crucial
role, and ongoing technological innovations could also change the cost dynamics. These
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considerations are critical to developing effective pricing strategies and promoting the
widespread adoption of wireless chargers.

World Electr. Veh. J. 2025, 16, x FOR PEER REVIEW 11 of 35 
 

 

 

Figure 8. Schematic of stationary wireless charging of IPT for EVs. 

In terms of economics, Longo et al. estimated the economic viability of wired and 
wireless charging in Italy and Europe using classical economic indicators [74]. The esti-
mates indicated that in the Italian market, the price of wireless chargers would need to be 
reduced by 39% compared to their actual value, while in the European market, a reduction 
of 33% would be necessary for wireless charging to become more economically viable. 
However, this survey ignores consumer awareness, preferences, and the competitive 
landscape. A comprehensive cost-benefit analysis, including long-term savings and envi-
ronmental impact, is also needed. Regulatory support and infrastructure readiness also 
play a crucial role, and ongoing technological innovations could also change the cost dy-
namics. These considerations are critical to developing effective pricing strategies and 
promoting the widespread adoption of wireless chargers. 

Table 5. Summary of the various power levels for stationary inductive charging systems for EVs. 

Power (kW) Frequency (kHz)  Efficiency  Air Gap (mm) Reference 
3 50 90% G2B 200 [75] 

3.7 37 91.6% D2D 100 [76] 
6 95 95.3% G2B 150 [77] 

7.7 85 94.93% D2D 200 [78] 
11 85 91.4% D2D 150 [79] 
22 100 97% C2C 135 [80] 
25 85 91% G2B 210 [81] 
50 85 95.8% D2D 10–200 [82] 
100 25 97.7% C2C 125 [83] 

Note: G2B: grid to battery; C2C: coupler to coupler; D2D: DC to DC. 

The evaluation of EV wireless charging technology relies on both internal and exter-
nal criteria. Internal criteria include metrics such as efficiency, charging speed, alignment 
tolerance, and user experience, which are critical for assessing the performance and usa-
bility of inductive power transfer (IPT) systems. In contrast, external criteria include reg-
ulatory standards, market demand, interoperability, infrastructure availability, environ-
mental impact, public perception, technological advancements, economic incentives, and 
global standards. These factors significantly affect the adoption and acceptance of wireless 
charging technologies in the broader market environment. 

Figure 8. Schematic of stationary wireless charging of IPT for EVs.

Table 5. Summary of the various power levels for stationary inductive charging systems for EVs.

Power (kW) Frequency (kHz) Efficiency Air Gap (mm) Reference

3 50 90% G2B 200 [75]

3.7 37 91.6% D2D 100 [76]

6 95 95.3% G2B 150 [77]

7.7 85 94.93% D2D 200 [78]

11 85 91.4% D2D 150 [79]

22 100 97% C2C 135 [80]

25 85 91% G2B 210 [81]

50 85 95.8% D2D 10–200 [82]

100 25 97.7% C2C 125 [83]
Note: G2B: grid to battery; C2C: coupler to coupler; D2D: DC to DC.

The evaluation of EV wireless charging technology relies on both internal and external
criteria. Internal criteria include metrics such as efficiency, charging speed, alignment
tolerance, and user experience, which are critical for assessing the performance and us-
ability of inductive power transfer (IPT) systems. In contrast, external criteria include
regulatory standards, market demand, interoperability, infrastructure availability, environ-
mental impact, public perception, technological advancements, economic incentives, and
global standards. These factors significantly affect the adoption and acceptance of wireless
charging technologies in the broader market environment.

In addition, the importance of international standards, particularly SAE J2954 and
IEC 61890 [71,72], for wireless charging of EVs needs to be emphasized. These standards
are instrumental in identifying and refining research gaps in IPT technology. They also
facilitate the large-scale application of IPT systems by ensuring safety, interoperability, and
compliance across various manufacturers and systems. By adhering to these standards,
stakeholders can enhance the reliability and efficiency of wireless charging solutions,
ultimately promoting broader acceptance and integration within the automotive industry.
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3.2. Dynamic Wireless Charging

Despite the gradual maturation of power levels and technology for stationary wireless
charging, large-capacity batteries are still required to achieve a higher driving range.
Consequently, dynamic wireless charging (DWC) technology, which allows EVs to be
charged while in motion, has attracted significant attention from researchers [84–103].

The Korean Advanced Research Institute (KAIST) team initiated the on-line electric ve-
hicle (OLEV) project in 2009 [84], developing multiple generations of products. The power
levels were upgraded from 3 kW to 25 kW, and various magnetic coupling mechanisms
suitable for dynamic wireless charging were proposed [85]. Other companies have also
introduced prototypes for high-power DWC systems. In 2013, the Integrated Infrastructure
Solutions (INTIS) team launched a 60 kW DWC system for the 18m electric bus auto tram
and a 30 kW DWC system for the Artega electric sports car [86]. INTIS also designed a
DWC testing platform capable of transmitting 200 kW of power over a 25 m long track [87].
The PRIMOVE system from Bombardier can provide 250 kW of power to a 30 m long light
rail vehicle [88]. As representative research institutions, the Korean Railroad Research
Institute (KRRI) [89] and the IK4-Ikerlan Research Center [90] developed 1 MW and 50 kW
prototypes, respectively, for dynamic wireless charging in railway traction systems.

Due to the rapid movement of the transmitting and receiving coils during power
transfer in a DWC system, the design and control complexity of the system is significantly
increased. Therefore, researchers at universities and other institutions have focused on im-
proving the system’s output power fluctuations and stability issues caused by factors such
as mutual inductance variations and communication delays. They have addressed these
challenges through multiple aspects, including pad configuration [84,91–98], advanced
modeling, and control loop optimization [99–103].

Pad configuration, also known as magnetic coupler design, is crucial in DWC systems.
It is generally classified into the following two types: elongated rail and multi-coil seg-
mented configurations, as shown in Figure 9a,b, respectively. The rail-based technology
route is represented by KAIST, which has developed various generations of prototypes un-
der its OLEV project [85]. Based on the shape of the magnetic core, the transmitting end can
be categorized as E-type (1st Gen), U-type (2nd Gen), W-type (3rd Gen), S-type (4th Gen),
and I-type (5th Gen) [84,91]. Optimizing the magnetic coupler structure has reduced both
manufacturing costs and electromagnetic radiation. The track-based transmitters offer
unique advantages for powering multiple vehicles simultaneously, as they simplify design
and control by minimizing transmitter switching. Additionally, the magnetic field strength
within the track is relatively uniform over a large area, making it easier to control output
power fluctuations. However, this approach has drawbacks in light-load conditions (when
the number of vehicles is small), as it generates excess electromagnetic fields that result in
low system efficiency. Moreover, due to the small coupling coefficient between the tracking
transmitter and the vehicle-side receiver coils, the overall efficiency is limited to around
80% [84].
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To address the aforementioned issues, many researchers have adopted multiple seg-
mented coils to implement DWC [92–98]. This approach enables the activation of only
the transmitter coils in the area covered by the vehicle, thereby reducing excess electro-
magnetic fields (EMF). For example, a team from Nissan Research Center employed five
1.6 m × 0.3 m transmitter coils to power a 0.4 m diameter receiver coil, achieving 1 kW
DWC with an efficiency of 90% [92]. Similarly, Buja et al. used multiple DD coils on the
transmitting end to form a lumped track [93]. They calculated parameters such as the
primary coil length and spacing based on the energy required per unit distance of the
vehicle. They also discovered that the voltage induced by the movement of the receiving
coil could be neglected in the design of the track layout.

To mitigate power fluctuations caused by the magnetic field drop between transmitter
segments, Zhang et al. proposed a grouped periodic series spiral coupler to ensure that the
receiver is simultaneously coupled with both the preceding and following transmitter coils
during coil switching [94]. In [95], an unequal DD configuration was adopted to provide
a better power profile and reduce the transmitter coil deployment cost. Tavakoli et al.
optimized transmitter coils from the perspective of ground assembly cost and transmission
efficiency using a particle swarm optimization algorithm [96], resulting in an optimal pad
length of 1.75 m for a 3.7 kW system. Similarly, Chen et al. optimized a proposed two-phase
DDQ track considering cost, interoperability, and coupling profile while also reducing
the complexity of simulations [97]. Furthermore, Bagchi et al. categorized segmented
multi-coil transmitters into three types based on their magnetic field characteristics and
highlighted that coil arrangements with alternating magnetic poles along the EV’s direction
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of motion offer better interoperability, as they can also be used for stationary wireless
charging, especially for multiple loads [98].

In addition to optimizing the design of transmitter and receiver pads, the lateral and
longitudinal misalignment of the receiver caused by vehicle movement, along with rapid
variation in mutual inductance, impose higher demands on system modeling and control.
In [99], a 25 kW DWC system was modeled using the generalized state-space averaging
method, and a dual-loop controller was designed to regulate primary-side power and
current. While primary-side control offers simplicity, it struggles to ensure stable power
output on the secondary side at high vehicle speeds. Therefore, receiver-side control has
been adopted in [100–102]. In [100] and [101], model predictive control and passivity-based
PI control were introduced and compared with traditional PID controllers, demonstrating
improved dynamic tracking performance. Zhang et al. addressed disturbances caused by
lateral misalignment by modeling longitudinal misalignment and introducing a disturbance
observer, significantly enhancing the system’s power output robustness.

3.3. Quasi-Dynamic Wireless Charging

Compared to dynamic wireless charging and fully stationary wireless charging, quasi-
dynamic wireless charging technology offers distinct advantages in terms of cost, flexibility,
and real-time capability [103,104]. It is particularly well-suited for parking scenarios such
as intersections and bus stations, providing EVs with more convenient, flexible, and timely
charging services [105], as shown in Figure 10.
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In dynamic wireless charging, a substantial number of charging facilities must be
installed along the route to meet the continuous energy requirements of EVs in motion,
which escalates installation and maintenance costs [106]. Conversely, while fully stationary
wireless charging does not necessitate numerous charging facilities, its fixed charging points
may not adequately accommodate the flexible charging needs of EVs [107]. In contrast,
quasi-dynamic wireless charging technology requires the installation of wireless charging
facilities only at specific locations, such as traffic intersections or bus stations, significantly
reducing costs while fulfilling the charging requirements of EVs during short stops, thus
enhancing the practicality and economic viability of charging [108].
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Additionally, quasi-dynamic wireless charging technology provides greater flexibility
and convenience compared to stationary wireless charging [109]. In scenarios at intersec-
tions or bus stations, EVs can recharge during short stops, such as waiting at red lights or for
traffic to clear, making effective use of fragmented time to supplement energy and improve
travel efficiency. This intelligent charging approach also offers more charging options for
EVs, alleviating user anxiety related to charging and enhancing driving convenience.

Furthermore, quasi-dynamic wireless charging technology allows for energy trans-
actions based on real-time traffic conditions and the energy needs of electric vehicles,
facilitating bidirectional energy flow [110,111]. Overall, it presents advantages in cost,
flexibility, and convenience, offering a more intelligent and efficient charging solution for
EVs, which could become a significant development direction in the field of EV charg-
ing, promoting their widespread adoption and advancement. However, the application
of EV quasi-dynamic wireless charging at intersections and traffic lights faces several
challenges, such as the design of equipment layout and coverage, balancing transmission
efficiency with charging speed, and considerations regarding safety and electromagnetic
radiation [112]. By continuously optimizing and refining technological solutions, this
approach can be widely implemented in parking scenarios like intersections, opening up
new possibilities for intelligent charging of EVs.

4. Optimization of Wireless Charging Technologies for EVs
The optimization of WPT technology is crucial for enhancing the performance of

wireless charging for EVs. As EVs become more prevalent, the need for efficient and
convenient charging solutions has become increasingly urgent. This section will focus on
several key areas, including the optimization of coil structures, the optimization of anti-
misalignment, the optimization of compensation networks, the optimization of modulation
strategies, and the identification of key parameters. These systematic discussions aim to
offer valuable insights and practical guidance for the development of wireless charging
technologies for EVs.

4.1. Optimization of Coil Structures

In IPT systems, coils play a critical role as the medium for power transfer between
the transmitter and receiver. Given the design goal of increasing power transfer per unit
volume while increasing frequency, transmitter coil current, and the receiver-side loaded
quality factor Qs can all enhance output power; each comes with limitations. Frequency is
constrained by switching losses, current is limited by wire dimensions, system size, and
thermal management, and excessively increasing Qs raises the system’s VA rating and
complicates tuning. Consequently, optimizing the coil itself is the most direct and effective
approach. Table 6 presents common types of coils, which will be discussed in detail.

In [113], it is highlighted that the WPT figure of merit is determined by k
√

QL1QL2,
where k is the coupling coefficient and QL1 and QL2 are the quality factors of the primary
and secondary coils, respectively. IPT coils commonly use Litz wire to mitigate the high-
frequency conduction losses caused by skin and proximity effects, yielding a high native
Q value in the range of a few hundred. Hence, current coil optimization research primarily
focuses on improving coil structure or magnetic material configuration to enhance the
coupling coefficient k, increasing misalignment tolerance (to minimize VA growth during
misalignment), and adopting self-resonant coils for a more compact and integrated design.
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Table 6. Summary of common magnetic couplers for EV charging in the IPT system.

CP RP DDP DDQ Pad BPP
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Magnetic couplers can be categorized based on flux paths into double-sided cou-
plers [114–116] and single-sided couplers [117–122]. Double-sided couplers, often in the
form of solenoidal coils, can increase flux height within the same size, thereby improving
transmission distance or enhancing offset tolerance [113]. However, they have relatively
lower Q values and generate strong horizontal magnetic fields at the ends of the pads,
leading to increased stray fields and EMI. Consequently, they may be better suited for
wireless charging scenarios with track-type transmitters, such as powering automated
guided vehicles (AGVs).

For stationary charging scenarios in electric vehicles, single-sided couplers are a more
suitable choice. Common designs include circular pads (CPs) [117], rectangular pads
(RPs) [118], double-D pads (DDPs) [119], double-D quadrature (DDQ) pads [120], and
bipolar pads (BPPs) [121].

As one of the most common and earliest used coils, CPs and RPs are often equipped
with various forms of ferrite underneath to reduce the magnetic reluctance along the flux
path and minimize leakage flux. Additionally, aluminum plates are used for magnetic
shielding to reduce external interference from the system. In [117], finite element analysis
was employed to optimize the efficiency and weight of CPs. To address the issue of
significant leakage flux in solenoidal coils, single-sided DD coils with a similar horizontal
flux path were proposed [118]. Essentially, a DD coil consists of two rectangular coils
wound in opposite directions and connected together. Like solenoidal coils, this flux
pipe-shaped magnetic field distribution offers a higher flux height compared to circular
coils, improving energy transfer distance. However, DD coils exhibit a coupling null point
at a horizontal offset of approximately 34%, significantly limiting their offset tolerance.
To address this issue, a quadrature coil decoupled from the DD coil can be introduced,
forming the DDQ pad [118,120]. This configuration enhances misalignment tolerance by
compensating for the coupling null point and also enhances interoperability with CP coils,
allowing for greater compatibility and flexibility in systems that utilize both types of pads.

In [119], Bosshard et al. compared DDP with RP and found that while the anti-
misalignment of DD coils is inferior to that of RP, they produce smaller stray fields, making
them advantageous in high-power WPT. However, this contradicts the findings in [120],
where a multi-objective optimization was performed under identical physical constraints
for the following four common magnetic coupling mechanisms: DD transmitter (Tx)-DDQ
receiver (Rx), CP (Tx + Rx), RP (Tx + Rx), and DD (Tx + Rx). The study compared their
performance in terms of transmission efficiency, power density, and offset tolerance. The
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results concluded that CP exhibits the best efficiency and coupling coefficient under the
given constraints, requiring the least amount of wire. DD and DDQ, however, demonstrated
superior offset tolerance only in specific directions, limiting their overall advantages.

BPP achieves decoupling by partially overlapping two RP coils [121]. This design
allows for magnetic field adjustment in both horizontal and vertical directions while
reducing complexity and material usage compared to DDQ coils. The characteristics of
BPP also make it highly interoperable with other types of coils, enhancing its versatility
in various wireless power transfer applications. Similar to the BPP, the Tripolar Pad (TPP)
achieves mutual decoupling among three coils [122]. In addition to a higher coupling
coefficient compared to CP, the TPP also resists rotational misalignment like CP. In [123],
a hexagonal array coil was utilized to provide a more flexible combination and seamless
splicing, resulting in a more uniform magnetic flux distribution. To facilitate the selection
of a suitable magnetic coupler, Table 6 summarizes the discussed single-sided couplers and
highlights their respective characteristics.

Finite Element Analysis (FEA) simulations, known for their precision, are commonly
combined with optimization algorithms to improve the performance of magnetic couplers
in wireless power transfer systems. Key parameters such as ferrite size, shape, and po-
sition [124]; wire thickness and turns [125]; coil-to-core gaps [126]; and shielding plate
thickness are optimized to enhance coupling efficiency and offset tolerance [127,128].

For instance, [125] analyzed the trade-offs between coil efficiency and power density,
optimizing circular coils using the kQ product (coupling coefficient k and quality factor Q)
to identify a Pareto front of design parameters. In [127], a decoupling optimization method
for three-coil couplers improved horizontal and vertical offset tolerance by refining coil
dimensions and turn counts.

4.2. Optimization of Compensation Network

In IPT, the design of the compensation network is crucial, as different compensation
topologies significantly affect the system’s efficiency and performance [129]. Factors such
as misalignment of the coupling mechanism, frequency deviation, leakage inductance of
the transmitting and receiving coils, reactive power circulation, zero phase angle (ZPA)
operation, frequency splitting, and soft switching of power electronic devices render the four
basic compensation networks inadequate for meeting operational requirements [130,131]. To
address the challenges faced by basic compensation networks from a system perspective,
several advanced compensation networks have been proposed, including inductor-capacitor-
inductor (LCL)-LCL [132], LCL-series (S) [133], LCC-LCC [134], LCC-S [135], LCC-parallel
(P) [136], and S-CLC [137], as shown in Figure 11. These higher-order compensation networks
aim to enhance performance in IPT systems by mitigating issues related to misalignment,
frequency variations, and other operational constraints.

The LCC-LCC high-order compensation network has garnered extensive research
due to its ability to enhance power transfer efficiency across a wide range of coupling
coefficients and load conditions while also maintaining lower voltage and current stress on
the compensation components [138,139]. However, compared to the four basic compensa-
tion networks, like SS compensation, the additional compensation capacitors or inductors
in high-order circuits can introduce internal resistance, potentially resulting in increased
power losses. This can be mitigated by utilizing high-quality (Q) factor capacitors and
inductors to reduce copper losses [140]. A high Q value indicates that a component has
more reactance and less resistance at a given frequency; it can help to reduce the current
strength in the conductor and contributes to the reduction in heat generated by copper
losses. In addition, they have a better response at high frequencies, reducing harmonic
distortion, improving circuit stability, and ultimately increasing overall energy efficiency.
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Moreover, LCL-LCL and LCC-LCC technologies are strong candidates for wireless
charging of EVs, as they enable the current source inverter at the receiver end to work in
conjunction with the voltage source inverter at the transmitter end [141–143]. Addition-
ally, achieving zero-voltage switching (ZVS) and soft switching techniques is relatively
straightforward within these compensation networks. Notably, the LCC-LCC compensa-
tion network can achieve a unit power factor, high efficiency, and reliable operation even
under misalignment conditions [144].

Despite the numerous advantages of LCC-LCC compensation, this high-order net-
work inevitably faces challenges related to increased system size and component costs.
Nonetheless, its independence from load characteristics, high efficiency, adaptability under
misalignment, and ability to reduce inverter current stress make it one of the most used
compensation technologies. Various compensation topologies based on LCL compensation,
such as LCL-P and LCL-LCL, exhibit characteristics like LCC-LCC. However, using LCL-S
under short-circuit conditions at the receiving side may lead to a surge in current, which is
undesirable [145]. Table 7 compares basic compensation techniques with various high-order
compensation technologies, considering factors such as operating frequency, output power,
coupling coefficient, transmission efficiency, and air gap distance. It can be seen that both
SS compensation and LCC-LCC compensation can achieve more than 95% efficiency, which
is attractive for EV wireless charging.

Table 7. Performance comparison of different compensation networks.

Compensation Frequency (kHz) Power Level (kW) Efficiency Coupling kL Air Gap (mm)

S-S [146] 85 1 95% 0.135 200
S-S [147] 85 3.3 93.1% 0.1 100

S-P [148] 23 2 92% N/A 100

LCC-LCC [138] 85 1.4 89.78% 0.13 150
LCC-LCC [149] 95 5.6 95.36% 0.14–0.3 150
LCC-LCC [140] 79 7.7 96% 0.18–0.32 200

LCL-LCL [147] 85 3.3 89.5% 0.1 100

LCL-S [150] 140 0.45 93% 0.18–0.32 100
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4.3. Optimization of Anti-Misalignment

Misalignment between magnetic couplers refers to deviations in their relative positions
from the nominal design position. In EV charging scenarios, this misalignment can occur in
three primary directions, as shown in Figure 12, namely, vertical, horizontal, and rotational
about the vertical axis. In practice, combinations of these misalignment types are common.
For example, in the vertical direction, the distance between the transmitting and receiving
pads may vary due to differences in ground clearance across vehicle models. Horizontal
and rotational misalignments often arise from drivers parking imprecisely. Regardless
of the cause, from a circuit perspective, misalignment introduces perturbations to the
following three key parameters: the self-inductances of the primary and secondary coils
and their mutual inductance. Therefore, mitigating the impact of these perturbations is
central to optimizing anti-misalignment performance.
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To address these challenges, the SAE J2954 standard [72] categorizes vehicle assemblies
into the following three vertical ground clearance levels: Z1 (100–150 mm), Z2 (140–210 mm),
and Z3 (170–250 mm), which define the required vertical misalignment tolerance. Addition-
ally, the standard specifies allowable horizontal misalignments of (driving direction) and
(transverse direction), setting benchmarks for system design and performance.

Improving the anti-misalignment performance of an IPT system is most effectively
achieved by optimizing the magnetic coupler, as discussed in the previous section. Under
perfectly aligned conditions, CPs deliver the best performance in terms of power density
per unit area [120]. However, for misaligned conditions, comparisons of coupler perfor-
mance across various studies yield inconsistent conclusions due to differing evaluation
criteria [118–120,151,152].

For instance, using mutual inductance as the sole metric suggests that the DD-DDQ
combination significantly enhances anti-misalignment performance [152]. However, in-
troducing the Q-coil also incurs additional coil losses, weight, receiver pad area, and
rectification losses. In [120], it was noted that the anti-misalignment capability of the DDQ
pad, in terms of gravimetric power density, showed no substantial improvement over CP.
However, this study did not account for vertical misalignment and assumed a fixed air gap,
which could affect the conclusions.

Overall, a more comprehensive investigation into anti-misalignment characteristics
is necessary. Establishing standardized evaluation metrics would enable consistent as-
sessment of coupler performance and guide engineers in selecting and configuring pads
according to various physical constraints during the design phase.

The primary goal of improving magnetic couplers’ anti-misalignment performance is
to minimize mutual inductance variation during misalignment. Complementary to this,
optimizing compensation networks aims to reduce output voltage or power fluctuations
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under a given range of coupling coefficient variations. Among the four basic compensation
networks (S-S, S-P, P-S, and P-P), only the S-S topology maintains a constant resonant
frequency regardless of mutual inductance changes. However, S-S carries the risk of uncon-
trolled primary-side current under significant misalignment. To address this, Villa et al.
analyzed output fluctuation versus coupling factors across various compensation networks
(S-S, S-SP, S-CLC, S-LCC, and LCC-S) [153]. The SP-S topology was proposed in [154] to
enhance performance under coil misalignment. The results indicated that S-SP, LCC-S,
and LCC-LCC topologies exhibit better anti-misalignment performance. Further, [155]
conducted a sensitivity analysis of output voltage across multiple topologies and concluded
that LCC-LCC offers the best anti-misalignment capability, followed by LCC-S.

In addition to the common compensation networks mentioned above, the series-
hybrid topology demonstrated superior anti-misalignment characteristics [156]. Using a
DD-DD coil structure, it achieved only a 5% power fluctuation within an X-offset range of
-80 to 120 mm, a Y-offset range of ±160 mm, and a vertical offset range of ±20 mm. This
performance surpasses that of S-S and LCL-LCL topologies, showcasing its robustness in
handling misalignment scenarios effectively. Such hybrid topology effectively mitigates
the impact of misalignment on power fluctuations because the output characteristics of the
two combined topologies exhibit opposite trends in response to misalignment [157].

Reconfigurable circuits are implemented to enhance the anti-misalignment capability.
For instance, in [158], the power output exhibits a peak across the coupling coefficient curve.
By dynamically switching between full-bridge and half-bridge configurations, impedance
matching is achieved, enabling stable power output and high efficiency over a wide range
of coupling variations. Similarly, in [159], selecting appropriate compensation networks
for different secondary coil positions allows the reuse of the primary coil, improving the
system’s performance under varying alignment conditions.

Additionally, optimizing the parameters of compensation networks can reduce the
system’s sensitivity to changes in the coupling coefficient [160,161]. Recently, Wei et al.
proposed using self-oscillation control with the S-PS topology to maintain stable power
output in the over-coupled region, independent of mutual inductance variations [162].
Compared to other control methods that rely on communication protocols [163,164] or
parameter identification techniques [165], this approach demonstrates higher robustness.
However, how to ensure system stability and integrate it into practical wireless charging
control systems requires further investigation.

4.4. Optimization of System Efficiency

Despite the significant advantages of WPT technology, the efficiency of power trans-
mission remains one of the primary challenges to its promotion and application. In WPT
systems, the effective transfer of power not only relies on the rationality of the design
but also depends on various factors such as the geometric shape of the coils, the degree
of alignment, and the design of the compensation network. Furthermore, minimizing
inverter losses is particularly crucial in enhancing the efficiency of WPT systems [166].
While wide-bandgap power devices can somewhat reduce output capacitance and reverse
recovery charge, soft-switching techniques remain an effective means to decrease switching
losses. As shown in Figure 13, common modulation methods include phase-shift modu-
lation (PSM) [167–169], pulse frequency modulation (PFM) [170,171], and pulse density
modulation (PDM) [172,173].
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The technique of adjusting the output pulse width by altering the phase difference of
the triggering signals of the two arms of the inverter, without changing the pulse frequency,
is known as phase-shift modulation (PSM), as shown in Figure 13a [167]. This phase
difference is referred to as the phase-shift angle, while the width of the output pulse is
termed the duty cycle. There exists a complementary relationship between the phase-shift
angle and the duty cycle, that is, as the phase-shift angle increases, the duty cycle decreases,
resulting in a reduction in both the output pulse width and the fundamental effective value;
conversely, a decrease in the phase-shift angle leads to an increase in the duty cycle, along
with an increase in the output pulse width and fundamental effective value [168]. The duty
cycle can vary continuously between 0 and 1, indicating that PSM modulation enables
a full range of seamless adjustment. However, adjusting the duty cycle may incur hard-
switching losses, adversely impacting system efficiency. Although complex zero-voltage
switching (ZVS) angle control can facilitate soft switching, it also adds to the complexity of
the system [169].

Pulse frequency modulation (PFM) is a method for controlling the effective value of
the inverter output by varying the proportions of voltage pulses at different frequencies,
characterized by a constant pulse width duty cycle, as shown in Figure 13b [170]. The
advantage of PFM lies in its simplicity for achieving wide-range soft switching and re-
ducing the switching frequency of the inverter [171]. Nonetheless, the overall efficiency
of the system may decline under light load conditions. A method combining key control
modulation and PFM for maximum efficiency tracking was proposed in [174], although
this approach can lead to significant output current ripple and disruption issues.

Half-wave PFM was first proposed in [175,176] and applied in self-oscillating WPT
systems to ensure reliable ZVS output power regulation. Additionally, Wang et al. further
explore the application of PFM in high-order compensation topologies for wireless charg-
ing [177]. However, these PFM methods exhibit limited flexibility; for specific modulation
coefficients, the number of mixed-frequency pulse sequences must be predetermined. To
address this issue, an improved PFM based on Σ-∆ modulators has been proposed, al-
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lowing for direct frequency changes through varying sampling periods, thus facilitating
seamless pulse instruction modulation [178]. Guo et al. expanded the application of Σ-∆
modulators to three-level inverters while also considering mid-point balancing, despite the
complexity of implementation [179].

Pulse density control is a method for regulating the effective output voltage by ad-
justing the number of pulses within each modulation cycle (i.e., pulse density), without
altering the pulse frequency or duty cycle, as shown in Figure 13c [180]. A significant issue
with conventional pulse density modulation (PDM) is the severe oscillation of the inverter’s
output current, particularly at lower pulse densities [181].

To address this, enhanced PDM (EPDM) and similar modulation schemes have been
proposed to further reduce output current ripple in full-bridge inverters [182]. Li et al.
introduce a PDM strategy for a WPT system based on a dual-sided half-bridge converter,
aiming to achieve ZVS and maximum power tracking by adjusting pulse density to regulate
output power [183]. However, both coupling and load conditions may affect the soft
switching performance of the PDM-WPT system. To ensure soft switching under various
operating conditions, a PDM full-bridge converter equipped with ZVS branches between
switching nodes was proposed [184], though this approach has the drawback of modifying
the inverter topology and narrowing the modulation range.

To resolve these issues, a low-order harmonic, full-range, rapid PDM strategy was de-
veloped [185]. Additionally, improved PDM methods reduce output power fluctuations by
switching the inverter from full-bridge mode to half-bridge mode [186,187]. Nevertheless,
PDM-WPT systems require additional auxiliary circuits to alter the current frequency to
maintain soft switching. To mitigate current oscillations, conditional pulse density mod-
ulation and hybrid modulation methods have been proposed, yielding complementary
effects [188,189]. Recently, Tang et al. introduced step density modulation, which regulates
output power through varying step densities, producing fewer output current harmonics
compared to traditional PDM [190]. Furthermore, a pulse magnitude modulation combined
with multi-level converters has been proposed, further expanding the modulation strategies
for WPT systems [191].

4.5. Key-Parameters Identification

Parameter identification in WPT systems is a critical process for optimizing system
performance. Based on the identification targets, parameter identification techniques
can be classified into the following three categories: mutual inductance identification,
simultaneous identification of load and mutual inductance, and multi-parameter joint
identification techniques.

Mutual inductance identification plays a vital role in wireless charging systems, as
recognizing it aids in determining the relative position of coils and assessing system
conditions. The output impedance characteristics of the inverter in the frequency domain
were analyzed in [192], establishing the relationship between mutual inductance and
inverter output impedance. This is achieved through the measurement of output voltage,
current, and phase information from the inverter, facilitating the estimation of mutual
inductance parameters. In addition, a time-domain model of a WPT system based on SS
compensation topology is derived [193], resulting in a fourth-order time-domain differential
equation that includes mutual inductance parameters. Similar to the previous study, this
method estimates mutual inductance using inverter output voltage, current, and phase
information. These methods require zero-crossing detection circuits or discrete Fourier
transforms to obtain fundamental phase information, imposing stringent requirements on
detection circuitry or digital signal processors, and they necessitate prior knowledge of
load parameters, making them unsuitable for systems with varying loads.
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To identify mutual inductance parameters under unknown load conditions, Yang et al.
propose a method involving hardware switching to short-circuit the lower bridge arm of
a controllable rectifier bridge and use frequency sweeping to estimate the coupling coeffi-
cient [194]. Wang et al. employ a soft-start process to estimate mutual inductance by obtaining
the effective values of inverter voltage and current at low output voltage levels [195]. These
methods do not require consideration of load parameters and are suitable for identification
before normal operation. Additionally, mutual inductance identification methods utilizing
information from fundamental and higher harmonic components were explored [196,197],
though attention must be paid to the errors introduced by higher harmonics.

In practical applications, WPT systems often encounter the challenge of simultaneous
changes in mutual inductance and load parameters. To address this, researchers have
proposed various solutions for the concurrent estimation of load and mutual inductance.
Dai et al. utilize radio frequency-link wireless communication to transmit load information
from the receiving end to the transmitting end, integrating inverter data to identify multiple
mutual inductance parameters [198]. Additionally, some methods based on auxiliary ca-
pacitors and supplementary inverters to achieve mutual inductance and load identification
were proposed [199,200]; while effective, these approaches increase system complexity.
Conversely, Su et al. proposed a solution that requires no additional circuitry, utilizing
frequency control to operate the inverter in a ZPA state [201], thereby collecting voltage
and current data for parameter identification. Dai et al. employ pulse density modulation
to generate inter-harmonics, analyzing related signals to identify mutual inductance and
load [202]. These studies provide new insights into enhancing the flexibility and efficiency
of WPT systems.

The scope of multi-parameter joint identification has expanded to encompass various
parameters, including coil self-inductance, resonant capacitance, and battery status, to
meet diverse application needs and enhance system reliability. A multi-parameter joint
identification method based on DC input current and phase angle, successfully identifying
battery voltage, charging current, and equivalent load impedance of the system, was
proposed [203]. This method quantitatively describes the relationship between system
characteristics and parameters through linear superposition, utilizing easily obtainable
data for parameter estimation.

Further, Guo et al. leverage the quantified relationship of the rectifier bridge input
impedance to estimate the state of charge (SOC) of the battery [204]. However, these meth-
ods primarily rely on offline data analysis without considering variations in coil position,
necessitating optimization for more complex application scenarios. Building on this foun-
dation, Wang et al. introduce an online real-time identification algorithm [205], employing
higher-order implicit functions to represent parameter relationships and integrating an im-
proved least-mean-square adaptive filter to achieve rapid online identification. Addressing
variations in coil self-inductance, an optimization method for the identification of bilateral
coil self-inductance and mutual inductance based on variable switched capacitors was
proposed in [206]. These studies provide effective solutions for parameter identification of
WPT systems in complex environments.

5. Discussion
5.1. Development Trends

The advancement of WPT technology for EVs operating at high power levels is indeed
a pivotal area of research and development. This technology aims to provide efficient,
convenient, and rapid charging solutions that can enhance the EV charging experience and
promote broader adoption of EVs. High-power WPT systems are focused on maximizing
efficiency during the power transfer process. Innovations in resonant inductive couplers,
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such as optimized coil design and placement, play a crucial role in reducing energy losses
and improving overall system performance.

DWC represents a significant advancement in WPT technology, allowing charging
while vehicles are in motion. Recent developments have aimed at enhancing power levels,
system efficiency, and stability, with innovations in magnetic coupler designs, such as
elongated rail and segmented coil configurations, reducing electromagnetic interference and
improving energy transfer. Advanced modeling techniques and control strategies are also
being adopted to tackle challenges like misalignment. Future efforts will likely emphasize
optimizing system costs, interoperability, and integration with emerging technologies to
further improve the practicality and scalability of DWC systems.

Addressing misalignment in WPT systems is critical for stable and efficient charging.
Current trends focus on optimizing magnetic coupler designs and enhancing system
adaptability through compensation networks and reconfigurable circuits. Simplified control
strategies improve robustness by minimizing reliance on complex communication protocols.
Future study will prioritize practical integration and standardization of evaluation metrics.

Parameter identification in WPT systems faces challenges related to accuracy and
environmental adaptability. Current methods are often limited to specific topologies and
susceptible to interference. Future research should concentrate on multi-parameter joint
identification to enhance system reliability and efficiency. Developing adaptable algo-
rithms and integrating real-time data processing will be crucial for dynamic adjustments.
Strengthening interdisciplinary collaboration across fields like artificial intelligence and
communication technologies will foster innovative solutions to the challenges faced by
WPT systems [207–211]. Accurate and real-time parameter identification will be essential
for optimizing WPT performance in increasingly complex application scenarios.

Furthermore, it is important to recognize the critical role of wireless communications
and protocols in the wireless charging of electric vehicles. Effective communication is essen-
tial for ensuring interoperability among various EV models and charging stations, which is
vital for the widespread adoption of this technology. Furthermore, robust communication
systems provide real-time data regarding charging status, battery health, and potential
faults, thereby enhancing safety and optimizing charging efficiency. Standards such as IEC
61980 offer guidelines for these communication protocols, underscoring their importance
in creating a seamless user experience and supporting the transition to electric mobility.

5.2. Limitations

Many existing WPT systems provide limited power transfer capabilities, which may
fall short of meeting the rapid charging requirements of EVs. Although technology contin-
ues to advance, current systems may struggle to deliver the high power levels necessary
for quick charging, resulting in longer wait times for users. With the development of
superconducting technology, the active development of superconducting WPT will bring
the possibility of high-power wireless charging [212,213].

Furthermore, high-power WPT systems generate substantial heat during operation, pre-
senting challenges for thermal management. This is because increased charging power leads to
heat buildup, which affects charging efficiency and safety. Excessive heat can adversely affect
the performance and longevity of electronic components, potentially leading to failures [213].
Inadequate thermal management can diminish the efficiency of power transfer and increase
the risk of overheating. Therefore, effective cooling solutions, such as active cooling systems,
high thermal conductivity materials, and optimized design of couplers [214,215], are needed
to ensure that the system maintains appropriate operating temperatures during high power
transfer, thereby improving overall efficiency and reliability.
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Additionally, concerns regarding electromagnetic interference and safety must be
addressed. The intense electromagnetic fields generated by high-power WPT systems
can interfere with nearby electronic devices, including sensitive electronic components in
electric vehicles and surrounding infrastructure, affecting communication systems and
vehicle controls, potentially leading to malfunctions or degraded performance of the
EVs [216]. Therefore, effective shielding and filtering techniques must be employed in the
design of WPT systems to mitigate the effects of electromagnetic interference [217]. To
resolve these issues, comprehensive testing and adherence to safety standards are essential
to ensure that high-power WPT systems do not cause harmful interference or safety hazards
during charging. Moreover, prolonged exposure to strong electromagnetic fields raises
safety concerns [218]. Ongoing research aims to understand the potential health impacts
of such exposure, including risks associated with long-term use [219,220]. Advanced
shielding technologies may be necessary to minimize interference and ensure safety, which
can further increase system complexity and costs, impacting the overall design.

6. Conclusions
The advancement of WPT technology represents a significant breakthrough in the

realm of EV charging. Among many WPT technologies, the power transfer capability of
CPT currently makes it difficult to meet the demand for wireless charging of EVs, and
its complex coupling mechanism limits its applicability in the dynamic charging of EVs.
Far-field WPT can utilize microwave or laser technology to achieve energy transmission
over longer distances, but they suffer from lower efficiency and higher costs, making them
less practical for widespread use in EV charging applications. In contrast, IPT emerges as
the most promising EV charging technology due to its relatively large transmission power,
high efficiency, and anti-misalignment ability. This paper highlights the theoretical foun-
dations, diverse implementation strategies, and optimization techniques that support the
development of IPT. Despite commendable progress, several limitations persist, including
power losses, high power transfer, EMI interference, safety concerns, and the inherent
complexity of system designs, all of which may hinder its widespread application. Future
research must prioritize overcoming these obstacles by exploring innovative methods
that can enhance the practicality and performance of wireless charging technology. This
encompasses investigating advanced coil designs, improving energy transfer efficiency,
and developing robust safety mechanisms to ensure user confidence. With the advent of an
era characterized by smart cities and autonomous EVs, wireless charging will be essential
in supporting the ecosystem necessary for the flourishing of electric mobility, aiding in the
establishment of a more environmentally friendly and efficient transportation system, in
alignment with global efforts to reduce carbon emissions and promote urban sustainability.
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