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Abstract: The current literature highlights several state-of-health (SOH) prediction mod-
els for lithium-ion (Li-ion) batteries used in electric vehicles (EVs). However, a thorough 
comparative analysis remains absent. This study addresses this gap by conducting a com-
prehensive evaluation of SOH prediction methods for Li-ion batteries in EV applications, 
encompassing direct measurement techniques, physics-based approaches, and data-
driven methodologies. The analysis identifies the strengths, limitations, and applicability 
of each modeling method. Additionally, this study explores key indicators of SOH, influ-
ential variables affecting battery health, and publicly available datasets that support SOH 
modeling. By synthesizing these insights, the research provides recommendations for im-
proving existing models and outlines prospective directions for enhancing the accuracy 
and efficiency of SOH estimation in EV applications. This work aims to contribute to the 
development of robust, accurate, and practical SOH models, thereby advancing the relia-
bility and sustainability of Li-ion battery systems in the growing EV industry. 

Keywords: data evaluation; electric vehicles; Li-ion batteries; modeling prediction; state 
of health (SOH) 
 

1. Introduction 
Lithium-ion (Li-ion) batteries have fundamentally transformed energy storage, 

emerging as the leading technology in consumer electronics, electric vehicles (EVs) [1], 
and renewable energy systems. Their superior energy density, extended cycle life, and 
relatively low weight render them optimal for a broad spectrum of applications. In con-
trast to conventional batteries, Li-ion batteries operate by transferring lithium ions be-
tween the anode and cathode during charge and discharge cycles, facilitating efficient 
energy storage. 

Predicting the state of health (SOH) of Li-ion batteries remains a significant challenge 
due to the complex interplay of capacity degradation, environmental sensitivity, and op-
erational variability. Batteries experience diverse usage patterns, such as fluctuating 
charge/discharge rates, depth of discharge (DoD), and cycling frequencies, which directly 
impact degradation rates. For example, electric vehicle (EV) batteries endure rapid, dy-
namic load profiles, whereas grid storage batteries face slower, more consistent cycles. 
Environmental factors, particularly temperature fluctuations, further complicate SOH 
prediction, as high temperatures accelerate side reactions such as solid electrolyte 
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interphase (SEI) growth, while low temperatures increase internal resistance. These vari-
ations hinder the development of generalizable models, often resulting in inaccurate pre-
dictions in real-world applications [2,3]. 

Additional challenges include data quality and availability, nonlinear degradation 
behavior, and real-world noise. High-quality datasets encompassing diverse operating 
conditions are often limited, restricting the accuracy and generalizability of data-driven 
models. Battery degradation is inherently nonlinear, with capacity fade occasionally ac-
celerating abruptly after a specific number of cycles, complicating long-term SOH estima-
tion. Real-world data are also susceptible to noise and uncertainties, such as measurement 
errors and sensor drift, which undermine the reliability of SOH estimates, particularly in 
online applications. Moreover, while high-fidelity models such as physics-based or hybrid 
approaches offer precision, their computational complexity often renders them unsuitable 
for real-time battery management systems (BMSs). These challenges underscore the need 
for robust, adaptive models capable of addressing variability, noise, and computational 
constraints while maintaining predictive accuracy [4,5]. 

Despite these challenges, ongoing research and development efforts are concentrated 
on enhancing their performance, safety, and sustainability, thereby enabling their further 
integration and adoption in the future [6,7]. 

The state of health (SOH) of Li-ion batteries refers to their current performance rela-
tive to their initial capacity. This critical metric assesses the battery’s ability to store and 
deliver charge efficiently over time [8,9]. Several factors influence SOH, including aging, 
temperature fluctuations, charge cycles, and deep discharges. As Li-ion batteries age, their 
capacity progressively declines due to internal chemical changes, such as the degradation 
of the electrolyte and the formation of the solid electrolyte interphase (SEI) layer on the 
anode. The monitoring of the SOH is essential for predicting battery lifespan and optimiz-
ing its usage [8,10]. Techniques such as voltage-based methods and impedance spectros-
copy are commonly employed to evaluate SOH. With the increasing demand for electric 
vehicles and renewable energy storage, understanding and improving SOH is vital for 
enhancing battery reliability and performance [11,12]. 

Despite the availability of several literature reviews on the evaluation of the state of 
health (SOH) of electric vehicle (EV) Li-ion batteries, they present certain limitations. For 
instance, ref. [10] reviewed strategies for monitoring Li-ion battery SOH [13], but this 
study is not exhaustive and primarily focuses on early generations of EVs. Additionally, 
ref. [14] classified battery SOH assessment techniques into experimental and physics-
based approaches, yet a comprehensive analysis of the advantages and disadvantages of 
each method is lacking [15]. Studies by [16,17] explored methodologies for estimating bat-
tery SOH [18,19], but did not address the various factors influencing the SOH of Li-ion 
batteries. Furthermore, ref. [20] introduced data-driven approaches for estimating battery 
SOH, including machine learning and differential analysis; however, it did not consider 
alternative SOH prediction techniques, such as electrochemical models. 

Given the knowledge gaps identified earlier, the aim of this study is to conduct a 
comprehensive literature analysis on various approaches used to predict the state of 
health (SOH) of electric vehicle (EV) Li-ion batteries. This paper will explore a range of 
methodologies, from traditional physics-based models to more modern data-driven tech-
niques. Additionally, it will compile relevant data sources, key factors, and indicators re-
lated to Li-ion battery SOH. The findings from this study are expected to contribute to the 
development of enhanced models and applications for assessing SOH in EV-based Li-ion 
batteries. 
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2. Benchmark of Li-Ion Batteries SOH 
Monitoring SOH is crucial for ensuring the longevity and performance of Li-ion bat-

teries, particularly in EVs [21]. Below are several benchmarks used to assess the SOH of a 
Li-ion battery: 

1. Capacity fade; 
2. Internal resistance; 
3. Voltage and voltage profile; 
4. Cycle life; 
5. Temperature behavior; 
6. Self-discharge rate; 
7. State of charge (SOC) accuracy. 

Table 1 summarizes the key benchmarks for assessing the SOH of Li-ion batteries, 
their definitions, measurement methods, and significance in evaluating the SOH. By ana-
lyzing these benchmarks, researchers can assess battery health, detect potential failure 
types, and optimize battery management systems. This contributes to extended battery 
life and enhanced performance. 

Table 1. Benchmarks for assessing the state of health (SOH) of Li-ion batteries. 

Benchmark Definition Measurement Significance Pros Cons 

Capacity Fade 

The battery’s capac-
ity reflects its ability 
to store and deliver 
energy. Over time, 
chemical degrada-
tion reduces capac-
ity, signaling health 
deterioration [22]. 

SOH is calculated 
by comparing the 

current capacity rel-
ative to the initial 

rated capacity [23]. 

A significant capac-
ity drop shortens 

battery life and re-
duces performance, 
making this a pri-
mary indicator of 

SOH [22,23]. 

Directly reflects the 
usable energy stor-
age capability of the 

battery [22]. 
Easy to measure and 
widely used in SOH 

estimation [23]. 

Requires full 
charge/discharge cy-
cles, which may not 
be practical in real-
time monitoring. 

Sensitive to operat-
ing conditions (e.g., 
temperature, C-rate) 

[22].  

Internal re-
sistance 

Refers to the opposi-
tion to current flow 
within the battery, 

which increases 
with aging and deg-

radation [23–26]. 

Measured via Elec-
trochemical Imped-
ance Spectroscopy 
(EIS) or by observ-

ing the voltage drop 
under load [22]. 

Elevated internal re-
sistance generates 
heat, reduces effi-

ciency, and acceler-
ates capacity fade, 
often correlating 

with decreased SOH 
[23–26]. 

Indicates power de-
livery capability and 
aging mechanisms 
(e.g., SEI growth). 
Can be measured 
without fully dis-

charging the battery 
[23–26]. 

Measurement re-
quires specialized 

equipment (e.g., im-
pedance analyzers). 
Affected by temper-

ature and SOC, 
complicating inter-
pretation [23–26]. 

Voltage and 
Voltage Pro-

file 

Voltage is the poten-
tial difference be-

tween the battery’s 
terminals, with 
characteristic 

charge/discharge 
curves that shift as 

the battery degrades 
[27,28]. 

Monitored under 
different charge/dis-
charge conditions; 

deviations from typ-
ical voltage curves 
highlight potential 

issues [22,28]. 

Changes in nominal 
voltage or unusual 
fluctuations can in-
dicate poor battery 

health or imbal-
anced cells [23,27]. 

 Provides real-time 
insights into battery 

behavior during 
charge/discharge. 

Easy to measure us-
ing standard BMS 

sensors [27,28]. 

 Voltage alone may 
not fully capture 

degradation mecha-
nisms. 

Voltage profiles can 
vary significantly 

with load and tem-
perature [23,28]. 

Cycle life 

The number of full 
charge/discharge cy-
cles before capacity 
drops below a spe-

cific threshold 

Counted and com-
pared against the 

manufacturer’s ex-
pected cycle life un-
der standard condi-

tions [26–28]. 

Batteries exceeding 
expected cycles may 

exhibit reduced 
SOH due to material 
degradation [23,28]. 

Directly correlates 
with battery lifespan 

and degradation 
over time. 

Useful for predict-
ing end-of-life 

Requires long-term 
testing, making it 

impractical for real-
time SOH estima-

tion. 
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(typically 80% of ini-
tial capacity) [23,26]. 

(EOL) conditions 
[27,28]. 

Cycle life can vary 
significantly de-

pending on usage 
patterns [27,28]. 

Temperature 
behavior 

Temperature signifi-
cantly impacts per-
formance and SOH, 
with elevated tem-
peratures accelerat-
ing component deg-

radation [24]. 

Monitored during 
operation; anoma-
lies like excessive 
heat buildup indi-

cate potential issues 
[24,28]. 

Abnormal tempera-
ture behavior can 

signal degradation, 
affecting battery 
health and safety 

[24]. 

Highlights thermal 
stability and safety 
concerns (e.g., ther-

mal runaway). 
Helps identify ab-
normal heating, 

which can indicate 
degradation [24]. 

Requires precise 
temperature sensors 

and thermal man-
agement systems. 

Temperature effects 
are complex and 
may not directly 

correlate with SOH 
[28]. 

Self-Discharge 
Rate 

The rate at which a 
battery loses charge 
when idle, increas-
ing with age and 

degradation [27,28]. 

Measured over time; 
an elevated rate sug-
gests internal issues 

[27]. 

High self-discharge 
rates can indicate in-
ternal shorts or ris-
ing resistance, both 
indicative of poor 

SOH [27,28]. 

Indicates internal 
leakage and poten-
tial aging mecha-
nisms (e.g., SEI 

growth). 
Useful for identify-
ing defective or de-

graded cells [27]. 

Difficult to measure 
accurately in real-

world applications. 
Requires long peri-

ods of inactivity, 
which is impractical 

for active systems 
[28]. 

State of 
Charge (SOC) 

Accuracy 

SOC represents the 
current charge level 
of the battery. Accu-
rate SOC estimation 
is critical for effec-

tive battery manage-
ment [22,27]. 

Evaluated by com-
paring the predicted 
SOC against actual 

charge levels [22,28]. 

Aging reduces SOC 
estimation accuracy, 

impacting perfor-
mance and the relia-

bility of battery 
management sys-

tems [23,27]. 

Reflects the battery’s 
ability to accurately 
estimate remaining 

energy. 
Critical for real-time 
battery management 

and user feedback 
[23]. 

SOC estimation er-
rors can mask true 
SOH degradation. 
- SOC accuracy de-
pends on voltage 
and current meas-

urements, which can 
be noisy [27]. 

3. Public Datasets for Li-Ion Batteries SOH 
To construct a Li-ion battery SOH model, several publicly available datasets may be 

employed to evaluate battery deterioration and forecast the remaining usable life (RUL) 
of batteries. Some of these significant datasets are the following: 

1. NASA battery dataset (battery aging data); 
2. The CALCE battery dataset; 
3. SELI dataset (Swedish Electric Vehicle Fleet); 
4. UCI Machine Learning Repository: battery SOH dataset; 
5. Battery Management System (BMS) battery dataset; 
6. The G2 battery dataset; 
7. ECOBATT dataset; 
8. The LIB battery dataset. 

Table 2 summarizes the description, usefulness, and access information for key da-
tasets related to the SOH of Li-ion batteries. These datasets provide extensive information 
on battery performance and degradation, essential for developing SOH models and con-
ducting prognostic analysis. Researchers can select a suitable dataset based on the specific 
requirements of electric vehicle (EV) applications. The available access links are given di-
rectly in Appendix A. 
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Table 2. Public datasets for Li-Ion batteries SOH analysis. 

Dataset Description Usefulness Applicability Gaps Limitations Case Study Access 

NASA Battery 

Provided by NASA’s 
Prognostics Center of Ex-
cellence (PCoE), this da-

taset includes charge/dis-
charge data, voltage, cur-

rent, and temperature 
profiles for lithium-ion 
batteries under various 

operating conditions [29]. 

Commonly used for SOH 
modeling and degrada-

tion prediction tasks [29]. 

Detailed cycle-by-cycle 
data for SOH and RUL 

prediction [30]. 

Limited to 18,650 cells; 
lacks data from extreme 

conditions. 

Controlled lab conditions; 
small sample size. 

Used in [30] to de-
velop an LSTM 
model for RUL 

prediction, achiev-
ing 95% accuracy 
in cycle life esti-

mation. 

NASA PCoE Da-
taset 

CALCE Battery 

Developed by the Univer-
sity of Maryland’s 

CALCE, this dataset con-
tains aging cycles, 

charge/discharge charac-
teristics, and voltage vari-
ations for lithium-ion bat-

teries [31]. 

Widely utilized for perfor-
mance degradation analy-
sis and developing ther-
mal and voltage-based 

SOH models [31]. 

High-resolution data for 
capacity fade and imped-

ance modeling [32]. 

Limited to LCO chemis-
try; lacks metadata on 

manufacturing. 

Focuses on calendar ag-
ing; noisy impedance 

measurements. 

Applied in [32] to 
study capacity 

fade using Gauss-
ian Process Re-
gression, with 
RMSE < 2% for 

SOH estimation. 

CALCE Battery 
Data 

SELI 

The Swedish Electric Ve-
hicle Fleet dataset pro-

vides SOC, temperature, 
voltage, and current data 
collected over months of 
EV operation, reflecting 

real-world conditions [33]. 

Useful for SOH estimation 
and condition monitoring 
in real-world EV scenarios 

[33]. 

Real-world EV battery 
data for practical SOH 

analysis [34]. 

Limited raw data availa-
bility; incomplete 

metadata. 

Narrow operating condi-
tions; potential inconsist-
encies in data collection. 

Used in [34] to 
train a Random 
Forest model for 

SOH prediction in 
EVs, achieving 
90% accuracy. 

SELI Dataset 

UCI Machine Learn-
ing Repository 

Contains battery model-
ing datasets, including 

lithium-ion battery 
charge/discharge cycles, 
with variables such as 

current, voltage, and tem-
perature [35]. 

Suitable for developing 
classification or regression 

models for battery SOH 
estimation [35]. 

Structured format for 
benchmarking ML models 

[36]. 

Limited cycle data; lacks 
impedance measure-

ments. 

Controlled conditions; 
small sample size and lim-

ited chemistries. 

Employed in [36] 
to benchmark 

SVM and ANN 
models for SOH 
estimation, with 
SVM achieving 
92% accuracy. 

UCI Repository 

BMS Battery 

Focused on charge/dis-
charge profiles, this da-
taset includes detailed 
current, voltage, and 

Helpful for predicting bat-
tery health and identify-

ing failure conditions [37]. 

Real-time BMS data for 
online SOH estimation 

[38]. 

Limited to specific battery 
packs; lacks metadata on 

usage history. 

Noisy data due to real-
world conditions; limited 
extreme scenario cover-

age. 

Utilized in [38] to 
develop an online 
SOH estimation 
algorithm using 

Kaggle BMS Da-
taset 
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temperature data for lith-
ium-ion batteries [37]. 

Kalman filtering, 
with < 3% error. 

G2 Battery 

Provided by General Elec-
tric, this dataset includes 
cell voltage, temperature, 

current, and resistance 
measurements for lith-

ium-ion batteries used in 
grid applications [39]. 

Valuable for long-term 
battery degradation mod-
eling and SOH prediction 

[39]. 

Grid storage data for sta-
tionary energy SOH anal-

ysis [40]. 

Limited to lithium iron 
phosphate (LFP) chemis-
try; lacks detailed cycle 

data. 

Focuses on long-term ag-
ing; potential biases in 

data collection. 

Applied in [40] to 
model capacity 

degradation using 
a physics-based 

approach, achiev-
ing 94% accuracy. 

Not publicly avail-
able; access can be 
requested through 
GE or associated 
research projects. 

ECOBATT 

Real-world EV battery 
data, including voltage, 

current, and temperature, 
collected during routine 

operations [41]. 

Effective for investigating 
SOH and remaining use-
ful life (RUL) in EV appli-

cations [41]. 

Recycled battery data for 
second-life SOH studies 

[42]. 

Small sample size; lacks 
detailed usage history 

metadata. 

Inconsistent data due to 
recycling variations; lim-
ited operating condition 

coverage. 

Used in [42] to 
evaluate second-

life battery perfor-
mance, showing 
80% capacity re-
tention after 500 

cycles. 

ECOBATT Dataset 

LIB Battery 

Focuses on lithium-ion 
battery performance, cov-
ering charge/discharge cy-

cles, aging effects, and 
current/voltage/tempera-

ture profiles [43]. 

Highly useful for predict-
ing battery degradation 
and supporting BMS re-

search [43]. 

Multi-chemistry data for 
comparative SOH analysis 

[44]. 

Limited to lab conditions; 
lacks impedance data. 

Small sample size; focuses 
on specific degradation 

mechanisms. 

Employed in [44] 
to compare NMC 
and LFP degrada-
tion rates, identi-

fying NMC as 
more susceptible 
to capacity fade. 

Available via aca-
demic research 

platforms such as 
ResearchGate. 
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4. Li-Ion Batteries SOH Modeling Techniques 
Accurate SOH modeling is vital for forecasting battery aging, optimizing perfor-

mance, and estimating remaining useful life. Various methodologies have been proposed 
for SOH modeling, each differing in complexity, precision, and computational require-
ments. The key methodologies for SOH modeling include the following: 

1. Empirical models; 
2. Physics-based models; 
3. Data-driven models; 
4. Kalman filtering and extended Kalman filtering; 
5. Hybrid models. 

Figure 1 depicts an illustration of the Li-ion batteries SOH modeling techniques. 

 

Figure 1. Illustration of Li-ion batteries SOH modeling techniques. 

4.1. Empirical Models 

Empirical models for SOH prediction are grounded in experimental data and aim to 
capture the relationships between a battery’s internal state and its operational character-
istics. These models are essential for estimating battery life and improving BMS. Below 
are key empirical approaches for SOH modeling: 

1. Capacity-based models; 
2. Voltage-based models; 
3. Impedance-based models; 
4. Coulomb counting and charge/discharge profiles; 
5. Empirical regression models; 
6. Piecewise models. 

Table 3 provides a detailed summary of these empirical models, including their types 
and representative examples. These approaches are critical for practical applications, en-
abling effective SOH estimation and optimization in various Li-ion battery systems. 
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Table 3. Empirical models, types, definitions, and examples. 

Model Type Definition Example 

Capacity-Based 
Focuses on correlating capacity degradation over cy-

cles with operational factors such as charge/dis-
charge cycles, temperature, and current rates. 

Cycling performance: Monitors discharge capacity 
over time and models deterioration using experi-

mental data. For instance, ref. [45] developed a 
model to forecast capacity degradation across vari-

ous operating conditions using cycle data. 

Voltage-Based 
Examines the voltage profile to correlate with the 
battery’s residual health, capturing aging effects 
such as increased resistance or electrolyte loss. 

Voltage profile monitoring: Utilizes voltage profiles 
during charge/discharge cycles to predict SOH. For 
example, ref. [46] used voltage measurements to es-
timate SOH and analyzed the impact of temperature 

variations on battery performance. 

Impedance-Based 
Leverages Electrochemical Impedance Spectroscopy 
(EIS) to assess SOH, as impedance rises with battery 

degradation. 

Impedance monitoring: Collects impedance spectra 
at various frequencies to link impedance changes 

with degradation processes. In [47], the relationship 
between aging and impedance increases was ana-

lyzed to develop empirical SOH estimation models. 

Coulomb Counting and 
Charge/Discharge Pro-

files 

Measures total charge input/output to detect dis-
crepancies indicating degradation. 

Regression-based models: Construct equations link-
ing parameters (e.g., capacity, voltage, resistance) 

with SOH [48]. For example, ref. [49] applied regres-
sion techniques to predict SOH from long-term cy-

cling experiment data. 

Piecewise 
Segments the battery lifecycle into distinct phases 

with varying degradation rates for each phase. 

Phase-based modeling: Captures degradation be-
havior in distinct lifecycle stages. For instance, ref. 
[50] employed a piecewise approach to model bat-

tery degradation, incorporating factors such as tem-
perature and state of charge (SOC). 

4.2. Physics-Based Models 

Physics-based models for assessing SOH of Li-ion batteries focus on accurately rep-
resenting the electrochemical and physical processes that drive performance degradation 
over time. SOH quantitatively reflects the battery’s ability to store and deliver energy 
compared to its original state and encompasses critical parameters such as capacity loss, 
impedance growth, and reduced cycle life. The key methodologies within this modeling 
paradigm include the following: 

1. Pseudo-2D Model—a detailed representation of electrochemical interactions and ion 
transport. 

2. Equivalent Circuit Model (ECM)—A simplified electrical analog of battery behavior. 
3. Electrochemical Impedance Spectroscopy (EIS)—A frequency-based diagnostic tool 

for identifying degradation mechanisms. 

Table 4 provides an overview of the applications of these physics-based models in 
Li-ion battery SOH analysis: 

Table 4. Applications of physics-based models. 

Model Type Definition Example 

Pseudo-2D Model 

A widely utilized physics-based approach for evaluating 
battery performance, the pseudo-2D model employs dif-
ferential equations to represent lithium-ion transport, po-
tential distribution, and electrochemical reactions at the 

electrode/electrolyte interface. 

Effectively simulates battery behavior over 
extended cycles and provides insights into 

degradation mechanisms under varying oper-
ational conditions (e.g., temperature, current 

rate) [51,52]. 

Equivalent Circuit Model 
(ECM) 

ECM simplifies battery behavior into an electrical net-
work of resistors, capacitors, and voltage sources. It cap-
tures battery degradation through simulated increases in 

Widely applied in real-time battery health 
monitoring due to its computational 
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impedance and decreases in capacity, with resistors rep-
resenting internal resistance and capacitors mimicking 

charge storage dynamics. 

efficiency and suitability for integration into 
BMS [53]. 

Electrochemical Imped-
ance Spectroscopy (EIS) 

A diagnostic technique for measuring battery impedance 
across a range of frequencies. Often integrated with phys-
ics-based models, EIS links changes in impedance to in-

ternal degradation mechanisms. 

Highly effective in identifying solid electro-
lyte interphase (SEI) layer formation and 

evaluating its influence on battery aging and 
performance [54]. 

4.3. Data-Driven Models 

Data-driven models for the estimation of the state of health (SOH) of Li-ion batteries 
have emerged as a critical area of research, providing an efficient approach for predicting 
battery health using real-time data and operational parameters. These models leverage 
various techniques from machine learning, artificial intelligence, and data analytics to im-
prove the accuracy of SOH predictions. Notable methodologies include the following: 

1. Machine learning and Deep Learning; 
2. Recurrent neural networks (RNNs) and Long Short-Term Memory Networks 

(LSTMs) 
3. Gaussian processes (GPs) 
4. Support Vector Regression (SVR) 
5. Feature Engineering and Sensor Fusion 

Table 5 presents a detailed overview of these data-driven models, their definitions, 
and applications. These approaches have demonstrated substantial effectiveness in pre-
dicting battery SOH and are increasingly integrated into BMS. The performance of these 
models is primarily influenced by the quality and volume of the available data and their 
ability to capture the complex, nonlinear, and dynamic characteristics of battery aging. 

Table 5. Data-driven models, definitions, and applications. 

Model Type Applications 

Machine Learning and Deep Learning 

Artificial neural networks (ANNs): Widely utilized for SOH estimation 
due to their ability to capture complex, nonlinear relationships between 

battery parameters. ANN models, including feedforward neural net-
works, are trained on historical data to predict battery health degrada-
tion based on variables such as voltage, current, and temperature [55]. 

Support Vector Machines (SVMs): Applied in SOH forecasting by ana-
lyzing key features such as impedance, voltage, and temperature. SVMs 
are particularly effective with small datasets and are known for their su-

perior classification accuracy [56].  
Random Forests (RFs): A robust ensemble learning method, random for-

ests have been successfully employed for SOH prediction by aggregat-
ing data from various sensors and conditions. The model constructs 

multiple decision trees to provide a reliable and precise evaluation of 
battery health [57]. 

Recurrent Neural Networks (RNNs) and 
Long Short-Term Memory Networks 

(LSTMs) 

These models are highly suited for sequence prediction tasks, making 
them ideal for battery SOH estimation where time-series data (historical 
performance) plays a significant role. LSTM networks are particularly 

adept at capturing long-term dependencies in the data, which is crucial 
for understanding battery degradation over time [58]. 

Gaussian Processes (GPs) 

Gaussian processes offer a probabilistic approach to quantify uncer-
tainty in SOH predictions. They are especially useful in scenarios involv-
ing sparse or noisy data, as they provide confidence intervals alongside 

predictions [59]. 
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Support Vector Regression (SVR) 

SVR is used to predict continuous values, making it suitable for SOH as-
sessment based on historical battery performance data. It has shown 
promising results in accurately estimating the remaining useful life 

(RUL) of Li-ion batteries [60]. 

Feature Engineering and Sensor Fusion 

The performance of data-driven models can be significantly improved 
by the careful selection and engineering of features derived from opera-
tional data. Additionally, sensor fusion, which integrates data from mul-
tiple sensors (e.g., temperature, voltage, current), provides a more com-

prehensive view of the battery’s SOH [61]. 

4.4. Kalman Filtering and Extended Kalman Filtering 

The assessment of the SOH for Li-ion batteries is crucial for evaluating their perfor-
mance, longevity, and safety. Kalman filtering (KF) and Extended Kalman filtering (EKF) 
are widely used techniques for SOH estimation, utilizing system models to filter and as-
sess the battery’s internal condition based on noisy or corrupted measurements. In the 
typical application of KF for Li-ion battery modeling, a state-space model is employed to 
represent the dynamic behavior of the battery. This model incorporates various internal 
variables, such as voltage, current, and temperature, as part of the system’s state. The 
measurement update in the Kalman filter adjusts the predicted state by incorporating ac-
tual measurements, such as voltage or current, with the Kalman gain determining the 
weight assigned to the forecast in relation to the measurements. KF is commonly used to 
simulate internal resistance over time by integrating voltage and current readings, which 
is a critical metric for estimating SOH. Additionally, SOH can be inferred from the vari-
ance between the predicted resistance and its original value [62]. 

While the Kalman filter is effective for linear systems, Li-ion batteries exhibit nonlin-
ear dynamics due to complex electrochemical processes. To address these nonlinearities, 
the Extended Kalman Filter (EKF) is often employed. The EKF linearizes the nonlinear 
model through a first-order Taylor expansion around the current state estimate, allowing 
the application of Kalman filtering to nonlinear systems. A typical nonlinear model con-
cerns the battery’s capacity, which degrades over time. The EKF can estimate this capacity 
by monitoring the battery’s terminal voltage and current throughout a charge/discharge 
cycle, refining the state estimation with the collected data [63]. 

4.5. Hybrid Models 

Hybrid modeling approaches for SOH estimation in Li-ion batteries integrate phys-
ics-based and data-driven methodologies to enhance prediction accuracy. This synergistic 
approach leverages the strengths of both paradigms: physics-based models provide a fun-
damental understanding of electrochemical degradation mechanisms, while data-driven 
models capitalize on empirical observations and machine learning techniques. 

For instance, integrating artificial neural networks (ANNs) with electrochemical 
models improves SOH prediction by capturing both real-time operational data and the 
underlying physics of battery operation. This enables the model to accurately represent 
nonlinear and dynamic behavior, including the effects of temperature fluctuations, 
charge/discharge cycles, and internal resistance, which are crucial for accurate remaining 
useful life (RUL) estimation and performance degradation prediction [64]. 

Hybrid models effectively address the limitations of individual approaches. When 
data are sparse or noisy, physics-based models provide a robust framework, while data-
driven models enhance accuracy and adaptability in complex real-world scenarios with 
varying operating conditions. This hybrid approach has demonstrated significant poten-
tial in battery management systems (BMSs) for optimizing battery usage and extending 
operational lifespans [65,66]. 
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Examples of successful hybrid approaches include the following: 

1. EIS combined with machine learning algorithms: enables real-time SOH monitoring 
with improved accuracy and sensitivity [67]. 

2. Hybrid models integrated with prognostics: facilitate the accurate prediction of fail-
ure modes and maintenance schedules in electric vehicles [68]. 

These advancements underscore the growing importance of hybrid modeling in de-
veloping advanced BMSs and improving the sustainability and efficiency of battery sys-
tems across various applications, including electric vehicles and renewable energy stor-
age. 

5. Strength and Weakness of Li-Ion SOH Modeling Estimation Tech-
niques 

Table 6 outlines the estimation methodologies employed for modeling the SOH of Li-
ion batteries. These five techniques are effective at uncovering complex relationships be-
tween operational parameters and SOH, enabling the development of prediction models 
that can be applied across various battery chemistries and usage scenarios. Data-driven 
approaches, for instance, are particularly adept at learning intricate, nonlinear patterns 
from large datasets. They can adapt to evolving conditions and account for nonlinear deg-
radation processes, making them well suited for real-time applications. However, such 
methods are heavily reliant on vast and diverse datasets for effective training, with the 
quality and variety of data being crucial for accurate predictions. Additionally, data-
driven models often lack the interpretability of physics-based models, making it challeng-
ing to understand the underlying mechanisms driving the degradation processes. 

On the other hand, physics-based models simulate the internal thermal and electro-
chemical dynamics of the battery, providing outputs that are often more interpretable 
compared to those generated by data-driven methods. This interpretability allows for a 
deeper understanding of the battery’s degradation mechanisms, such as capacity fade, 
impedance growth, and internal resistance variations. However, while these models offer 
valuable insights into battery behavior, they may not capture the full complexity of real-
world scenarios, especially under dynamic and varied operating conditions. Therefore, 
hybrid approaches that combine the strengths of both data-driven and physics-based 
models have been proposed to improve both the predictive accuracy and interpretability 
of SOH estimation, addressing the limitations of each individual methodology [69–79]. 

The integration of multiple modeling methodologies presents a promising avenue 
for future research on the state of health (SOH) of electric vehicle (EV) batteries. However, 
the hybrid approach often demands substantial computational resources, which can hin-
der its applicability in real-time SOH monitoring applications [72–80]. 

Table 6. Strengths and weaknesses of Li-ion SOH modeling estimation techniques. 

Model Type Strengths Limitations and Weaknesses Practical Applicability 

Pseudo-2D 
Model 

- Simple implementation  
- Fast computation  
- Low computational demand  
- Widely applicable  
- Less complex 

- Poor adaptability  
- Limited accuracy  
- Lack of physical insight  
- Risk of overfitting  
- Limited predictive 

power  
- Calibration requirements 

Computationally expensive 
Limited to lab-scale validation 

Simulates electrochemical pro-
cesses (e.g., lithium-ion diffu-
sion) for detailed degradation 
analysis [81]. 
Example: Used to study ca-
pacity fade in NMC batteries 
under high C-rates [81]. 
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- Not suitable for real-time 
applications 

Physics-based 
Models 

- High accuracy and precision  
- Well-established model princi-

ples  
- Predictive capability  
- Adaptability  
- No need for extensive data 

- Highly complex  
- Depends on assumptions 

and simplifications  
- Parameter sensitivity  
- Limited to specific condi-

tions  
- Inability to handle uncer-

tainty 
- Struggles with real-

world variability and 
noise in data 

- Requires extensive ex-
perimental data for cali-
bration 

Captures degradation mecha-
nisms (e.g., SEI growth, lith-
ium plating) for long-term 
SOH prediction [82]. 
Example: Applied to predict 
capacity loss in LFP batteries 
at varying temperatures [82]. 

Data-driven 
Models 

- Flexibility in learning complex re-
lationships  

- Adaptability  
- Real-time monitoring  
- Accuracy in predictions  
- Reduced need for physical test-

ing  
- Scalability  
- Predictive maintenance 

- Dependent on data qual-
ity  

- Risk of overfitting  
- Complexity in model in-

terpretation  
- Limited data in critical 

cases  
- Need for regular updates 
- Computational overhead 
- Challenges in generaliz-

ing models  
- Limited physical insight 
- Requires large, high-

quality datasets for train-
ing 

- Limited interpretability 
may lead to failure under 
unseen operating condi-
tions 

Uses machine learning (e.g., 
ANN, SVM, Random Forest) 
for SOH estimation from oper-
ational data [83]. 
Example: Random Forest used 
to predict SOH in EV batteries 
with 95% accuracy [83]. 

Kalman Filter 
(KF) and 
Extended 

Kalman Filter 
(EKF) Models 

KF:  
- Real-time operation  
- Recursive updates  
- Optimal estimation  
- Low computational cost  
- Error minimization  
- Widely understood  

 
EKF:  

- Nonlinear system support  
- Real-time estimation  
- Flexibility  
- Noise filtering  
- Improved accuracy 

KF:  
- Sensitive to modeling er-

rors  
- Assumes linear dynam-

ics  
- Requires accurate sen-

sors  
- Struggles with nonlinear 

degradation processes 
(e.g., SEI growth) 

 
EKF:  

- Computational complex-
ity  

- Nonlinear approxima-
tion challenges  

- Convergence issues  

KF: 
Estimates SOH in real-time 
using voltage and current 
measurements [84]. 
Example: KF used for online 
SOH estimation in BMS appli-
cations, achieving < 3% error 
[85]. 
EKF:  
Handles nonlinear battery dy-
namics for improved SOH es-
timation [86]. 
Example: EKF applied to esti-
mate SOH in Li-ion batteries 
under dynamic load condi-
tions [86]. 
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- Dependence on model 
quality 

- Requires accurate system 
models and parameter 
initialization. 

Hybrid Models 

- Combines strengths of various 
techniques  

- Enhances accuracy  
- Better generalization  
- Robust against parameter 

changes and uncertainties  
- Faster real-time estimation  
- Enhanced predictive power 

- Complex implementa-
tion  

- Data dependency  
- Risk of overfitting  
- Lack of interpretability  
- Requires more computa-

tional resources for train-
ing and real-time appli-
cations  

- Challenges in integrating 
and coordinating differ-
ent components 

- May not scale well for 
large datasets 

Combines physics-based and 
data-driven approaches for ro-
bust SOH estimation [87]. 
Example: Hybrid model used 
to predict RUL in grid storage 
batteries with 90% accuracy 
[87]. 

6. Future-Estimation Techniques for the SOH of Li-Ion Batteries 
6.1. Future Research Directions 

Future advancements in SOH estimation will likely involve the integration of diverse 
techniques, including advanced machine learning algorithms, sophisticated electrochem-
ical models, and hybrid approaches [88]. This multi-pronged approach aims to enhance 
predictive accuracy, improve adaptability to dynamic operating conditions, and more 
precisely account for aging phenomena, such as capacity fade and impedance growth [89]. 
Hybrid models, combining the strengths of physics-based and data-driven approaches, 
offer a promising avenue, providing both interpretability and adaptability to real-world 
battery usage scenarios [90]. 

The integration of advanced sensor data with sophisticated predictive algorithms is 
crucial for real-time SOH monitoring and early detection of performance degradation, en-
abling proactive maintenance and extending battery lifespan in practical applications [91]. 
These advancements will contribute to the development of more intelligent battery man-
agement systems (BMSs), facilitating the transition towards sustainable and reliable en-
ergy storage solutions for electric vehicles and other applications [91,92]. 

6.2. Current Limitations 

The limited availability of high-quality, diverse datasets poses a significant challenge, 
hindering model generalization and restricting the scope of research. Many machine 
learning models exhibit a black-box nature, limiting interpretability and hindering trust 
in their predictions. Adapting models to different battery chemistries and operating con-
ditions remains difficult. Moreover, the high computational demands of some algorithms 
limit their applicability in resource-constrained environments. Finally, the lack of reliable 
uncertainty estimates hinders robust decision-making in safety-critical applications 
[93,94]. 

6.3. Potential Solutions 

Transfer learning can mitigate data scarcity and improve model adaptability by lev-
eraging knowledge from one battery type to another. New techniques in explainable AI 
can enhance model interpretability and build trust. Combining data-driven and physics-
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based approaches in hybrid models can improve both accuracy and interpretability. Edge 
computing and model compression techniques can enable real-time SOH estimation on 
embedded systems. Developing models that provide reliable uncertainty estimates, such 
as Bayesian neural networks, is crucial for improved decision-making. Federated learning 
enables collaborative model training across multiple devices while preserving data pri-
vacy [93,95]. 

6.4. Resolving Limitations 

Overcoming data scarcity requires employing data augmentation and synthetic data 
generation techniques. Developing flexible and adaptable model architectures can im-
prove generalizability and reduce retraining needs. Collaborative research and open data 
initiatives are essential for building comprehensive and diverse datasets. Establishing 
standardized battery aging protocols will facilitate the generation of consistent and com-
parable datasets, enabling the development of more robust and generalizable models 
[96,97]. 

7. Conclusions 
This comprehensive review critically analyzes current research on the SOH estima-

tion for Li-ion batteries in EEVs. A key focus lies in defining and evaluating relevant SOH 
benchmarks, assessing their significance in assessing battery performance. Furthermore, 
this review examines publicly available datasets used for SOH estimation, evaluating their 
utility, accessibility, and data quality, which are crucial for the development and valida-
tion of accurate SOH estimation models. 

This review investigates a range of SOH estimation methodologies, including empir-
ical, physics-based, data-driven (including machine learning), Kalman filtering (including 
the Extended Kalman Filter), and hybrid models that combine data-driven and electro-
chemical approaches. Each technique is critically assessed for its strengths, limitations, 
and practical applicability. 

Finally, this review explores future directions for SOH estimation in EV batteries, 
emphasizing the need for integrating diverse modeling techniques, developing compre-
hensive battery lifecycle datasets, and utilizing advanced predictive algorithms. These ad-
vancements aim to enhance real-time SOH monitoring capabilities and extend the opera-
tional lifespan of batteries in practical applications. 
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Abbreviations 
The following abbreviations are used in this manuscript: 

ANN Artificial neural network 
BMS Battery management system 
ECM Equivalent Circuit Model  
EIS Electrochemical Impedance Spectroscopy  
EKF Extended Kalman filter 
EV Electric vehicle 
GP Gaussian process 
KF Kalman filter 
Li-ion Lithium-ion  
LFP Lithium iron phosphate 
LSTM Long Short-Term Memory 
RF Random Forest 
RNN Recurrent neural network 
RUL Remaining useful life 
SEI Solid Electrolyte Interphase 
SOH State of health 
SVM Support vector machine 
SVR Support vector regression 

Appendix A 

Table A1. Access to available data. 

Number of Accesses Data Availability 

1 
https://www.nasa.gov/content/prognostics-center-of-excellence-data-set (accessed on 15 
December 2024.) 

2 https://calce.umd.edu/battery-data (accessed on 15 December 2024.) 
3 https://www.svenskaelektriska.se/ (accessed on 15 December 2024.) 
4 https://archive.ics.uci.edu/ml/datasets (accessed on 15 December 2024.) 
5 https://www.kaggle.com/ (accessed on 15 December 2024.) 
6 Not publicly available but can be accessed upon request from GE or associated research projects. 
7 https://www.ecobatt.eu/ (accessed on 15 December 2024.) 
8 Available via academic research groups on platforms like ResearchGate. 
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