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Summary 
For hybrid electric vehicle, it is necessary to control power distribution among multiple power sources to 

improve fuel economy performance of vehicle. In this paper, power management strategy of hybrid electric 

vehicle using Dynamic programming is studied. Deterministic dynamic programming could present 

outstanding fuel economy, while its application as real time control of vehicle is limited. Thus, different 

kinds of power management strategy using dynamic programming are studied. Stochastic dynamic 

programming, artificial neural networks and rule-based power management strategy using results from 

dynamic programming are studied. Simulations using parallel type hybrid electric vehicle model are 

conducted. Simulation results including fuel economy performance on diverse driving cycles are compared 

and analysed.  
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1 Introduction 
In recent decade, Hybrid electric vehicle (HEV) has been studied and developed to improve fuel economy 
performance and exhaust emission problem of conventional internal engine based vehicle. HEV, consisted 
of multiple power sources, has more complex structure and intricate control nature and the fuel economy 
performance of HEV is mainly affected by vehicle’s powertrain configuration, components sizing and 
power management strategy.  

The power management strategy of HEV could be said as problem of controlling power distribution among 
multiple power sources to propel vehicle while satisfying constraints. Different kinds of power 
management strategy of HEV have been studied [1]. Mainly, it could be classified as two general trends of 
optimization-based control strategy and rule-based control strategy. Optimization-based control strategy is 
strategy based on optimization theory and presents outstanding fuel economy performance. In rule-based 
control strategy, powertrain is controlled based on rule which is made upon heuristics or intuition. 
Generally optimization-based control strategy shows better fuel economy performance than that of rule-
based control strategy, but rule-based control strategy is more applicable into implementation as real time 
vehicle controller.   

Dynamic programming (DP) is one of the optimization-based control strategies presenting outstanding fuel 
economy performance [2]. DP is well known algorithm that it could solve complex problem by dividing it 
into simple sub problem and presents it as recursive form. In analysis of HEV, Deterministic dynamic 
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programming (DDP) could be used to find optimal control policy for given vehicle powertrain system with 
respect to predefined driving cycle. Many researches using DDP have been conducted to find out and 
evaluate vehicle’s optimal fuel economy performance. However even though DDP could suggest global 
optimal fuel economy performance of HEV, it could not be used as real time implementation of HEV, since 
DDP requires driving cycle information before the trip and acquired optimal control policy is not effective 
with respect to other driving cycles. Thus, many researches have been conducted to use DDP for real-time 
solution. One of them is stochastic dynamic programing (SDP). It is algorithms which could obtain optimal 
control law by using probabilistic view [3],[4]. Unlike DDP which uses driving cycle information directly, 
SDP formulated an infinite-horizon stochastic dynamic optimization problem, thus it could be implemented 
on real time vehicle controller. More simple way is power split ratio (PSR) based control using strong 
relationship between power distribution ratio of engine and motor with respect to power demand of vehicle, 
in which PSR line could be optimized using DDP results [2]. On the other hand, supervised learning 
algorithm such as artificial neural networks (ANNs) could be also used to learn power management 
strategy from analysis using DDP [5],[6].       

 In this study, different kinds of algorithms including DDP are studied and simulated on parallel type HEV. 
DDP is simulated on backward-looking vehicle simulation. For SDP, stochastic dynamic optimization 
problem is solved for given vehicle system and control policy is simulated on forward-looking vehicle 
simulation. For PSR based strategy and ANNs based strategy, control policy is extracted from DDP result 
and it is simulated on forward-looking vehicle simulator. Diverse driving cycle is used for simulation and 
simulation results are analyzed to compare. The paper is organized as follow. In section 2, vehicle model is 
described and in section 3, power management strategies are introduced. Simulation results are presented in 
section 4 and finally conclusion is given in section 5.  

2 Vehicle Modelling  
In this study, parallel type HEV model is used for simulation. Vehicle parameter and characteristic data is 
presented in Table 1. The gasoline internal combustion engine data and permanent magnet motor data is 
used. The energy storage system is a 5.5 Ah Li-ion battery. A steady-state model is used to describe vehicle 
system. Fuel consumption rate ̇ of engine could be represented using steady-state engine map of the 
engine torque   and engine speed   as equation (1) ̇ = ( ,  ) (1) 

 Also, the output electric power of battery is mapped from motor torque   and motor speed   using 
3D look-up table of motor efficiency as equation (2)  = ( ,  ) (2) 

 
Figure 1: Parallel type HEV 

 

Table 1: Vehicle component specification 

Component Specification 
Engine 4 cylinders, 2.2 L 113kw/6000rpm 

Electric motor 50kW 
Transmission 6 speed AT 

Battery 5.5 Ah Li-ion battery 
Vehicle weight 1700 kg 
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3 Power Management Strategy  
In this study, different kinds of strategies are studied and simulations using these strategies are conducted 
for parallel type HEV model. The optimization problem of power management strategy for HEV can be 
defined as a minimization of total fuel consumption J expressed as equation (3).  J = ∑ (), ()																																	 (3) 

where u()  is vector of control variable at time 	k	 , x() is state variables of the system and L(x(k), u(k))	represents the instantaneous fuel consumption. In DDP and SDP, they uses similar structure 
for problem solving, however SDP approaches problem as stochastic view thus driving cycle information 
needs to be interpreted as probability distribution function and objective cost function is expressed as 
expectation value. In PSR based strategy and ANNs based strategy, control policy acquired from DDP is 
used for each strategy to optimize parameters in it.  

3.1 Deterministic Dynamic Programming  
For DP, optimal problem could be expressed as recursive form of equation (4) and (5).  Step	N − 1	 ∗ (( − 1) = min()( − 1), ( − 1)														(4) Step	k, for	0 < k < N − 1 ∗() = min()((), (())) + ∗ ( + 1)													(5) 

where ∗(()) is optimal value function at time  and equation can be solved backward to get optimal 
control law. In this study, (()) is defined as battery output power which decides power distribution 
among internal combustion engine and electric motor.   

3.2 Stochastic Dynamic Programming  
In SDP approach, driving cycle information is presented as probability distribution using Markov chain 
process. Vehicle speed and power demand is discretized into a finite number of values and represented as 
probability distribution given as equation (6). Pr, =  ,  =  , =  ,  = ) =  , 	,  = 1,2,…	, ,												, = 1,2,… ,                                                (6) 

where  ∑ ∑  , = 1  ,  ,  is probability when power demand   , vehicle speed is 	 at time  
and power demand   , vehicle speed is 	 at time  + 1. 

Then optimization problem of (3) could be presented as infinite horizon problem presented as equation (7).  
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where  is instantaneous cost and λ is discounted factor. State vector is given as equation (8). 

,[ , , ]k k demand k kx SOC p v=                                                        (8) 

In this study, value iteration method is used to solve infinite horizon problem given as equation (9) and (10).  
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As a result of stochastic dynamic optimization, optimal control law could be acquired. Optimal control law 
presents power split ratio for given battery state of charge(SOC) and power demand and vehicle velocity. 
The acquired control policy is used for forward-looking vehicle simulation.  
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3.3 Power Split Ratio based Strategy 
PSR based strategy is simple rule-based strategy, in which power split ratio among internal combustion 
engine and electric motor is decided based on required power. Power split ratio could be defined as 
equation (11).  =  										(11) 

where   is output power of engine  and   is power demand of vehicle to propel. Operating 
modes are defined based on power split ratio according to power demand.  In this paper, 1-dimensional 
power split ratio line shown as Figure2 is optimized using result from DDP and applied on forward-looking 
vehicle simulation. 

 
Figure 2: Power split ratio based strategy  

3.4 Artificial Neural Networks based Strategy  
In recent year, neural networks have been used in control of hybrid electric vehicle thanks to its outstanding 
function-approximating ability. Neural networks have advantage of learning and generalization for input-
output mapping of given system. It could be used for supervised learning by modification of the neural 
networks’ synaptic weights with respect to labelled training samples. In this paper, a two layer feed-
forward neural networks is used to fit optimal control policy acquired from DDP analysis. For the net input 
data, battery SOC, power demand and vehicle velocity are used and the output data is the power split ratio. 
Levenberg-Marquardt back propagation algorithm is used to train the neural networks. Trained results is 
presented as 4-dimensional lookup table data as shown in figure3 and applied to forward-looking vehicle 
simulator to validate its effectiveness.  

 

 
Figure 3: Power split ratio map using artificial neural networks  
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4 Simulation Result 
Vehicle simulations are conducted for diverse driving cycle. Simulation results of DDP and SDP for FTP72 
driving cycle are given in figure 4 and simulation results of PSR based strategy and ANNs based strategy 
are given in figure 5. Fuel economy performances of each power management strategy for diverse driving 
cycle are given in Table 2. Fuel economy performances for SDP, PSR based strategy and ANNs based 
strategy are adjusted to compensate battery SOC difference of beginning and end.  

Compared to fuel economy performance of DDP, SDP presents decreased fuel economy performance. 
Since SDP uses driving cycle information as form of probability distribution, fuel economy performance is 
decreased than that of DDP in which driving cycle profile is used for optimization directly. Simulation 
results for engine torque and motor torque presents similar results with those of DDP. Battery SOC profile 
presents more considerable change in DDP than SDP. It implies that DDP could use wide range of battery 
capacity while SDP need to use relatively narrow range of battery SOC to avoid energy conversion loss due 
to lack of entire cycle information. However, SDP uses driving cycle information as structure of probability 
distribution, it shows relatively robust fuel economy performance compared to DDP. In DDP, if driving 
cycle is changed, optimal control law becomes useless, but in SDP, even if driving cycle is changed, it 
could presents near optimal fuel economy performance if probability transition matrix has similar 
distribution. Therefore, SDP could be used as real time implementation of HEV while using non causal 
property of dynamic programming. 

 

 

 
Figure 4: Simulation results of DDP and SDP for FTP72 driving cycle 

 

Table 2: Fuel economy result (km/l) for diverse driving cycle 

            Driving 
 Cycle 

Strategy 
FTP72 FTP75 JN1015 NEDC HWFET AVERAGE 

Deterministic DP 25.5 25.4 29.1 25.6 27.5 26.6 
Stochastic DP 23.0 22.8 24.1 23.8 24.3 23.6 

PSR based 22.2 21.9 24.2 23.6 23.4 23.1 
ANNs based 23.0 22.9 24.7 23.7 24.5 23.8 

time[s]
0 200 400 600 800 1000 1200 1400

-200

-100

0

100

DDP
SDP

World Electric Vehicle Journal Vol. 8 - ISSN 2032-6653 - ©2016 WEVA Page WEVJ8-0278



EVS29 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium          6 

 

 
Figure 5: Simulation results of PSR based strategy and ANNs based Strategy for FTP72 driving cycle 

 

In case of PSR based strategy and ANNs based strategy, they also could be used for real time 
implementation of HEV. They show similar results on engine and electric motor operating each other. 
However, for fuel economy performance, ANNs based strategy presents better efficiency. ANNs based 
strategy presents optimal power split ratio learned from DDP results with 4-dimensional lookup table data, 
thus has more advantage of extracting optimal control law from DDP results compared with PSR based 
strategy. PSR based strategy shows the lowest fuel economy performance, but it has strong points that 
control strategy is simple and robust compared with other strategies.  

5 Summary 
In this study, dynamic programming and several kinds of power management strategies using dynamic 
programming are studied and simulated. Parallel type HEV is simulated on diverse driving cycle. 
Backward looking vehicle simulation is conducted for DDP and forward-looking vehicle simulation is 
conducted for SDP. PSR based strategy and ANNs based strategy are also conducted on forward-looking 
simulation using optimal control policy extracted from DDP. SDP uses driving cycle information presented 
as structure of probability distribution according to Markov chain process, while DDP uses driving cycle 
directly to calculate optimal control. PSR based strategy and ANNs based strategy uses optimal control 
laws acquired from DDP result. SDP presents decreased fuel economy performance than that of DDP, but 
shows similar engine and motor operation. Also, SDP does not need to extract optimal control policy once 
stochastic dynamic optimization conducted, thus it is more applicable as real time vehicle controller. PSR 
based strategy and ANNs based strategy also could be used as real time vehicle controller. ANNs based 
strategy presents better fuel economy performance than that of PSR based strategy, but PSR strategy has 
advantage that it is simple and robust.         
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