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Abstract: Cardiovascular epigenomics is a relatively young field of research, yet it is providing novel
insights into gene regulation in the atherosclerotic arterial wall. That information is already pointing
to new avenues for atherosclerosis (AS) prevention and therapy. In parallel, advances in nanoparticle
(NP) technology allow effective targeting of drugs and bioactive molecules to the vascular wall.
The partnership of NP technology and epigenetics in AS is just beginning and promises to produce
novel exciting candidate treatments. Here, we briefly discuss the most relevant recent advances in
the two fields. We focus on AS and DNA methylation, as the DNA methylome of that condition is
better understood in comparison with the rest of the cardiovascular disease field. In particular, we
review the most recent advances in NP-based delivery systems and their use for DNA methylome
modification in inflammation. We also address the promises of DNA methyltransferase inhibitors for
prevention and therapy. Furthermore, we emphasize the unique challenges in designing therapies
that target the cardiovascular epigenome. Lastly, we touch the issue of human exposure to industrial
NPs and its impact on the epigenome as a reminder of the undesired effects that any NP-based
therapy must avoid to be apt for secondary prevention of AS.

Keywords: atherosclerosis; bioactive molecule delivery; drug delivery; epigenetics; DNA methylation;
nanoparticle

1. Introduction

Drug loading to nanoparticles (NPs) allows targeting to specific cells and tissues and
generally increases drug potency. The latter is achieved by combinations of improved
biodistribution, solubility, site-release characteristics, circulation half-life, bioavailability,
and immunogenicity (for a recent general review of the topic, see [1]). An additional
often-mentioned phenomenon that enhances NP effectiveness is enhanced permeability
and retention (EPR). EPR refers to the tendency of NPs to accumulate at sites of poor
endothelial barrier, as consequence of either abnormal angiogenesis or endothelial damage.
Although a controversial concept, EPR has been documented in cancer. Conversely, the
relevance of EPR in cardiovascular disease is not well understood [2].

In recent years, NP technology and epigenetics have joined forces to pursue novel
therapeutic strategies for human disease. Epigenetic marks are covalent chemical mod-
ifications of histones and DNA that are generally reversible [3]. The best understood
epigenetic modification of DNA is methylation, the focus of this article. DNA methy-
lation (DNAm) is catalysed by the DNA methyltransferase (DNMT) enzyme family [4].
DNMT target mainly cytosine in a 5′-CG-3′ context in mammals, resulting in the forma-
tion of 5-methyldeoxycytosine (5mC). In turn, loss of DNAm can occur passively—when
DNMT activity is surpassed by the cell proliferation rate—or by active mechanisms that
involve 5mC oxidation and DNA repair to reinstate the original cytosine. DNA methylation
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regulates gene expression in a context-dependent manner. For example, gene promoter
DNA methylation generally leads to transcriptional silencing. Cellular DNAm profiles are
tightly regulated during differentiation and participate in establishing tissue-specific gene
expression, but stochastic changes in DNAm due to epigenetic drift also occur [5–7].

Here, we briefly review the most recent (published in 2019–present) advances in
the quest of NP-based strategies to modify the DNA methylome of atherosclerosis (AS).
We keep a narrow focus on AS, as the DNA methylome of that condition is better de-
scribed in comparison with the rest of the cardiovascular field. The literature was chosen
among entries obtained by PubMed email alert with the ‘nanoparticle atherosclerosis’ and
‘nanoparticle’ search terms.

2. Atherosclerosis: The Essentials

Rudolph Virchow’s seminal work proposed that AS is an inflammatory disease of
the artery almost two centuries ago [8]. AS is promoted by endothelial dysfunction and
accumulation of lipoproteins, some of which undergo oxidation, into the vascular wall.
In particular, small apolipoprotein B-containing low-density lipoprotein particles have
been identified as highly atherogenic [9]. These early events are followed by infiltration of
monocyte-derived macrophages, an inflammatory response aimed at scavenging excess
vascular wall oxidized lipoproteins [10]. Lipid-loaded macrophages are referred to as foam
cells. While the conditions that promote AS persist, the vascular inflammatory response
fails to resolve. The resulting chronic inflammation is accompanied by discontinuous
growth of the atheroma, a phenomenon that spans decades in humans [11]. The expansion
of the atheroma is driven by sustained macrophage and other immune cell recruitment
and migration of smooth muscle cells (SMC) from the underlying media. SMC are critical
players in AS: they differentiate from contractile, quiescent cells specialized in maintaining
blood pressure homeostasis, to synthetic cells capable of migration, proliferation, and extra-
cellular matrix synthesis [12]. Additionally, cell lineage tracking indicates that the majority
of foam cells in the atheroma derive from SMC [13]. These events lead to the formation
of a lipid-rich fibrocellular lesion (atheroma). Single-cell phenotype analysis revealed the
presence of at least 14 cell types in the atheroma, including the endothelium, both anti-
inflammatory and proinflammatory macrophages, a variety of myeloid and lymphoid cells,
SMC, and significant cellular interconversion—i.e., endothelial to mesenchymal transition
or vice versa, and SMC displaying macrophage markers [14]. The atheroma eventually
undergoes rupture in a minority of atheroma-bearing individuals, causing thrombosis that
leads to the three main clinical complications of AS: myocardial infarction, stroke, and
peripheral vascular disease [15]. Risk factors for AS include diabetes, hyperlipidaemia,
hypertension age, male sex, and smoking, in addition to genetic predisposition and the
accumulation of somatic mutations during haematopoiesis [16–18].

3. The DNA Methylome of AS

DNAm is altered in AS and in virtually any disease. Disease-specific DNAm pro-
files are imposed by a combination of dietary, lifestyle-related, and environmental factors
and stochastic mechanisms [9]. The epigenetics of AS is a relatively young but rapidly
expanding field, thanks to increasingly affordable sequencing and high-coverage microar-
ray platforms. The latter include the Illumina Infinium HumanMethylation27 BeadChip,
HumanMethylation450 BeadChip Kit, and, more recently, the Infinium MethylationEPIC
Kit microarrays (containing ~27,000, 450,000, and 850,000 CpG probes, respectively) [19,20].
The rapid pace of research is already pointing to plausible NP-based strategies for the
delivery of drugs that target the vascular epigenome. From a general viewpoint, such
novel therapies for AS promise to lower the residual cardiovascular risk—i.e., the risk
that persists after normalizing blood lipid levels with drugs such as statins or fibrates [21].
Indeed, it has been suggested that AS could be an orphan disease if adult human blood
lipid levels were the same as in newborns or non-primate mammals [22]. From a molecular
viewpoint, epigenetic studies may identify AS-associated DNAm profiles, either inherited
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or acquired following exposure to risk factors. Observations from multiple independent
studies suggest that DNA hypermethylation is a landmark and, importantly, a driver of
AS. The comparison of human DNA methylomes of atherosclerotic and healthy vascular
samples matched for artery type and donor revealed widespread DNA hypermethyla-
tion across the genome [23]. DNA hypermethylation is likely to be established at very
early stages of AS or even before any detectable histological evidence of atheroma [24].
Furthermore, DNA hypermethylation increases with AS progression [25]. Accordingly,
ten–eleven translocation 2 (TET2), a DNA dioxygenase that favours DNA demethyla-
tion, inhibits AS [26]. Notably, TET2 promoter hypomethylation coincides with global
loss of DNA methylation and decrease of inflammatory markers in post-rupture human
atheroma [27]. Mechanistically, systemic administration of DNAm inhibitors decreases
the size of aortic atheromas in mice models of AS and hyperlipidaemia [28–30]. From a
molecular perspective, DNAm inhibitors increase expression of antiatherogenic genes such
as phosphatase and tensin homolog, liver X receptor, and peroxisome proliferator-activated
receptor gamma and decrease proinflammatory cytokines. In the latter animal studies, the
duration of the protocol was too short to thoroughly assess any adverse effects of systemic
DNAm inhibitor administration.

In the following paragraphs, we summarize candidate NP delivery systems able to tar-
get the DNA methylome of AS. Furthermore, although no NP-based strategy to modify the
epigenome of AS has been reported to date apart from curcumin-loaded NPs (see below), we
briefly review advances in the use of NPs in the AS-related field of general inflammation.

4. Possible NP-Based Strategies for the Modification of the AS DNA Methylome

A synopsis of the three main features of DNA methylome-targeting NPs discussed in
this section—cargo molecules, core NP materials, and specific cell type-targeting molecules
is presented in Table 1.

Table 1. Synopsis of candidate and tested NP delivery systems for DNA methylome targeting in AS.

Advantages/Limitations or Main
Functional Features References

Core NP structure

Liposome Well-characterized, comparatively easy to
assemble, good in vivo tolerance. [31–33]

Macrophage
membrane-coated

Mimic a physiological structure. Effective
targeting through macrophage–atheroma
interactions.

[34]

Platelet
membrane-coated

Mimic a physiological structure. Effective
targeting through platelet–atheroma interactions. [35,36]

Pluronic Foam suppressant. Long-term in vivo tolerance to
be determined. [37]

DNMT inhibitor cargo

Curcumin
Extremely well-characterized molecule, with a
range of documented biological effects, including
DNMT inhibition.

[38,39]

DNMT siRNA Potentially highly specific. -

DNMTi Several DNMTi available, some well-characterized
in cancer therapy. [40]

Statins Well-characterized cardiovascular drugs. [31]

Unknown plant-derived
factor(s)? A potential abundant source of novel drugs. -
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Table 1. Cont.

Advantages/Limitations or Main
Functional Features References

Targeting system,
non-peptidic

Anti-PECAM-1 antibody Relatively expensive reagent. Binds to the
cellular adhesion receptor PECAM-1/CD31. [41]

Apo-AI
Physiological component of lipoproteins,
easy to assemble into NP. Binds to the
macrophage scavenger BI receptor.

[42]

Hyaluronic acid Well-characterized, good in vivo tolerance.
Targets the atheroma by binding to CD44. [43,44]

Mannose
Well-tolerated. Targets the atheroma by
binding to M2 macrophage
mannose receptor.

[45]

Targeting peptides

p5RHH Receptor-independent cell penetration.
Possible issues with cell type specificity. [46]

cRGD Targets integrin. [37]

Lyp-1 Targets the foam cell-stage macrophage
p32 receptor. [33]

PP1 Well-characterized, targets both human and
mouse scavenger AI receptor. [47]

S2P Targets stabilin-2, an endothelial
scavenger receptor. [48]

Abbreviations: Apo-AI, apolipoprotein AI; DNMTi, DNMT inhibitor; PECAM-1, Endothelial Cell Adhesion
Molecule Plate 1; S2P, stabilin-2 peptide; siRNA, small interfering RNA. Other peptide acronyms were not
described in the original publications.

4.1. Candidate NP Cargo Molecules

The above-mentioned experimental advances in the description of the AS DNA methy-
lome hint at possible NP-based epigenome targeting strategies. One interesting target is
type 1 DNMT (DNMT1). Among other convincing evidence, mouse studies have detected
epigenetic deregulation of the DNMT1-peroxisome proliferator-activated receptor (PPAR)
gamma pathway in AS [28]. Vascular DNMT1 inhibition may be achieved by loading
DNMT inhibitors (DNMTi) to NP that are functionalized with available endothelium or
macrophage surface ligands [21]. A battery of non-nucleoside DNMTi exist, such as RG108,
SGI-1027, hydralazine, (-)-Epigallocatechin-3-gallate, and others (see, for example [49]).

In addition to biochemical inhibition by means of DNMTi, DNMT1 silencing by small
interfering RNAs (siRNAs) is an obvious approach. Although to our knowledge DNMT1
siRNAs encapsulated in NPs have not been employed in vascular biology, the feasibility of
that approach is clearly illustrated by the effectiveness of the chemically close microRNA
(miRNA)-loaded NPs. In a notable example, gold NPs functionalized with a nuclear
localization signal were loaded with a siRNA specific for a miR-211 and AS1411, an anti-
cancer drug, effectively inhibited the nuclear factor kappa B-DNMT1 signalling pathway,
and promoted DNA hypomethylation in an animal model of leukaemia [50]. Another study
aimed to alter macrophage cholesterol efflux by activating reverse cholesterol transport
and subsequently inhibit atheroma lipid accumulation and growth in a mouse model.
NPs based on the polysaccharide chitosan loaded with miR-206 or miR-223 promoted the
expression of ATP binding cassette subfamily A member 1, a crucial cholesterol efflux
pump [51].

Moreover, statins are universally known as effective blood cholesterol-lowering drugs
but have been attributed an additional activity as epigenetic modifiers. A number of studies
documented inhibition of DNMT activity and both inhibition and stimulation of histone
deacetylases by statins (listed in [52]). Histone deacetylases participate in transcriptional
control and regulation of metabolism [3]. Although these observations could explain the
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anti-cancer activity of statins, a recent survey disputes those conclusions [52]. Despite the
current controversy, statin-loaded NPs, mostly liposome and lipid-based NPs, have been
used to control inflammation in the atheroma microenvironment (see below) [31,53].

Finally, a recent review of plant-derived molecules that represent candidate NP cargo
for cardiovascular disease treatment reveals a multitude of molecules that are mostly
untested as DNAm modifiers and therefore may provide additional epigenetic weapons to
treat AS [54]. Among plant-derived epigenetically active molecules, curcumin attracted
considerable attention. An ingredient of Asian cuisine, curcumin has been attributed a
range of beneficial effects on human physiology and has been proposed as a potential
therapeutic tool for a variety of chronic degenerative diseases [55]. It has been reported that
curcumin inhibits DNMT activity [38]. Yet, poor solubility in water and low bioavailability
significantly hinder the use of curcumin in experimental medicine. NP technology might
bring a solution to that problem, as curcumin loaded to NPs decreased the size and
improved markers of stability of the atheroma in a mouse model [39]. Time will tell
whether curcumin delivers results as a candidate cardiovascular drug [56].

4.2. Candidate and Tested NP Delivery Systems in AS

Conventional lipid-based and polymer-based NPs have been used to successfully
mitigate AS in animal models [57,58]. A relatively wide panel of molecules that specifically
target macrophages and other functionally relevant cell types are available and represent
critical components of NP delivery systems. Recent advances in this direction include the
administration of the statin simvastatin in liposome NPs, resulting in decreased AS and
augmented smooth muscle cell apoptosis in the aorta of a hyperlipidaemic rat model [31].
A significant caveat of that otherwise encouraging study is the potentially negative impact
of increased apoptosis on atheroma stability (see concluding section), which will need thor-
ough assessment. Another liposome-based delivery system exploited the liver X receptor
(LXR) agonist GW3965 [32]. LXR agonists deplete the atheroma of lipids by promoting
inverse cholesterol transport but, if administered systemically, increase hepatic lipid depo-
sition. The authors demonstrate that GW3965 delivery within liposomes effectively avoids
those secondary effects and still decreases AS in a hyperlipidaemic mouse model, thus
confirming previous reports [33]. In this case, liposomes were targeted to the atheroma by
functionalization with Lyp-1, a cyclic peptide that promotes p32 receptor-mediated inter-
nalization by foam cells. Indeed, peptide-mediated NP targeting has been successfully used
in a variety of recent studies. cRGD, a peptidic ligand for integrins present on macrophage
and platelet surface, was used to direct anti-inflammatory interleukin-10-loaded pluronic
NPs to murine atheroma, resulting in AS mitigation [37]. Another effective targeting pep-
tide is PP1, a ligand for the macrophage scavenger receptor AI [47]. Notably, PP1 binds
to both human and murine receptors and thus may help to simplify the transition from
animal to human studies. The choice of targeting peptides is not limited to specific receptor
ligands. p5RHH undergoes receptor-independent internalization and can be assembled
with the mRNA of choice to modify gene expression in the vascular wall [46]. Although not
yet tested in vivo, a promising atheroma-targeting peptide is S2P, ligand for the endothe-
lial scavenger receptor STAB2 (aka stabilin-2) [48]. The authors successfully synthesized
S2P-conjugated poly(lactic-co-glycolic acid) (PLGA) NPs loaded with the platelet-derived
growth factor receptor inhibitor imatinib. Incidentally, PLGA is an interesting topic, as it is
a very popular ingredient for NP synthesis and has been recently used to deliver statins to
the atheroma [59,60]. Yet, at least one study documented a proatherogenic increase in foam
cell formation by PLGA NPs in a hyperlipidaemic mouse model, pointing to the need to
answer important mechanistic and safety questions before any transition to clinical work
can be made [61]. Antibody-mediating receptor targeting has also been successfully used
in the case of lipid-based NPs loaded with anti-inflammatory fatty acids and conjugated
with antibodies that recognize the endothelial adhesion molecule PECAM-1 [41]. Another
example of polypeptide-based delivery system is phospholipid bilayers assembled around
an apolipoprotein A-I (ApoA-I) scaffold. The ApoA-I–lipid complex is readily internalized
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by scavenger receptor BI and is versatile in terms of both lipid composition and nature of
hydrophobic load. An obvious advantage of this system is that the NP building blocks
have targeting activity per se, besides its exquisitely physiological nature. A recent review
covers the applications of ApoA-I-based particles in AS imaging and therapy [42].

Furthermore, non-polypeptidic targeting systems have been developed, particularly
carbohydrate-based. Mannose receptors are expressed on macrophage, particularly of the
M2 type. A novel mannose-based ligand was engineered that mediated highly efficient
endocytosis of NPs in cultured macrophages [45]. Notably, a two-edge mannose-decorated
dendrimeric NP delivery system has been developed to simultaneously target the scavenger
receptor AI by RNA interference and promote cholesterol efflux with a liver X receptor
ligand [62]. Predictably, those NPs significantly decreased AS and atheroma cholesterol
load in hyperlipidaemic mice. Another example of carbohydrate-based targeting molecule
is hyaluronic acid (HA), a ligand for the CD44 receptor. In one study, HA was both the
self-assembling building block and targeting ligand for statin-loaded NPs that significantly
decreased atheroma inflammation in mice [43]. A recent review summarizes the virtues of
HA as a widely used, well-tolerated NP ingredient [44].

Exciting, cutting-edge technology-based additions to the arsenal of promising deliv-
ery systems are macrophage or platelet plasma membrane-coated NPs. The underlying
rationale is the natural affinity of those cell types for components of the atheroma. In one
elegant study, oxidation-sensitive chitosan oligosaccharide NPs were coated with purified
macrophage plasma membranes [34]. The NPs in question combine strong recruitment to
the vascular wall due to macrophage mimicry, with specific cargo offload in the reactive
oxygen species-rich atheroma, resulting in significant reduction of mouse aortic AS. As
for platelet plasma membranes, they were used to coat photosensitizer-loaded upconver-
sion NP cores [35]. This delivery system couples NPs that produce visible light upon
near-infrared irradiation and are therefore suitable for deep tissue applications, with the
photosensitizer chlorin e6 that generates highly reactive singlet oxygen and cell death upon
visible light irradiation. The resulting NPs yielded AS mitigation in animal models, al-
though the caveat of excessive atheroma cell death should be kept in mind (see concluding
paragraph). For a recent review of the application of platelet plasma membrane-coated
NPs in a range of diseases, see [36]. Interestingly, the studies mentioned in this paragraph
creatively exploited reactive oxygen species in two different ways, i.e., as a pre-existing
inducers of NP cargo offload in one case and as a consequence of NP cargo activity in
the other.

Another promising avenue is the use of recombinant lipoproteins as Trojan horses. In
an elegant example, an inhibitor of the interaction between CD40 and its partner tumour
necrosis factor receptor-associated factor 6 encapsulated in artificial high-density lipopro-
tein slowed AS progression without any detectable immune suppression, a known side
effect of CD40 signalling [63].

Finally, one interesting approach is the use of ß-cyclodextrin NPs. These are cargo-
switching NPs that, when presented to the atheroma in a statin-loaded form, incorporate
cholesterol and release statins to exert anti-atherogenic effects by compounded statin release
and augmented cholesterol efflux [64]. As DNMTi such as SGI-1027 are hydrophobic, ß-
cyclodextrin NPs could be engineered to achieve a double beneficial effect in the atheroma
microenvironment by promoting DNA hypomethylation and cholesterol efflux.

5. NP-Based DNAm Targeting in Cancer-Associated Inflammation

Again thanks to Virchow’s early work, inflammation is a recognized critical player in
cancer; therefore, antitumoral NP-based therapy may identify potentially useful targets in
the context of cardiovascular disease [65]. The transcription factor nuclear factor kappa B
(NFκB) is a relevant target in AS, as it is a pivotal player in the proinflammatory response
to lipoproteins [66]. NFκB together with the micro-RNA miR-221 and DNMT1 participate
in the aetiology of human acute myeloid leukaemia (AML). A recent study documents the
effectiveness of gold NPs coated with antagonists of that pathway, in inhibiting DNMT1 and
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thus targeting tumour suppression genes for promoter demethylation and transcriptional
reactivation in cultured AML cells [50]. Another study focused on chronic lymphocytic
leukaemia (CLL). MiR-29b expression is low in CLL, yet attempts to use it as a therapeutic
tool have been frustrated by the many undesired outcomes in non-cancerous tissues. When
lipid NPs targeted to specific B cells were used as miR-29b carriers, CLL cell proliferation
and survival were reduced both in culture and in a mouse model [67]. Those changes
were accompanied by a decrease in DNMT1 and DNA methyltransferase 3A expression,
leading to re-expression of crucial tumour suppressor genes. DNMT are not likely direct
targets; rather, miR-29b acts on the transcription factor SP1, which, in turn, activates
NFκB signalling. Taken together, the two studies mentioned in this paragraph provide
evidence that NFκB signalling is perhaps a target of NP-based epigenome modification in
inflammatory diseases beyond cancer.

6. The Other Edge of the Sword: Environmental NPs as Modifiers of the Epigenome

Although the above-summarised studies are clearly promising, the documented im-
pact of industrial NPs on human health represents a significant caveat that must guide any
design of NP-based therapies. The issue is relevant in the context of AS, as the likely use of
any effective antiatherogenic NP-based treatment is in relatively lengthy secondary preven-
tion. Humans are exposed to nanomaterials contained in a variety of food, cosmetic, and
personal hygiene products. Convincing evidence has linked environmental nanomaterials
to cardiovascular disease and other pathologies [68]. One recently documented example
is titanium dioxide nanomaterial (TiN). Maternally administered TiN aerosol increases
reactive oxygen species and DNAm in mouse foetal hearts [69]. Intriguingly, adult progeny
heart DNA was hypomethylated, thus pointing to a marked dynamism of the epigenome in
this model. Similarly complex data were obtained in mice exposed to TiN at different ages,
demonstrating demethylation in young but not old animals [70]. Additionally, TiN and a
range of industrial NPs elicited modest although significant demethylation of significant
portions of the genome and DNMT downregulation in a panel of lymphocytic and epithelial
cell line surrogates of the physiological airway system [71].

Another relevant finding is myocardial inflammation triggered by carbon NPs in a
zebrafish model [72]. Although the work emphasizes environmental exposure to those
specific NPs, it suggests caution when designing therapeutic strategies based on carriers
chemically related to carbon NPs.

Although the mentioned exposure models pose some unanswered questions and at
least two surveys of a panel of metal NPs produced inconclusive data [73,74], the concerns
that therapy-oriented NPs might elicit undesired outcomes need to be addressed.

7. Conclusions and Perspectives

The idea of improving cardiovascular disease outcome by modifying the epigenome
is an exciting one. Basic research is fast deepening our knowledge of the vascular wall
epigenome in health and disease, thus pointing to therapeutic targets, whether genome-
wide or in specific loci. In parallel, NP technology lures with ever-improving strategies
for drug/bioactive molecule delivery. On the one hand, advances in the categorization
and purification of proteins, peptides, and biologically active molecules will improve NP
administration–recognition–release mechanisms. On the other hand, it is likely that novel
NPs with geometries beyond the more traditional sphere—cubic, rod, sheet, columnar,
tubules, dendrimer, and polymorphous structure (polymeric nanogels)—with unforeseen
drug delivery capabilities will be tested [75]. Yet, a number of hurdles are visible on
the horizon [76]. One is the choice of DNMTi. Non-nucleoside analogue DNMTi offer
the advantage of acting on DNMT directly without the need to be incorporated into
DNA [49]. Thus, those molecules should efficiently demethylate DNA in non-proliferating
cells such as the endothelium and macrophage, without any gross alteration of genome
integrity that could result in apoptosis and atheroma rupture. This last aspect illustrates
the profoundly different challenges in NP-based cancer and AS therapy: in the case of
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cancer, cell death in the tumour mass is a desirable outcome, while in AS effective cellular
phenotype control must be achieved without disrupting the integrity of the atheroma to
avoid its rupture and downstream clinical complications (Figure 1). The future will tell
whether non-nucleoside analogue DNMTi will dissipate the doubts raised about their
effectiveness and reliability [52]. Furthermore, even if NP-based therapy passes the animal
model stage, a variety of issues related to tolerability and long-term effects in humans will
have to be answered to. Physical and chemical properties of NPs will have to be finely
tuned to assure that off-target effects, thrombosis, blood flow, and immune and allergic
responses, to mention just few parameters, are within acceptable range. The potential
pitfalls of NP-based modification of the epigenome have been reviewed in detail [77]. A
further issue is NP access to the atheroma. Luminal endothelial damage and the presence
of microvasculature with poorly developed endothelial lining are landmarks of AS that,
in principle, favour NP diffusion to the atheroma by EPR. Recent work using HA NPs
showed that this scenario may be too simplistic, as endothelial continuity is unexpectedly
recovered in advanced AS of hyperlipidaemic mice, thus decreasing the number of NPs
reaching the atheroma [78]. The authors of the study point out that, in contrast to mice,
human atheroma microvessels are well-connected to the adventitial vasculature, which
should result in overall better NP accessibility to the atheroma. Further exciting work is
necessary to appreciate the clinical implications of these findings.
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Figure 1. Challenges in NP-based AS therapy. Left, proposed therapeutic strategy consisting of
lowering DNA methylation levels close to the ones observed in the unaffected portion of the artery.
DNA hypomethylation is accompanied by activation of anti-inflammatory, antiatherogenic gene
transcription. Right, cancer therapy-inspired strategy to erode atheroma mass by inducing cell death.
The generation of reactive oxygen species (ROS) is presented as an example. Although providing
extremely useful insights into mechanism of atherosclerosis, a possible pitfall of strategies aimed
at inducing cell death is the risk of atheroma rupture. LXR, liver X receptor; PPARG, peroxisome
proliferator-activated receptor gamma; PTEN, phosphatase and tensin homolog.
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