Mitochondrial Ataxias: Molecular Classification and Clinical Heterogeneity
Abstract
:1. Introduction
2. Molecular Classification of Mitochondrial Disorders and Pathogenesis
3. Diagnosis of Mitochondrial Disorders
4. Hereditary Ataxias
5. Mitochondrial Ataxias
5.1. Disorders of mtDNA Defects: Point Mutations
5.1.1. Myoclonic Epilepsy and Ragged Red Fibers (MERRF)
5.1.2. Neuropathy, Ataxia and Retinitis Pigmentosa (NARP)
5.1.3. Maternally Inherited Leigh Syndrome (MILS)
5.1.4. Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like Episodes (MELAS)
5.1.5. Leber Hereditary Optic Neuropathy (LHON)
5.2. Disorders of mtDNA Defects: Large Scale Rearrangements
Kearns-Sayre Syndrome (KSS)
5.3. Disorders of nDNA Defects: Respiratory Chain Subunits, Ancillary Proteins, Electron Carriers
5.3.1. Leigh Syndrome (LS)
5.3.2. GRACILE Syndrome
5.3.3. Primary Coenzyme Q10 deficiency
5.4. Disorders of mtDNA Replication and Expression
5.4.1. Infantile-Onset Spinocerebellar Ataxia (IOSCA)
5.4.2. POLG1-Associated Mitochondrial Ataxias
5.4.3. Ataxia Neuropathy Spectrum (ANS)
5.4.4. Myoclonus Epilepsy, Mitochondrial Myopathy and Sensory Ataxia (MEMSA)
5.4.5. Leukoencephalopathy with Brainstem and Spinal Cord Involvement and Lactoacidosis (LBSL)
5.5. Disorders of nDNA Defects: Mitochondrial Dynamics, Homeostasis and Quality Control
Autosomal Dominant Optic Atrophy Syndrome (ADOA)
5.6. Disorders of nDNA Defects: Metabolism of Substrates
Pyruvate-Dehydrogenase Complex-Deficiency
5.7. Disorders of nDNA Defects: Metabolism of Cofactors
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papa, S.; Martino, P.L.; Capitanio, G.; Gaballo, A.; De Rasmo, D.; Signorile, A.; Petruzzella, V. The Oxidative Phosphorylation System in Mammalian Mitochondria. Adv. Exp. Med. Biol. 2011, 942, 3–37. [Google Scholar] [CrossRef]
- Gorman, G.S.; Schaefer, A.M.; Ng, Y.; Gomez, N.; Blakely, E.L.; Alston, C.L.; Feeney, C.; Horvath, R.; Yu-Wai-Man, P.; Chinnery, P.F.; et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 2015, 77, 753–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiMauro, S.; Schon, E.A.; Carelli, V.; Hirano, M. The clinical maze of mitochondrial neurology. Nat. Rev. Neurol. 2013, 9, 429–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiMauro, S.; Schon, E.A. Mitochondrial Disorders in the Nervous System. Annu. Rev. Neurosci. 2008, 31, 91–123. [Google Scholar] [CrossRef]
- Zeviani, M.; Carelli, V. Mitochondrial disorders. Curr. Opin. Neurol. 2003, 16, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Musumeci, O.; Oteri, R.; Toscano, A. Spectrum of movement disorders in mitochondrial diseases. J. Transl. Genet. Genom. 2020, 4, 221–237. [Google Scholar] [CrossRef]
- Ticci, C.; Orsucci, D.; Ardissone, A.; Bello, L.; Bertini, E.; Bonato, I.; Bruno, C.; Carelli, V.; Diodato, D.; Doccini, S.; et al. Movement Disorders in Children with a Mitochondrial Disease: A Cross-Sectional Survey from the Nationwide Italian Collaborative Network of Mitochondrial Diseases. J. Clin. Med. 2021, 10, 2063. [Google Scholar] [CrossRef]
- Montano, V.; Orsucci, D.; Carelli, V.; La Morgia, C.; Valentino, M.L.; Lamperti, C.; Marchet, S.; Musumeci, O.; Toscano, A.; Primiano, G.; et al. Adult-onset mitochondrial movement disorders: A national picture from the Italian Network. J. Neurol. 2021, 269, 1413–1421. [Google Scholar] [CrossRef]
- Jayadev, S.; Bird, T.D. Hereditary ataxias: Overview. Genet. Med. 2013, 15, 673–683. [Google Scholar] [CrossRef] [Green Version]
- Schon, E.A.; DiMauro, S.; Hirano, M. Human mitochondrial DNA: Roles of inherited and somatic mutations. Nat. Rev. Genet. 2012, 13, 878–890. [Google Scholar] [CrossRef]
- Payne, B.; Wilson, I.; Yu-Wai-Man, P.; Coxhead, J.; Deehan, D.; Horvath, R.; Taylor, R.W.; Samuels, D.; Santibanez-Koref, M.; Chinnery, P.F. Universal heteroplasmy of human mitochondrial DNA. Hum. Mol. Genet. 2012, 22, 384–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 1967, 14, 225-IN6. [Google Scholar] [CrossRef]
- Schlieben, L.D.; Prokisch, H. The Dimensions of Primary Mitochondrial Disorders. Front. Cell Dev. Biol. 2020, 8, 1441. [Google Scholar] [CrossRef] [PubMed]
- Rahman, J.; Noronha, A.; Thiele, I.; Rahman, S. Leigh map: A novel computational diagnostic resource for mitochondrial disease. Ann. Neurol. 2017, 81, 9–16. [Google Scholar] [CrossRef]
- Nesbitt, V.; Pitceathly, R.D.S.; Turnbull, D.M.; Taylor, R.W.; Sweeney, M.G.; Mudanohwo, E.E.; Rahman, S.; Hanna, M.G.; McFarland, R. The UK MRC Mitochondrial Disease Patient Cohort Study: Clinical phenotypes associated with the m.3243A>G mutation--implications for diagnosis and management. J. Neurol. Neurosurg. Psychiatry 2013, 84, 936–938. [Google Scholar] [CrossRef]
- Monzio Compagnoni, G.; Di Fonzo, A.; Corti, S.; Comi, G.P.; Bresolin, N.; Masliah, E. The Role of Mitochondria in Neurodegenerative Diseases: The Lesson from Alzheimer’s Disease and Parkinson’s Disease. Mol. Neurobiol. 2020, 57, 2959–2980. [Google Scholar] [CrossRef]
- Grier, J.; Hirano, M.; Karaa, A.; Shepard, E.; Thompson, J.L.P. Diagnostic odyssey of patients with mitochondrial disease: Results of a survey. Neurol. Genet. 2018, 4, e230. [Google Scholar] [CrossRef] [Green Version]
- Chinnery, P.F.; DiMauro, S.; Shanske, S.; A Schon, E.; Zeviani, M.; Mariotti, C.; Carrara, F.; Lombes, A.; Laforet, P.; Ogier, H.; et al. Risk of developing a mitochondrial DNA deletion disorder. Lancet 2004, 364, 592–596. [Google Scholar] [CrossRef]
- Tatuch, Y.; Christodoulou, J.; Feigenbaum, A.; Clarke, J.T.; Wherret, J.; Smith, C.; Rudd, N.; Petrova-Benedict, R.; Robinson, B.H. Heteroplasmic mtDNA mutation (T-G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am. J. Hum. Genet. 1992, 50, 852. [Google Scholar]
- Davis, R.; Liang, C.; Sue, C.M. A comparison of current serum biomarkers as diagnostic indicators of mitochondrial diseases. Neurology 2016, 86, 2010–2015. [Google Scholar] [CrossRef]
- Lin, Y.; Ji, K.; Ma, X.; Liu, S.; Li, W.; Zhao, Y.; Yan, C. Accuracy of FGF-21 and GDF-15 for the diagnosis of mitochondrial disorders: A meta-analysis. Ann. Clin. Transl. Neurol. 2020, 7, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Saneto, R.P.; Friedman, S.; Shaw, D.W. Neuroimaging of mitochondrial disease. Mitochondrion 2008, 8, 396–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascalchi, M.; Montomoli, M.; Guerrini, R. Neuroimaging in mitochondrial disorders. Essays Biochem. 2018, 62, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Luft, R.; Ikkos, D.; Palmieri, G.; Ernster, L.; Afzelius, B. A Case of Severe Hypermetabolism of Nonthyroid Origin with a Defect in The Maintenance of Mitochondrial Respiratory Control: A Correlated Clinical, Biochemical, and Morphological Study. J. Clin. Investig. 1962, 41, 1776–1804. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Garone, C. Historical perspective on mitochondrial medicine. Dev. Disabil. Res. Rev. 2010, 16, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Neveling, K.; Feenstra, I.; Gilissen, C.; Hoefsloot, L.H.; Kamsteeg, E.-J.; Mensenkamp, A.; Rodenburg, R.; Yntema, H.G.; Spruijt, L.; Vermeer, S.; et al. A Post-Hoc Comparison of the Utility of Sanger Sequencing and Exome Sequencing for the Diagnosis of Heterogeneous Diseases. Hum. Mutat. 2013, 34, 1721–1726. [Google Scholar] [CrossRef] [PubMed]
- Lieber, D.S.; Calvo, S.E.; Shanahan, K.; Slate, N.G.; Liu, S.; Hershman, S.; Gold, N.B.; Chapman, B.A.; Thorburn, D.; Berry, G.; et al. Targeted exome sequencing of suspected mitochondrial disorders. Neurology 2013, 80, 1762–1770. [Google Scholar] [CrossRef] [Green Version]
- Theunissen, T.E.J.; Nguyen, M.; Kamps, R.; Hendrickx, A.T.; Sallevelt, S.C.E.H.; Gottschalk, R.W.H.; Calis, C.M.; Stassen, A.P.M.; De Koning, B.; Mulder-Den Hartog, E.N.M.; et al. Whole Exome Sequencing Is the Preferred Strategy to Identify the Genetic Defect in Patients with a Probable or Possible Mitochondrial Cause. Front. Genet. 2018, 9, 400. [Google Scholar] [CrossRef]
- Watson, E.; Davis, R.; Sue, C.M. New diagnostic pathways for mitochondrial disease. J. Transl. Genet. Genom. 2020, 4, 188–202. [Google Scholar] [CrossRef]
- Mariotti, C.; Fancellu, R.; Di Donato, S. An overview of the patient with ataxia. J. Neurol. 2005, 252, 511–518. [Google Scholar] [CrossRef]
- Mancuso, M.; Orsucci, D.; Siciliano, G.; Bonuccelli, U. The genetics of ataxia: Through the labyrinth of the Minotaur, looking for Ariadne’s thread. J. Neurol. 2014, 261, S528–S541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durr, A. Autosomal dominant cerebellar ataxias: Polyglutamine expansions and beyond. Lancet Neurol. 2010, 9, 885–894. [Google Scholar] [CrossRef]
- Jacobi, H.; du Montcel, S.T.; Bauer, P.; Giunti, P.; Cook, A.; Labrum, R.; Parkinson, M.H.; Durr, A.; Brice, A.; Charles, P.; et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: A longitudinal cohort study. Lancet Neurol. 2015, 14, 1101–1108. [Google Scholar] [CrossRef]
- Palau, F.; Espinós, C. Autosomal recessive cerebellar ataxias. Orphanet J. Rare. Dis. 2006, 1, 47. [Google Scholar] [CrossRef] [PubMed]
- Zanni, G.; Bertini, E. X-linked ataxias. Handb. Clin. Neurol. 2018, 155, 175–189. [Google Scholar]
- Cocozza, S.; Pontillo, G.; De Michele, G.; Di Stasi, M.; Guerriero, E.; Perillo, T.; Pane, C.; De Rosa, A.; Ugga, L.; Brunetti, A. Conventional MRI findings in hereditary degenerative ataxias: A pictorial review. Neuroradiology 2021, 63, 983–999. [Google Scholar] [CrossRef]
- Van De Warrenburg, B.P.C.; Van Gaalen, J.; Boesch, S.; Burgunder, J.-M.; Dürr, A.; Giunti, P.; Klockgether, T.; Mariotti, C.; Pandolfo, M.; Riess, O. EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur. J. Neurol. 2014, 21, 552–562. [Google Scholar] [CrossRef]
- Chintalaphani, S.R.; Pineda, S.S.; Deveson, I.W.; Kumar, K.R. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol. Commun. 2021, 9, 1–20. [Google Scholar] [CrossRef]
- Mancuso, M.; Orsucci, D.; Angelini, C.; Bertini, E.; Carelli, V.; Comi, G.P.; Minetti, C.; Moggio, M.; Mongini, T.; Servidei, S.; et al. Phenotypic heterogeneity of the 8344A>G mtDNA “MERRF” mutation. Neurology 2013, 80, 2049–2054. [Google Scholar] [CrossRef]
- Lax, N.Z.; Pienaar, I.S.; Reeve, A.; Hepplewhite, P.D.; Jaros, E.; Taylor, R.W.; Kalaria, R.N.; Turnbull, D.M. Microangiopathy in the cerebellum of patients with mitochondrial DNA disease. Brain 2012, 135, 1736–1750. [Google Scholar] [CrossRef] [Green Version]
- Pareyson, D.; Piscosquito, G.; Moroni, I.; Salsano, E.; Zeviani, M. Peripheral neuropathy in mitochondrial disorders. Lancet Neurol. 2013, 12, 1011–1024. [Google Scholar] [CrossRef]
- Bindoff, L.; Birch-Machin, M.; Farnsworth, L.; Gardner-Medwin, D.; Lindsay, J.; Turnbull, D. Familial intermittent ataxia due to a defect of the E1 component of pyruvate dehydrogenase complex. J. Neurol. Sci. 1989, 93, 311–318. [Google Scholar] [CrossRef]
- Mancuso, M.; Petrozzi, L.; Filosto, M.; Nesti, C.; Rocchi, A.; Choub, A.; Pistolesi, S.; Massetani, R.; Fontanini, G.; Siciliano, G. MERRF syndrome without ragged-red fibers: The need for molecular diagnosis. Biochem. Biophys. Res. Commun. 2007, 354, 1058–1060. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Paz, M.; Povea-Cabello, S.; Villalón-García, I.; Suárez-Rivero, J.M.; Álvarez-Córdoba, M.; de la Mata, M.; Talaverón-Rey, M.; Jackson, S.; Sánchez-Alcázar, J.A. Pathophysiological characterization of MERRF patient-specific induced neurons generated by direct reprogramming. Biochim. Biophys. Acta 2019, 1866, 861–881. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Yabe, I.; Sudo, A.; Hosoki, K.; Yaguchi, H.; Saitoh, S.; Sasaki, H. MERRF/MELAS overlap syndrome: A double pathogenic mutation in mitochondrial tRNA genes. J. Med. Genet. 2010, 47, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Emmanuele, V.; Silvers, D.S.; Sotiriou, E.; Tanji, K.; DiMAURO, S.; Hirano, M. MERRF and Kearns-Sayre overlap syndrome due to the mtDNA m.3291T>C mutation. Muscle Nerve 2011, 44, 448–451. [Google Scholar] [CrossRef]
- Perera, U.; Kennedy, B.A.; Hegele, R.A. Multiple Symmetric Lipomatosis (Madelung Disease) in a Large Canadian Family With the Mitochondrial MTTK c.8344A>G Variant. J. Investig. Med. High Impact Case Rep. 2018, 6. [Google Scholar] [CrossRef]
- Ito, S.; Shirai, W.; Asahina, M.; Hattori, T. Clinical and Brain MR Imaging Features Focusing on the Brain Stem and Cerebellum in Patients with Myoclonic Epilepsy with Ragged-Red Fibers due to Mitochondrial A8344G Mutation. Am. J. Neuroradiol. 2008, 29, 392–395. [Google Scholar] [CrossRef] [Green Version]
- Fukuhara, N. MERRF: A clinicopathological study. Relationships between myoclonus epilepsies and mitochondrial myopa-thies. Rev. Neurol. 1991, 147, 476–479. [Google Scholar]
- Tanji, K.; Kunimatsu, T.; Vu, T.H.; Bonilla, E. Neuropathological features of mitochondrial disorders. Semin. Cell Dev. Biol. 2001, 12, 429–439. [Google Scholar] [CrossRef]
- Orsucci, D.; Ienco, E.C.; Rossi, A.; Siciliano, G.; Mancuso, M. Mitochondrial Syndromes Revisited. J. Clin. Med. 2021, 10, 1249. [Google Scholar] [CrossRef] [PubMed]
- Kerrison, J.B.; Biousse, V.; Newman, N.J. Retinopathy of NARP Syndrome. Arch. Ophthalmol. 2000, 118, 298. [Google Scholar] [CrossRef] [PubMed]
- Claeys, K.G.; Abicht, A.; Häusler, M.; Kleinle, S.; Wiesmann, M.; Schulz, J.B.; Horvath, R.; Weis, J. Novel genetic and neuropathological insights in neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP). Muscle Nerve 2016, 54, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, E.; Shimura, M.; Fushimi, T.; Tajika, M.; Ichimoto, K.; Matsunaga, A.; Tsuruoka, T.; Ishige, M.; Fuchigami, T.; Yamazaki, T.; et al. Clinical validity of biochemical and molecular analysis in diagnosing Leigh syndrome: A study of 106 Japanese patients. J. Inherit. Metab. Dis. 2017, 40, 685–693. [Google Scholar] [CrossRef] [Green Version]
- Rantamäki, M.T.; Soini, H.K.; Finnilä, S.M.; Majamaa, K.; Udd, B. Adult-onset ataxia and polyneuropathy caused by mi-tochondrial 8993T-->C mutation. Ann. Neurol. 2005, 58, 337–340. [Google Scholar] [CrossRef]
- White, S.L.; Collins, V.R.; Wolfe, R.; Cleary, M.A.; Shanske, S.; DiMauro, S.; Dahl, H.-H.M.; Thorburn, D. Genetic Counseling and Prenatal Diagnosis for the Mitochondrial DNA Mutations at Nucleotide 8993. Am. J. Hum. Genet. 1999, 65, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Fraidakis, M.J.; Jardel, C.; Allouche, S.; Nelson, I.; Auré, K.; Slama, A.; Lemière, I.; Thenint, J.P.; Hamon, J.B.; Zagnoli, F.; et al. Phenotypic diversity associated with the MT-TV gene m.1644G>A mutation, a matter of quantity. Mitochondrion 2014, 15, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Sgarbi, G.; Casalena, G.A.; Baracca, A.; Lenaz, G.; DiMauro, S.; Solaini, G. Human NARP Mitochondrial Mutation Metabolism Corrected With α-Ketoglutarate/Aspartate: A Potential New Therapy. Arch. Neurol. 2009, 66, 951–957. [Google Scholar] [CrossRef] [Green Version]
- Gelfand, J.M.; Duncan, J.L.; Racine, C.A.; Gillum, L.A.; Chin, C.T.; Zhang, Y.; Zhang, Q.; Wong, L.-J.C.; Roorda, A.; Green, A.J. Heterogeneous patterns of tissue injury in NARP syndrome. J. Neurol. 2010, 258, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Lake, N.J.; Compton, A.G.; Rahman, S.; Thorburn, D.R. Leigh syndrome: One disorder, more than 75 monogenic causes. Ann. Neurol. 2016, 79, 190–203. [Google Scholar] [CrossRef]
- Bonfante, E.; Koenig, M.K.; Adejumo, R.B.; Perinjelil, V.; Riascos, R. The neuroimaging of Leigh syndrome: Case series and review of the literature. Pediatr. Radiol. 2016, 46, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Veiga, M.G.A.D.; Marecos, C.; Duarte, S.T.; Vieira, J.P.; Conceição, C. Leigh syndrome with atypical cerebellar lesions. eNeurologicalSci 2019, 16, 100197. [Google Scholar] [CrossRef] [PubMed]
- El-Hattab, A.W.; Adesina, A.M.; Jones, J.; Scaglia, F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol. Genet. Metab. 2015, 116, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, K.; Krishnan, P.; Kortman, H.; Klostranec, J.; Krings, T. Acute Cortical Lesions in MELAS Syndrome: Anatomic Distribution, Symmetry, and Evolution. Am. J. Neuroradiol. 2020, 41, 167–173. [Google Scholar] [CrossRef]
- Farina, L.; Moroni, I.; Ciceri, E.; Uziel, G.; Savoiardo, M. Le encefalomiopatie mitocondriali in età pediatrica. Riv. Neuroradiol. 1999, 12, 113–117. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Govindaraj, P.; Sankaran, B.P.; Nagappa, M.; Kabekkodu, S.P.; Jayaram, P.; Mallya, S.; Deepha, S.; Ponmalar, J.N.J.; Arivinda, H.R.; et al. Contribution of nuclear and mitochondrial gene mutations in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. J. Neurol. 2021, 268, 2192–2207. [Google Scholar] [CrossRef]
- Kobayashi, Z.; Tsunemi, T.; Miake, H.; Tanaka, S.; Watabiki, S.; Morokuma, Y. A Mother and a Child with Maternally Inherited Diabetes and Deafness (MIDD) Showing Atrophy of the Cerebrum, Cerebellum and Brainstem on Magnetic Resonance Imaging (MRI). Intern. Med. 2005, 44, 328–331. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Konno, S.; Inoue, M.; Murata, M.; Nakazora, H.; Sugimoto, H.; Fujioka, T. Convulsion and cerebellar ataxia associated with maternally inherited diabetes and deafness: A case report. Clin. Case Rep. 2015, 3, 656–659. [Google Scholar] [CrossRef] [Green Version]
- Zeviani, M.; Carelli, V. Mitochondrial Retinopathies. Int. J. Mol. Sci. 2021, 23, 210. [Google Scholar] [CrossRef]
- Funakawa, I.; Kato, H.; Terao, A.; Ichihashi, K.; Kawashima, S.; Hayashi, T.; Mitani, K.; Miyazaki, S. Cerebellar ataxia in patients with Leber’s hereditary optic neuropathy. J. Neurol. 1995, 242, 75–77. [Google Scholar] [CrossRef]
- Nakaso, K.; Adachi, Y.; Fusayasu, E.; Doi, K.; Imamura, K.; Yasui, K.; Nakashima, K. Leber’s Hereditary Optic Neuropathy with Olivocerebellar Degeneration due to G11778A and T3394C Mu-tations in the Mitochondrial DNA. J. Clin. Neurol. 2012, 8, 230–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikoskelainen, E.K.; Marttila, R.J.; Huoponen, K.; Juvonen, V.; Lamminen, T.; Sonninen, P.; Savontaus, M.L. Leber’s “plus”: Neurological abnormalities in patients with Leber’s hereditary optic neuropathy. J. Neurol. Neurosurg. Psychiatry 1995, 59, 160–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, T.; Mita, S.; Tokunaga, M.; Maeda, H.; Ueyama, H.; Kumamoto, T.; Uchino, M.; Ando, M. Hereditary cerebellar ataxia with Leber’s hereditary optic neuropathy mitochondrial DNA 11778 mutation. J. Neurol. Sci. 1996, 142, 111–113. [Google Scholar] [CrossRef]
- Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.F.; Lee, H.J.; Chi, C.S.; Tsai, C.R.; Chang, T.K.; Wang, C.J. The neurological evolution of Pearson syndrome: Case report and literature review. Eur. J. Paediatr. Neurol. 2007, 11, 208–214. [Google Scholar] [CrossRef]
- Mancuso, M.; Orsucci, D.; Angelini, C.; Bertini, E.; Carelli, V.; Comi, G.P.; Donati, M.A.; Federico, A.; Minetti, C.; Moggio, M.; et al. Redefining phenotypes associated with mitochondrial DNA single deletion. J. Neurol. 2015, 262, 1301–1309. [Google Scholar] [CrossRef]
- Tanji, K.; DiMauro, S.; Bonilla, E. Disconnection of cerebellar Purkinje cells in Kearns-Sayre syndrome. J. Neurol. Sci. 1999, 166, 64–70. [Google Scholar] [CrossRef]
- Renkema, G.H.; Wortmann, S.B.; Smeets, R.J.; Venselaar, H.; Antoine, M.; Visser, G. SDHA mutations causing a multisystem mitochondrial disease: Novel mutations and genetic overlap with hereditary tumors. Eur. J. Hum. Genet. 2015, 23, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Visapää, I.; Fellman, V.; Vesa, J.; Dasvarma, A.; Hutton, J.L.; Kumar, V.; Payne, G.S.; Makarow, M.; Van Coster, R.; Taylor, R.W.; et al. GRACILE Syndrome, a Lethal Metabolic Disorder with Iron Overload, Is Caused by a Point Mutation in BCS1L. Am. J. Hum. Genet. 2002, 71, 863–876. [Google Scholar] [CrossRef] [Green Version]
- Woerner, A.C.; Vockley, J. Mitochondrial Disease and Coenzyme Q10 Deficiency: Commentary. J. Pediatr. 2020, 228, 14–15.e1. [Google Scholar] [CrossRef]
- Lagier-Tourenne, C.; Tazir, M.; López, L.C.; Quinzii, C.M.; Assoum, M.; Drouot, N.; Busso, C.; Makri, S.; Ali-Pacha, L.; Benhassine, T.; et al. ADCK3, an Ancestral Kinase, Is Mutated in a Form of Recessive Ataxia Associated with Coenzyme Q10 Deficiency. Am. J. Hum. Genet. 2008, 82, 661–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukhudyan, B.; Gevorgyan, A.; Sarkissian, A.; Boltshauser, E. Expanding phenotype of mitochondrial depletion syndrome in association with TWNK mutations. Eur. J. Paediatr. Neurol. 2019, 23, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Viscomi, C.; Zeviani, M. MtDNA-maintenance defects: Syndromes and genes. J. Inherit. Metab. Dis. 2017, 40, 587–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskinen, T.; Santavuori, P.; Sainio, K.; Lappi, M.; Kallio, A.-K.; Pihko, H. Infantile onset spinocerebellar ataxia with sensory neuropathy: A new inherited disease. J. Neurol. Sci. 1994, 121, 50–56. [Google Scholar] [CrossRef]
- Park, M.-H.; Woo, H.-M.; Bin Hong, Y.; Park, J.H.; Yoon, B.R.; Park, J.-M.; Yoo, J.H.; Koo, H.; Chae, J.-H.; Chung, K.W.; et al. Recessive C10orf2 mutations in a family with infantile-onset spinocerebellar ataxia, sensorimotor polyneuropathy, and myopathy. Neurogenetics 2014, 15, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Wong, L.J.C.; Naviaux, R.K.; Brunetti-Pierri, N.; Zhang, Q.; Schmitt, E.S.; Truong, C. Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum. Mutat. 2008, 29, E150–E172. [Google Scholar] [CrossRef] [Green Version]
- Hayhurst, H.; Anagnostou, M.-E.; Bogle, H.J.; Grady, J.P.; Taylor, R.W.; Bindoff, L.A.; McFarland, R.; Turnbull, D.M.; Lax, N.Z. Dissecting the neuronal vulnerability underpinning Alpers’ syndrome: A clinical and neuropathological study. Brain Pathol. 2018, 29, 97–113. [Google Scholar] [CrossRef]
- Copeland, W.C. Defects of mitochondrial DNA replication. J. Child Neurol. 2014, 29, 1216–1224. [Google Scholar] [CrossRef] [Green Version]
- Fadic, R.; Russell, J.A.; Vedanarayanan, V.V.; Lehar, M.; Kuncl, R.W.; Johns, D.R. Sensory ataxic neuropathy as the presenting feature of a novel mitochondrial disease. Neurology 1997, 49, 239–245. [Google Scholar] [CrossRef]
- Tzoulis, C.; Tran, G.T.; Coxhead, J.; Bertelsen, B.; Lilleng, P.K.; Balafkan, N.; Payne, B.; Miletic, H.; Chinnery, P.F.; Bindoff, L.A. Molecular pathogenesis of polymerase gamma–related neurodegeneration. Ann. Neurol. 2014, 76, 66–81. [Google Scholar] [CrossRef] [Green Version]
- I Henao, A.; Pira, S.; A Herrera, D.; A Vargas, S.; Montoya, J.; Castillo, M. Characteristic brain MRI findings in ataxia-neuropathy spectrum related to POLG mutation. Neuroradiol. J. 2016, 29, 46–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzoulis, C.; Henriksen, E.; Miletic, H.; Bindoff, L.A. No evidence of ischemia in stroke-like lesions of mitochondrial POLG encephalopathy. Mitochondrion 2017, 32, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Van Goethem, G.; Mercelis, R.; Lofgren, A.; Seneca, S.; Ceuterick, C.; Martin, J.J.; Van Broeckhoven, C. Patient homozygous for a recessive POLG mutation presents with features of MERRF. Neurology 2003, 61, 1811–1813. [Google Scholar] [CrossRef] [PubMed]
- Steenweg, M.E.; van Berge, L.; van Berkel CG, M.; de Coo IF, M.; Temple, I.K.; Brockmann, K. Early-onset LBSL: How severe does it get? Neuropediatrics 2012, 43, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthiah, A.; Housley, G.D.; Klugmann, M.; Fröhlich, D. The Leukodystrophies HBSL and LBSL—Correlates and Distinctions. Front. Cell. Neurosci. 2021, 14, 478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, X.; Liang, X.; Lu, Y.; Zhu, L.; Fu, R.; Ji, Y.; Fan, W.; Chen, J.; Lin, B.; et al. A novel ADOA-associated OPA1 mutation alters the mitochondrial function, membrane potential, ROS production and apoptosis. Sci. Rep. 2017, 7, 5704. [Google Scholar] [CrossRef]
- Pavlu-Pereira, H.; Silva, M.J.; Florindo, C.; Sequeira, S.; Ferreira, A.C.; Duarte, S. Pyruvate dehydrogenase complex deficiency: Updating the clinical, metabolic and mutational land-scapes in a cohort of Portuguese patients. Orphanet J. Rare Dis. 2020, 15, 298. [Google Scholar] [CrossRef]
- Debray, F.-G.; Lambert, M.; Gagné, R.; Maranda, B.; LaFramboise, R.; Mackay, N.; Robinson, B.; Mitchell, G. Pyruvate Dehydrogenase Deficiency Presenting as Intermittent Isolated Acute Ataxia. Neuropediatrics 2008, 39, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Coenen, M.J.H.; van den Heuvel, L.P.; Ugalde, C.; Ten Brinke, M.; Nijtmans, L.G.; Trijbels, F.J.; Beblo, S.; Maier, E.M.; Muntau, A.C.; Smeitink, J.A.M. Cytochrome c oxidase biogenesis in a patient with a mutation in COX10 gene. Ann. Neurol. 2004, 56, 560–564. [Google Scholar] [CrossRef]
- Pitceathly, R.; Taanman, J.-W.; Rahman, S.; Meunier, B.; Sadowski, M.; Cirak, S.; Hargreaves, I.; Land, J.M.; Nanji, T.; Polke, J.M.; et al. COX10Mutations Resulting in Complex Multisystem Mitochondrial Disease That Remains Stable Into Adulthood. JAMA Neurol. 2013, 70, 1556–1561. [Google Scholar] [CrossRef] [Green Version]
- Luca, P.; Alessia, G.; Camilla, R.-E.M.; Antonio, N.; Diego, M.; Federica, D.; Daria, D.; Rosalba, C.; Carlo, D.-V.; Daniela, L. Spinal cord involvement in Kearns-Sayre syndrome: A neuroimaging study. Neuroradiology 2020, 62, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
Tissue/System | Sign or Symptom |
---|---|
Neurological | |
CNS | Epilepsy |
Ataxia | |
Myoclonus | |
Stroke | |
Stroke-like episode | |
Myelopathy | |
Cortical blindness | |
Migraine-like headache | |
Psychomotor retardation/regression | |
Encephalopathy/coma | |
Dystonia | |
Parkinsonism | |
Cognitive impairment/Dementia | |
Psychiatric disorders | |
PNS | Peripheral sensory-motor neuropathy |
Muscle | Myopathy |
Exercise intolerance | |
Eye | Progressive external ophthalmoplegia |
Ptosis | |
Retinitis pigmentosa | |
Optic atrophy | |
Cataracts | |
ENT | Sensorineural hearing loss |
Non neurological | |
Blood | Sideroblastic anaemia |
Bone marrow failure | |
Endocrine/reproductive system | Diabetes mellitus |
Short stature | |
Hypoparathyroidism | |
Multiple endocrinopathy | |
Infertility | |
Pregnancy loss | |
Heart | Cardiomyopathy |
Cardiac conduction defects | |
Wolff-Parkinson-White syndrome | |
Liver and gastro-intestinal | Hepatopathy |
Liver failure precipitated by valproic acid | |
Exocrine pancreas dysfunction | |
Intestinal pseudo-obstruction | |
Gastro-intestinal dysmotility | |
Kidney | Fanconi syndrome |
Renal tubular acidosis | |
Focal segmental glomerulosclerosis | |
Renal failure | |
Myoglobinuria | |
Metabolism | Metabolic acidosis |
Lactic acidosis |
Syndrome | Most Common Type of Ataxia | ||
---|---|---|---|
Cerebellar | Sensory | Spinocerebellar | |
mtDNA point mutations | |||
MERRF | ● | ||
NARP | ● | ||
MELAS | ● | ||
LHON (plus) | ● | ||
MIDD (not common) | ● | ||
Multiple symmetric lipomatosis (not common) | ● | ||
mtDNA large scale rearrangements | |||
KSS | ● | ||
cPEO (not common) | ● | ||
PS (not common) | ● |
Syndrome | Inheritance | Most Common Type of Ataxia | ||
---|---|---|---|---|
Cerebellar | Sensory | Spinocerebellar | ||
Respiratory chain subunits, ancillary proteins and electron carriers | ||||
LS | AR, AD | |||
Primary CoQ10 deficiency | AR | ● | ||
GRACILE (not common) | AR | ● | ||
mtDNA replication and expression | ||||
IOSCA | AR | ● | ||
MEMSA | AR | ● | ||
MIRAS | AD | ● | ||
SANDO | AR | ● | ||
AHS | AR | ● | ||
AD-cPEO (not common) | AD | ● | ||
AR-cPEO (not common) | AR | ● | ||
Mitochondrial neurogastrointestinal Encephalomyopathy (not common) | AR | ● | ||
LBSL | AR | ● | ||
Mitochondrial dynamics, homeostasis and quality control | ||||
ADOA (plus) | AD | ● | ||
3-methylglutaconic aciduria type III (not common) | AR | ● | ||
3-methylglutaconic aciduria type V (not common) | AR | ● | ||
Metabolism of substrates | ||||
PDC-deficiency | XL, AR | ● | ||
Metabolism of cofactors | ||||
COX10-15 mutations (not common) | AR | ● | ||
Others | ||||
FRDA | AR | ● | ||
XLSA/A | XL | ● | ||
Wolfram syndrome (not common) | AR | ● |
Type of MRI Alteration | Suggested PMDs | References |
---|---|---|
Cerebellar atrophy | Not specific | [22,48,59,65,69,72,81,91,97] |
T2/FLAIR hyperintense white matter | KSS, POLG1-related, MERRF, MELAS, IOSCA, ADOA plus | [22,23,48,65,69,91] |
Dentate nuclei signal changes | KSS | [22] |
Brainstem signal changes/atrophy | KSS, IOSCA | [22,23] |
Inferior olivary nuclei lesions | POLG1-related | [91] |
Basal ganglia lesions | KSS, POLG1-related, MERRF, NARP | [22,48,59,91] |
Spinal cord signal changes | KSS | [101] |
Cortical atrophy | IOSCA | [23] |
Brainstem and basal ganglia bilateral symmetrical lesions | LS | [60,61] |
Stroke like lesions | MELAS | [64,65] |
Cerebral white matter + dorsal column/lateral corticospinal tracts + pyramids | LBSL | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopriore, P.; Ricciarini, V.; Siciliano, G.; Mancuso, M.; Montano, V. Mitochondrial Ataxias: Molecular Classification and Clinical Heterogeneity. Neurol. Int. 2022, 14, 337-356. https://doi.org/10.3390/neurolint14020028
Lopriore P, Ricciarini V, Siciliano G, Mancuso M, Montano V. Mitochondrial Ataxias: Molecular Classification and Clinical Heterogeneity. Neurology International. 2022; 14(2):337-356. https://doi.org/10.3390/neurolint14020028
Chicago/Turabian StyleLopriore, Piervito, Valentina Ricciarini, Gabriele Siciliano, Michelangelo Mancuso, and Vincenzo Montano. 2022. "Mitochondrial Ataxias: Molecular Classification and Clinical Heterogeneity" Neurology International 14, no. 2: 337-356. https://doi.org/10.3390/neurolint14020028
APA StyleLopriore, P., Ricciarini, V., Siciliano, G., Mancuso, M., & Montano, V. (2022). Mitochondrial Ataxias: Molecular Classification and Clinical Heterogeneity. Neurology International, 14(2), 337-356. https://doi.org/10.3390/neurolint14020028