Stroke and Emerging Blood Biomarkers: A Clinical Prospective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Data Analysis
3. Results
3.1. Database Searches
3.2. Study Characteristics
3.3. Study Design
3.4. Stroke Patient Groups
3.5. Reference Groups
3.6. Demographic and Clinical Profiles
3.7. Time of Blood Sampling
3.8. Scales of Stroke Severity and Prognosis/Clinical Outcome
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.S. Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res. Treat. 2018, 2018, 3238165. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef]
- De Marchis, G.M.; Dittrich, T.D. Blood Biomarkers in the Diagnosis of Acute Stroke. In Precision Medicine in Stroke; Fonseca, A.C., Ferro, J.M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 163–189. [Google Scholar]
- Grefkes, C.; Fink, G.R. Recovery from stroke: Current concepts and future perspectives. Neurol. Res. Pract. 2020, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Mira, K. Luft Andreas Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef]
- Thomalla, G.; Simonsen, C.Z.; Boutitie, F.; Andersen, G.; Berthezene, Y.; Cheng, B.; Cheripelli, B.; Cho, T.-H.; Fazekas, F.; Fiehler, J.; et al. MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. N. Engl. J. Med. 2018, 379, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Rust, R. Towards blood biomarkers for stroke patients. J. Cereb. Blood Flow Metab. 2021, 41, 914–916. [Google Scholar] [CrossRef]
- Karatzetzou, S.; Tsiptsios, D.; Terzoudi, A.; Aggeloussis, N.; Vadikolias, K. Transcranial magnetic stimulation implementation on stroke prognosis. Neurol. Sci. 2021, 43, 873–888. [Google Scholar] [CrossRef]
- Biomarkers Definitions Working Group; Atkinson, A.J., Jr.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Spilker, B.A.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Vasan, R.S. Biomarkers of cardiovascular disease: Molecular basis and practical considerations. Circulation 2006, 113, 2335–2362. [Google Scholar] [CrossRef]
- Makris, K.; Haliassos, A.; Chondrogianni, M.; Tsivgoulis, G. Blood biomarkers in ischemic stroke: Potential role and challenges in clinical practice and research. Crit. Rev. Clin. Lab. Sci. 2018, 55, 294–328. [Google Scholar] [CrossRef] [PubMed]
- McMahon, G.; Waikar, S.S. Biomarkers in Nephrology: Core Curriculum 2013. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2013, 62, 165–178. [Google Scholar] [CrossRef]
- Andone, S.; Bajko, Z.; Motataianu, A.; Mosora, O.; Balasa, R. The Role of Biomarkers in Atherothrombotic Stroke—A Systematic Review. Int. J. Mol. Sci. 2021, 22, 9032. [Google Scholar] [CrossRef]
- Boyd, L.A.; Hayward, K.; Ward, N.; Stinear, C.M.; Rosso, C.; Fisher, R.; Carter, A.R.; Leff, A.; Copland, D.A.; Carey, L.M.; et al. Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2017, 12, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Milot, M.-H.; Cramer, S.C. Biomarkers of recovery after stroke. Curr. Opin. Neurol. 2008, 21, 654–659. [Google Scholar] [CrossRef]
- Ward, N. Restoring brain function after stroke—Bridging the gap between animals and humans. Nat. Rev. Neurol. 2017, 13, 244–255. [Google Scholar] [CrossRef]
- Menezes, N.M.; Ay, H.; Zhu, M.W.; Lopez, C.J.; Singhal, A.B.; Karonen, J.O.; Aronen, H.J.; Liu, Y.; Nuutinen, J.; Koroshetz, W.J.; et al. The real estate factor: Quantifying the impact of infarct location on stroke severity. Stroke 2007, 38, 194–197. [Google Scholar] [CrossRef]
- Pullagurla, S.R.; E Baird, A.; Adamski, M.G.; A Soper, S. Current and future bioanalytical approaches for stroke assessment. Bioanalysis 2015, 7, 1017–1035. [Google Scholar] [CrossRef]
- Chen, C.; Cong, B.L.; Wang, M.; Abdullah, M.; Wang, X.L.; Zhang, Y.H.; Xu, S.J.; Cui, L. Neutrophil to lymphocyte ratio as a predictor of myocardial damage and cardiac dysfunction in acute coronary syndrome patients. Integr. Med. Res. 2018, 7, 192–199. [Google Scholar] [CrossRef]
- Das, A.; George, M.; Jha, D.; Goenka, L. Long Term Prognostic Utility of Matrix Metalloproteinase-9 in Patients with Acute Coronary Syndrome—A Systematic Review. Curr. Pharm. Biotechnol. 2021, 22, 1482–1489. [Google Scholar] [CrossRef]
- Pasqui, E.; de Donato, G.; Giannace, G.; Panzano, C.; Alba, G.; Cappelli, A.; Setacci, C.; Palasciano, G. The relation between neutrophil/lymphocyte and platelet/lymphocyte ratios with mortality and limb amputation after acute limb ischaemia. Vascular 2022, 30, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Lyubimova, N.V.; Timofeev, Y.S.; Mitrofanov, A.A.; Bekyashev, A.K.; Goncharova, Z.A.; Kushlinskii, N.E. Glial Fibrillary Acidic Protein in the Diagnosis and Prognosis of Malignant Glial Tumors. Bull. Exp. Biol. Med. 2020, 168, 503–506. [Google Scholar] [CrossRef]
- Song, B.; Shi, P.; Xiao, J.; Song, Y.; Zeng, M.; Cao, Y.; Zhu, X. Utility of red cell distribution width as a diagnostic and prognostic marker in non-small cell lung cancer. Sci. Rep. 2020, 10, 15717. [Google Scholar] [CrossRef] [PubMed]
- Cupp, M.A.; Cariolou, M.; Tzoulaki, I.; Aune, D.; Evangelou, E.; Berlanga-Taylor, A.J. Neutrophil to lymphocyte ratio and cancer prognosis: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 2020, 18, 360. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zeng, T.; Wu, Y.; Tian, Y.; Tan, L.; Duan, X.; Wu, Q.; Li, H.; Yu, L. Neutrophil-to-C3 ratio and neutrophil-to-lymphocyte ratio were associated with disease activity in patients with systemic lupus erythematosus. J. Clin. Lab. Anal. 2018, 33, e22633. [Google Scholar] [CrossRef]
- Langley, B.O.; Guedry, S.E.; Goldenberg, J.Z.; Hanes, D.A.; Beardsley, J.A.; Ryan, J.J. Inflammatory Bowel Disease and Neutrophil–Lymphocyte Ratio: A Systematic Scoping Review. J. Clin. Med. 2021, 10, 4219. [Google Scholar] [CrossRef]
- Santaguida, P.L.; Don-Wauchope, A.; Oremus, M.; McKelvie, R.; Ali, U.; Hill, S.A.; Balion, C.; Booth, R.A.; Brown, J.A.; Bustamam, A.; et al. BNP and NT-proBNP as prognostic markers in persons with acute decompensated heart failure: A systematic review. Heart Fail. Rev. 2014, 19, 453–470. [Google Scholar] [CrossRef]
- Delcea, C.; Buzea, C.A.; Dan, G.A. The neutrophil to lymphocyte ratio in heart failure: A comprehensive review. Rom. J. Intern. Med. 2019, 57, 296–314. [Google Scholar] [CrossRef]
- Chaudhuri, J.R.; Sharma, V.; Mridula, K.R.; Balaraju, B.; Bandaru, V.C.S.S. Association of Plasma Brain Natriuretic Peptide Levels in Acute Ischemic Stroke Subtypes and Outcome. J. Stroke Cerebrovasc. Dis. 2015, 24, 485–491. [Google Scholar] [CrossRef]
- Mäkikallio, A.; Mäkikallio, T.; Korpelainen, J.; Vuolteenaho, O.; Tapanainen, J.; Ylitalo, K.; Sotaniemi, K.; Huikuri, H.; Myllylä, V. Natriuretic Peptides and Mortality after Stroke. Stroke 2005, 36, 1016–1020. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Yang, Y.; Zhang, M.; Xu, W. The use of serum glial fibrillary acidic protein test as a promising tool for intracerebral hemorrhage diagnosis in Chinese patients and prediction of the short-term functional outcomes. Neurol. Sci. 2015, 36, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Rozanski, M.; Audebert, H.J. Glial fibrillary acidic protein in acute stroke: What we know and what we need to know. AME Med. J. 2018, 3, 14. [Google Scholar] [CrossRef]
- Amalia, L. Glial Fibrillary Acidic Protein (GFAP): Neuroinflammation Biomarker in Acute Ischemic Stroke. J. Inflamm. Res. 2021, 14, 7501–7506. [Google Scholar] [CrossRef]
- Feng, G.-H.; Li, H.-P.; Li, Q.-L.; Fu, Y.; Huang, R.-B. Red blood cell distribution width and ischaemic stroke. Stroke Vasc. Neurol. 2017, 2, e000071. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-Y.; Zhao, X.-X.; Rajah, G.; Hua, C.; Kang, R.-J.; Han, Y.-P.; Ding, Y.-C.; Meng, R. Clinical Significance of Baseline Neutrophil-to-Lymphocyte Ratio in Patients with Ischemic Stroke or Hemorrhagic Stroke: An Updated Meta-Analysis. Front. Neurol. 2019, 10, 1032. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, S.; Cunningham, M.W.; Pabbidi, M.R.; Wang, S.; Booz, G.W.; Fan, F. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur. J. Pharmacol. 2018, 833, 531–544. [Google Scholar] [CrossRef]
- Wilkinson, D.A.; Pandey, A.S.; Thompson, B.G.; Keep, R.F.; Hua, Y.; Xi, G. Injury mechanisms in acute intracerebral hemorrhage. Neuropharmacology 2018, 134 Pt B, 240–248. [Google Scholar] [CrossRef]
- Wang, J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog. Neurobiol. 2010, 92, 463–477. [Google Scholar] [CrossRef]
- Vafadari, B.; Salamian, A.; Kaczmarek, L. MMP-9 in translation: From molecule to brain physiology, pathology, and therapy. J. Neurochem. 2016, 139 (Suppl. 2), 91–114. [Google Scholar] [CrossRef]
- Gao, N.; Guo, T.; Luo, H.; Tu, G.; Niu, F.; Yan, M.; Xia, Y. Association of the MMP9 polymorphism and ischemic stroke risk in southern Chinese Han population. BMC Neurol. 2019, 19, 67. [Google Scholar] [CrossRef]
- Kitchen, P.; Salman, M.M.; Halsey, A.M.; Clarke-Bland, C.; Macdonald, J.A.; Ishida, H.; Vogel, H.J.; Almutiri, S.; Logan, A.; Kreida, S.; et al. Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. Cell 2020, 181, 784–799.e19. [Google Scholar] [CrossRef] [PubMed]
- Vella, J.; Zammit, C.; Di Giovanni, G.; Muscat, R.; Valentino, M. The central role of aquaporins in the pathophysiology of ischemic stroke. Front. Cell. Neurosci. 2015, 9, 108. [Google Scholar] [CrossRef] [PubMed]
- Montaner, J.; García-Berrocoso, T.; Mendioroz, M.; Palacios, M.; Perea-Gainza, M.; Delgado, P.; Rosell, A.; Slevin, M.; Ribó, M.; Molina, C.A.; et al. Brain natriuretic peptide is associated with worsening and mortality in acute stroke patients but adds no prognostic value to clinical predictors of outcome. Cerebrovasc. Dis. 2012, 34, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K.; Shiga, T.; Iijima, M.; Moriya, S.; Mizuno, S.; Toi, S.; Arai, K.; Ashihara, K.; Abe, K.; Uchiyama, S. Brain natriuretic peptide in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2013, 23, 967–972. [Google Scholar] [CrossRef]
- Tu, W.J.; Dong, X.; Zhao, S.J.; Yang, D.G.; Chen, H. Prognostic value of plasma neuroendocrine biomarkers in patients with acute ischaemic stroke. J. Neuroendocrinol. 2013, 25, 771–778. [Google Scholar] [CrossRef]
- Nigro, N.; Wildi, K.; Mueller, C.; Schuetz, P.; Mueller, B.; Fluri, F.; Christ-Crain, M.; Katan, M. BNP but Not s-cTnln is associated with cardioembolic aetiology and predicts short and long term prognosis after cerebrovascular events. PLoS ONE 2014, 29, e102704. [Google Scholar] [CrossRef]
- Maruyama, K.; Uchiyama, S.; Shiga, T.; Iijima, M.; Ishizuka, K.; Hoshino, T.; Kitagawa, K. Brain Natriuretic Peptide Is a Powerful Predictor of Outcome in Stroke Patients with Atrial Fibrillation. Cerebrovasc. Dis. Extra 2017, 7, 35–43. [Google Scholar] [CrossRef]
- Otaki, Y.; Watanabe, T.; Sato, N.; Shirata, T.; Tsuchiya, H.; Wanezaki, M.; Tamura, H.; Nishiyama, S.; Arimoto, T.; Takahashi, H.; et al. Direct comparison of prognostic ability of cardiac biomarkers for cardiogenic stroke and clinical outcome in patients with stroke. Heart Vessel. 2019, 34, 1178–1186. [Google Scholar] [CrossRef]
- Liu, G.; Geng, J. Glial fibrillary acidic protein as a prognostic marker of acute ischemic stroke. Hum. Exp. Toxicol. 2018, 37, 1048–1053. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.D.; Song, T.J.; Park, J.H.; Lee, H.S.; Nam, C.M.; Nam, H.S.; Heo, J.H. Red blood cell distribution width is associated with poor clinical outcome in acute cerebral infarction. Thromb. Haemost. 2012, 108, 349–356. [Google Scholar] [CrossRef]
- Ye, W.Y.; Li, J.; Li, X.; Yang, X.Z.; Weng, Y.Y.; Xiang, W.W.; Zhang, O.; Ke, B.X.; Zhang, X. Predicting the One-Year Prognosis and Mortality of Patients with Acute Ischemic Stroke Using Red Blood Cell Distribution Width Before Intravenous Thrombolysis. Clin. Interv. Aging 2020, 20, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Gao, H.; Ma, W. Prognostic Relationship Between Peripheral Red Cell Distribution Width and Acute Cerebral Infarction in Patients with rtPA Thrombolysis. Neurotox. Res. 2020, 38, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Liu, C.; Sun, G.; Huang, L.; Zhou, W. A prognostic nomogram incorporating red cell distribution width for patients with intracerebral hemorrhage. Medicine 2020, 99, e23557. [Google Scholar] [CrossRef]
- Brooks, S.D.; Spears, C.; Cummings, C.; VanGilder, R.L.; Stinehart, K.R.; Gutmann, L.; Domico, J.; Culp, S.; Carpenter, J.; Rai, A.; et al. Admission neutrophil to lymphocyte ratio predicts 90 day outcome after endovascular stroke therapy. J. Neurointerv. Surg. 2014, 6, 578–583. [Google Scholar] [CrossRef]
- Sun, Y.; You, S.; Zhong, C.; Huang, Z.; Hu, L.; Zhang, X.; Shi, J.; Cao, Y.; Liu, C.F. Neutrophil to lymphocyte ratio and the hematoma volume and stroke severity in acute intracerebral hemorrhage patients. Am. J. Emerg. Med. 2017, 35, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Hu, X.; Wang, J.; Ma, J.; Li, H.; You, C. Admission neutrophil count and neutrophil to lymphocyte ratio predict 90-day outcome in intracerebral hemorrhage. Biomark Med. 2017, 11, 33–42. [Google Scholar] [CrossRef]
- Malhotra, K.; Goyal, N.; Chang, J.J.; Broce, M.; Pandhi, A.; Kerro, A.; Shahripour, R.B.; Alexandrov, A.V.; Tsivgoulis, G. Differential leukocyte counts on admission predict outcomes in patients with acute ischaemic stroke treated with intravenous thrombolysis. Eur. J. Neurol. 2018, 25, 1417–1424. [Google Scholar] [CrossRef]
- Pikija, S.; Sztriha, L.K.; Killer-Oberpfalzer, M.; Weymayr, F.; Hecker, C.; Ramesmayer, C.; Hauer, L.; Sellner, J. Neutrophil to lymphocyte ratio predicts intracranial hemorrhage after endovascular thrombectomy in acute ischemic stroke. J. Neuroinflamm. 2018, 15, 319. [Google Scholar] [CrossRef]
- Pektezel, M.Y.; Yilmaz, E.; Arsava, E.M.; Topcuoglu, M.A. Neutrophil to Lymphocyte Ratio and Response to Intravenous Thrombolysis in Patients with Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2019, 28, 1853–1859. [Google Scholar] [CrossRef]
- Fonseca, S.; Costa, F.; Seabra, M.; Dias, R.; Soares, A.; Dias, C.; Azevedo, E.; Castro, P. Systemic inflammation status at admission affects the outcome of intracerebral hemorrhage by increasing perihematomal edema but not the hematoma growth. Acta Neurol. Belg. 2019, 121, 649–659. [Google Scholar] [CrossRef]
- Aly, M.; Abdalla, R.N.; Batra, A.; Shaibani, A.; Hurley, M.C.; Jahromi, B.S.; Potts, M.B.; Ansari, S.A. Follow-up neutrophil-lymphocyte ratio after stroke thrombectomy is an independent biomarker of clinical outcome. J. Neurointerv. Surg. 2021, 13, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Topcuoglu, M.A.; Pektezel, M.Y.; Yilmaz, E.; Arsava, E.M. Systemic Inflammation Indices in Patients With Acute Ischemic Stroke Treated with Intravenous Tissue Plasminogen Activator: Clinical Yield and Utility. Angiology 2021, 72, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; He, Y.; Su, Y.; Sun, Y.; Zhang, Y.; Chen, H. Association of inflammatory and platelet volume markers with clinical outcome in patients with anterior circulation ischaemic stroke after endovascular thrombectomy. Neurol. Res. 2021, 43, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Menon, G.; Johnson, S.E.; Hegde, A.; Rathod, S.; Nayak, R.; Nair, R. Neutrophil to lymphocyte ratio—A novel prognostic marker following spontaneous intracerebral haemorrhage. Clin. Neurol. Neurosurg. 2021, 200, 106339. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.J.; Dowlati, E.; Triano, M.; Kalegha, E.; Krishnan, R.; Kasturiarachi, B.M.; Gachechiladze, L.; Pandhi, A.; Themistocleous, M.; Katsanos, A.H.; et al. Admission Neutrophil to Lymphocyte Ratio for Predicting Outcome in Subarachnoid Hemorrhage. J. Stroke Cerebrovasc. Dis. 2021, 30, 105936. [Google Scholar] [CrossRef]
- Sapojnikova, N.; Kartvelishvili, T.; Asatiani, N.; Zinkevich, V.; Kalandadze, I.; Gugutsidze, D.; Shakarishvili, R.; Tsiskaridze, A. Correlation between MMP-9 and extracellular cytokine HMGB1 in prediction of human ischemic stroke outcome. Biochim. Biophys. Acta 2014, 1842, 1379–1384. [Google Scholar] [CrossRef]
- Zhong, C.; Yang, J.; Xu, T.; Xu, T.; Peng, Y.; Wang, A.; Wang, J.; Peng, H.; Li, Q.; Ju, Z.; et al. CATIS Investigators. Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke. Neurology 2017, 89, 805–812. [Google Scholar] [CrossRef]
- Ramiro, L.; Simats, A.; Penalba, A.; Garcia-Tornel, A.; Rovira, A.; Mancha, F.; Bustamante, A.; Montaner, J. Circulating Aquaporin-4 as A biomarker of early neurological improvement in stroke patients: A pilot study. Neurosci. Lett. 2019, 714, 134580. [Google Scholar] [CrossRef]
- Hasan, N.; McColgan, P.; Bentley, P.; Edwards, R.J.; Sharma, P. Towards the identification of blood biomarkers for acute stroke in humans: A comprehensive systematic review. Br. J. Clin. Pharmacol. 2012, 74, 230–240. [Google Scholar] [CrossRef] [Green Version]
Authors, Year of Publication | Biomarker | Type of Study | Type of Stroke | Number of Participants/Mean Age | Time of Blood Sampling | Scale of Stroke Severity and Prognosis/Clinical Outcome | Cut-Off Values; (Specificity); [Sensitivity] | Main Results | |
---|---|---|---|---|---|---|---|---|---|
1. | Montaner et al. 2012 [44] | BNP | Longitudinal | IS and HS | 896 patients/72 (SD 12) | Upon admission (within 24 h from symptom onset) |
|
| For both IS and HS, elevated BNP levels were associated with early neurological deterioration and mortality. |
2. | Maruyama et al. 2013 [45] | BNP | Longitudinal | IS | 231 patients/71 ± 12 | Upon admission |
|
Types of IS:
| High BNP levels might serve as a useful biomarker to predict cardioembolism (CE) and its clinical outcome as well as the size of cerebral infarct and the risk for stroke in AF patients. |
3. | Tu et al. 2013 [46] | BNP | Longitudinal | IS | 189 patients/66 (IQR 58–75) | The first morning after admission |
|
| Increased BNP levels were associated with IS clinical severity and unfavorable short-term outcomes. |
4. | Nigro et al. 2014 [47] | BNP | Longitudinal | IS and TIA | 441 patients/74.6 (IQR 62.6–81.9) | Upon admission (within 72 h from symptom onset) |
| N.A. | Increased BNP levels can be used to predict unfavorable clinical outcomes and mortality within 90 days as well as in the first year after stroke. In addition, BNP levels were higher in patients with a cardioembolic stroke or TIA. |
5. | Chaudhuri et al. 2015 [30] | BNP | Longitudinal | IS | 270 patients, 110 healthy controls/patients: 59 (21–87), controls: 58 (23–85) | Upon admission |
| 89 pg/mL; (62.2%); [83.9%] | A significant association was noticed between elevated BNP levels and cardioembolic stroke. |
6. | Maruyama et al. 2017 [48] | BNP | Longitudinal | IS | 168 NVAFpatients with cardioembolic stroke, 157 were eligible for analysis/76.3 ± 10.2 | Upon admission |
| Poor functional outcome: BNP > 115 pg/mL; (N.A.); [N.A.] | A positive correlation between BNP levels on admission and the mRS score at 3 months in patients with NVAF after AIS was detected. |
7. | Otaki et al. 2019 [49] | BNP | Longitudinal | IS | 282 patients, 138 controls/patients: 71 ± 12, controls: 67 ± 13 | Blood samples were obtained before TEE (transesophageal echocardiography) |
|
| BNP can be used as a biomarker to predict cardiogenic stroke. |
8. | Xiong et al. 2015 [32] | GFAP | Longitudinal | HS (ICH) and IS | 43 ICH and 65 IS patients/ICH patients: 68.7 ± 11.2, IS patients: 70.9 ± 9.6 | Upon admission |
|
| Differences in serum concentrations of GFAP between ICH and IS can be used to differentiate strokes. In patients with ICH, GFAP levels were higher. |
9. | Liu et al. 2018 [50] | GFAP | Longitudinal | IS | 286 patients/Q1 3: 61 (50–72), Q4: 67 (56–78) | On the first day of admission |
| 0.25 [0.16–0.34] ng/mL in patients with moderate-to-high clinical severity; (N.A.); [N.A.] | GFAP levels on admission may predict clinical and functional outcomes after IS. |
10. | Kim et al. 2012 [51] | RDW | Longitudinal | IS | 847/65.88 ± 12.45 | Upon admission |
|
| Higher values of RDW were associated with poor functional outcomes and higher mortality. |
11. | Ye et al. 2020 [52] | RDW | Longitudinal | IS | 480/71 (IQR 16) | Upon admission |
| 14.65; (88.3%); [42%] | RDW before thrombolysis could be used as a predictor of one-year mortality but not for stroke severity prognostication. |
12. | Cong et al. 2020 [53] | RDW | Longitudinal | IS | 196/64.22 ± 12.45 | Upon admission |
| Poor prognosis ≥ 13.15; (60.7%); [64.0%] | An elevated RDW value was associated with poor prognosis in patients who received rtPA thrombolysis. |
13. | Cui et al. 2020 [54] | RDW | Longitudinal | HS (ICH) | 235/64.6 ± 14.5 | Upon admission |
|
| High RDW values were correlated with poor clinical outcomes in patients with ICH. |
14. | Brooks et al. 2014 [55] | NLR | Longitudinal | IS | 116/67 (18–93) | Upon admission |
|
| In patients with IS who underwent endovascular treatment, NLR > 5.9 predicted poor outcomes and death and NLR < 3.2 predicted an outcome of functional independence. |
15. | Sun et al. 2016 [56] | NLR | Longitudinal | HS (ICH) | 352/64.2 ± 13.8 | Upon admission |
| NLR ≥ 7.85; (N.A.); [N.A.] | Patients with higher admission NLR values had larger hematoma volumes and higher baseline NIHSS scores. |
16. | Tao et al. 2016 [57] | NLR | Longitudinal | HS (ICH) | 336/58.5 ± 13.0 | Upon admission |
|
| Elevated levels of NLR can predict poor 90-day outcomes after ICH. |
17. | Malhotra et al. 2018 [58] | NLR | Longitudinal | IS | 657/64 ± 14.4 | Within 12 h from admission |
| For 3-month favorable functional outcome and functional independence: NLR < 2.2; (63.1%); [51.4%] | In AIS patients treated with IVT, lower NLR levels were associated with favorable clinical outcomes at 3 months. |
18. | Pikija et al. 2018 [59] | NLR | Longitudinal | HS (ICH) | 187/74 (IQR 60–81) | Upon admission |
| 3.89; (73.0%); [67.0%] | Patients who developed ICH after EVT had higher admission NLR values. |
19. | Pektezel et al. 2019 [60] | NLR | Longitudinal | IS | 142/69 ± 13 | Upon admission and after 24 h |
|
| Increased NLR values during the first 24 h were associated with poor prognosis. Pretreatment NLR values seemed to have no connection with the IV tPA response. |
20. | Fonseca et al. 2019 [61] | NLR | Longitudinal | HS (ICH) | 135/73 (64–80) | Upon admission |
|
| Higher NLR values at admission were associated with unfavorable functional outcomes. |
21. | Aly et al. 2021 [62] | NLR | Longitudinal | IS | 142/70 ± 16 | Upon admission, (within 3–7 days) |
| Favorable outcome: follow-up NLR at 3–7 days < 5.3; (68.0%); [76.0%] | Lower follow-up NLR at 3–7 days was associated with successful reperfusion and positive clinical outcomes. |
22. | Topcuoglu et al. 2021 [63] | NLR | Longitudinal | IS | 165/70 ± 14 | Upon admission and 24 h after IV tPA |
| For symptomatic PH2-type hemorrhagic transformation: NLR > 5.65; (65.7%); [71.3%] | Patients who responded well to IV tPA had lower NLR values. On the other hand, those patients who developed symptomatic hemorrhagic transformation after IV tPA had higher pretreatment NLR values. |
23. | Chen et al. 2021 [64] | NLR | Longitudinal | IS | 257 AIS patients who underwent EVT/63.2 ± 12.6 | Upon admission |
| N.A. | Increased levels of NLR may be associated with unfavorable clinical outcomes in stroke patients who underwent EVT. |
24. | Menon et al. 2021 [65] | NLR | Longitudinal | HS (ICH) | 851/58.09 ± 12.85 | Upon admission |
| NLR > 8.2; (N.A.); [N.A.] | NLR above the cutoff of 8.2 at admission was associated with unfavorable functional outcomes and high mortality. |
25. | Chang et al. 2021 [66] | NLR | Longitudinal | HS (SAH) | 474/56 ± 16 | Upon admission |
| Poor functional outcome at discharge: NLR > 6.48; (N.A.); [N.A.] | Higher NLR values at admission corresponded to poor functional outcomes in aSAH patients. |
26. | Sapojnikova et al. 2014 [67] | MMP-9 | Longitudinal | IS | 42 patients, 32 healthy controls/patients: 69 ± 15, healthy controls: 63 ± 20 | Upon admission |
| N.A. | A linear correlation was detected between highlevels of MMP-9 and poor functional outcomes. |
27. | Zhong et al. 2017 [68] | MMP-9 | Longitudinal | IS | 767/62.4 ± 10.8 | Within 24 h of hospital admission |
| 812.2 ng/mL; (N.A.); [N.A.] | Elevated MMP-9 levels in the acute phase of ischemic stroke were accompanied by increased risks of mortality and major disability. |
28. | Ramiro et al. 2019 [69] | AQP4 | Longitudinal | IS | 42 t-PA-treated patients, 13 healthy controls/patients: 74 (66–78), controls: 76 (70–83) | Upon admission |
|
| Lower circulating AQP4 levels were associated with early neurological improvement. In addition, an inverse correlation was found between AQP4 values and the infarct size. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkantzios, A.; Tsiptsios, D.; Karatzetzou, S.; Kitmeridou, S.; Karapepera, V.; Giannakou, E.; Vlotinou, P.; Aggelousis, N.; Vadikolias, K. Stroke and Emerging Blood Biomarkers: A Clinical Prospective. Neurol. Int. 2022, 14, 784-803. https://doi.org/10.3390/neurolint14040065
Gkantzios A, Tsiptsios D, Karatzetzou S, Kitmeridou S, Karapepera V, Giannakou E, Vlotinou P, Aggelousis N, Vadikolias K. Stroke and Emerging Blood Biomarkers: A Clinical Prospective. Neurology International. 2022; 14(4):784-803. https://doi.org/10.3390/neurolint14040065
Chicago/Turabian StyleGkantzios, Aimilios, Dimitrios Tsiptsios, Stella Karatzetzou, Sofia Kitmeridou, Vaia Karapepera, Erasmia Giannakou, Penelope Vlotinou, Nikolaos Aggelousis, and Konstantinos Vadikolias. 2022. "Stroke and Emerging Blood Biomarkers: A Clinical Prospective" Neurology International 14, no. 4: 784-803. https://doi.org/10.3390/neurolint14040065
APA StyleGkantzios, A., Tsiptsios, D., Karatzetzou, S., Kitmeridou, S., Karapepera, V., Giannakou, E., Vlotinou, P., Aggelousis, N., & Vadikolias, K. (2022). Stroke and Emerging Blood Biomarkers: A Clinical Prospective. Neurology International, 14(4), 784-803. https://doi.org/10.3390/neurolint14040065