Diffusion Tensor Imaging as a Prognostic Tool for Recovery in Acute and Hyperacute Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Strategy
2.2. Selection Criteria
2.3. Data Extraction
2.4. Data Analysis
3. Results
3.1. Database Searches
3.2. Study Characteristics
3.3. Study Design
3.4. Stroke Patient Groups
3.5. Reference Groups
3.6. Demographic and Clinical Profiles
3.7. Target Brain Region
3.8. Supporting Imaging and Neurophysiological Modalities
3.9. Field Strength, Acquisition Parameters (directions), Post-Processing Techniques and DTI Parameters
1st Author (Year) | Type of Stroke, Study Design, Participants, Age (years) | Time of DTI Acquisition, Field Strength, DTI Parameters, DTI Analysis/Metrics, Additional Imaging/Electrophysiology | Anatomical Region Examined | Outcome Scale Utilized | Main Findings |
---|---|---|---|---|---|
Ali (2012) [46] |
|
| CST | NIHSS within 1 month. |
|
Kwon (2012) [56] |
|
| CST | MI at onset and at 6 months. |
|
Puig (2013) [44] |
|
| CST | NIHSS, MI at 2 years. |
|
Forkel (2014) [29] |
|
| Perisylvian language networks (long-segment, anterior segment, and posterior segment of the AF). | WAB 14 days, 6 months. |
|
Groisser (2014) [62] |
|
| CST | Upper-limb section of the MI, NHPT 3 to 7 days (S1 acute), 1 to 2 months (S2, subacute), and 6 to 7 months (S3, chronic). |
|
Maraka (2014) [57] |
|
| CST | UE-FM, motor items of the [mNIHSS] 3–7 days, 30 days, and 90 days. |
|
Rong (2014) [22] |
|
| Medulla, CP, internal capsule, and CST. | FM, BI at each visit. |
|
Takenobu (2014) [28] |
|
| TBSS with ROI analysis for significant clusters found in the TBSS. | FM within 2 weeks, and at 1 and 3 months. |
|
Feng (2015) [51] |
|
| CST | UE-FM Scale 2–7 days after stroke and 3 months. |
|
Liu (2015) [25] |
|
| CST | FM, NIHSS |
|
Moulton (2015) [52] |
|
| Subcortical WM of PrCG, corona radiata, PLIC, CP in ipsilesional and contralesional hemisphere; CCg as control region. | NIHSS day 1, 7, and mRS at 3 months. |
|
Zhang (2015) [60] |
|
| ROIs: medulla, CP, internal capsule, CSO; tractography: CST. | FM, mRS, and BI. |
|
Bigourdan (2016) [24] |
|
| CST | FMA score at 1 year. |
|
Doughty (2016) [49] |
|
| CP, a stretch of the CST caudal to each stroke lesion (Nearest-5-Slice, N5S). | UE-FM assessment in the acute phase and at 3 months. |
|
Jang (2016) [55] |
|
| CST | MI, MBC, and FAC within 24 h and at 6 months. |
|
Liu (2017) [27] |
|
| Whole-brain WM analysis using TBSS. | FM |
|
Liu (2018) [58] |
|
| Bilateral PMA and bilateral CP. | FM |
|
Liu (2018) [59] |
|
| Regions in corona radiata pathway: thalamus, corona radiata, and CSO. | NIHSS, BI, and NIHSS8. |
|
Etherton (2019) [61] |
|
| WMH and NAWM contralateral to the acute infarct. | NIHSS Admission, day 3–5 post-stroke. |
|
Kulesh (2019) [63] |
|
| CST (level of PLIC, pons), GIC, ALIC, CB, SLF, IFOF, SCC, infarction and the area within 3 cm from it. | Measures on day 3, 10, and at discharge: NIHSS, Frenchay Arm Test, BBS, HAI, RMI, MoCA, FIM, and mRS. |
|
Mahmoud (2019) [37] |
|
| 3D fiber tractography with multi-ROI technique and regions drawn in the unaffected portion of the WM tracts at the side of infarction and corresponding area at the contralateral hemisphere; degree of FA reduction of WM tracts at the site of infarction [mild (0.4), moderate (0.2–0.3), severe (0.1)]; and classification of WM tracts as disrupted, displaced, and preserved. | NIHSS at admission and after 3 months. |
|
Moulton (2019) [18] |
|
| Second and third branches of the SLF (SLF-II and -III, respectively) and CST as part of the motor network in addition to the left and right AF, IFOF, ILF, and UF. | NIHSS, JTT, and AHS at 3 months. |
|
Keser (2020) [30] |
|
| AF and FAT | BNT within 2 weeks and 6–12 months. |
|
Berndt (2021) [23] |
|
| CST (PLIC, PED) | NIHSS, mTICI, mRs at 90 days. |
|
Darwish (2021) [54] |
|
| CST (pons) | NIHSS at admission, and after 1, 6, and 9 months. |
|
Liu (2021) [32] |
|
| Bilateral inferior cerebellar peduncle (JHU-ICBM-DTI-81-WMPM-90p). | FM |
|
Xia (2021) [33] |
|
| CST | NIHSS, MMSE, FMA, and BI after each scan. |
|
Li (2022) [26] |
|
| ATR, CST, CCG, CH, FMAJ, FMIN, IFOF, ILF, SLF, UF and SLF-TP. | UE-FM before and after each scan. |
|
Shaheen (2022) [38] |
|
| CST | NIHSS, MRC, mRS, and MI at baseline and 6 months. |
|
1st Author (Year) | Type of Stroke, Study Design, Participants, Age (years) | Time of DTI Acquisition, Field Strength, DTI Parameters, DTI Analysis/Metrics, Additional Imaging/Electrophysiology | Anatomical Region Examined | Outcome Scale Utilized | Main Findings |
---|---|---|---|---|---|
Kuzu (2012) [36] |
|
| Bilateral CP | NIHSS at day 90. |
|
Wang (2012) [64] |
|
| CP | mRS, FIM, NIHSS, and PG at 6 monhts. |
|
Koyama (2013a) [43] |
|
| CP and the corona radiata/internal capsule. | MRC at 1 month. |
|
Koyama (2013b) [41] |
|
| CP | BRS, FIM-motor at 3–7 months. |
|
Ma (2014) [35] |
|
| CST | MFS on day 90. |
|
Tao (2014) [50] |
|
| CST | mRS at follow-up visits in the outpatient clinic. |
|
Cheng (2015) [53] |
|
| Pons, CP, perihaematoma oedema, and corona radiata. | MI at admission, at 1 and 3 months. |
|
Koyama (2015) [42] |
|
| CP | BRS (shoulder/elbow/ forearm, hand, lower extremity), FIM-motor, and length of total hospital stay from admission to acute medical service to discharge from long-term rehabilitation facility (LOS). |
|
Fragata (2017) [31] |
|
| Frontal CSO, parietal CSO, lentiform nucleus, thalamus, PLIC, CCg, CCs, and mid-pons cerebellar peduncles. | mRS, presence of DCI at 3 months. |
|
Min (2020) [48] |
|
| CST with ROIs at the pons. | BMS, MBI, mRS, NIHSS, JHFT, and MI. |
|
Gong (2021) [45] |
|
| CST connecting the hand–knob area of the PrCG and the CP. | BRS-H at post-stroke 3 weeks and 3 months. |
|
1st Author (Year) | Type of Stroke, Study Design, Participants, Age (years) | Time of DTI Acquisition Field Strength, DTI Parameters, DTI Analysis/Metrics, Additional Imaging/Electrophysiology | Anatomical Region Examined | Outcome Scale Utilized | Main Findings |
---|---|---|---|---|---|
Imura (2015) [47] |
|
| CST | MI, BRS, BI, and FIM on the same data as DTI and at 1 month. |
|
Nakashima (2017) [39] |
|
| CP | FMA, MAL at 3 months. |
|
Koyama (2018) [40] |
|
| CP | BRS, FIM-motor monthly, and LOS. |
|
Okamoto (2021) [34] |
|
| PLIC | FMA, ARAT, and use or non-use of a short leg brace at discharge from the recovery rehabilitation unit. |
|
4. Discussion
4.1. Prediction of Recovery Using Different DTI Parameters in Studies with Ischemic Cohorts: The Role of FA
4.2. Prediction of Recovery Using Different DTI Parameters in Studies with Ischemic Cohorts: The Role of the FA Ratio
4.3. Prediction of Recovery Using Different DTI Parameters in Studies with Ischemic Cohorts: The Role of MD
4.4. Prediction of Recovery Using Different DTI Parameters in Studies with Ischemic Cohorts: The Role of AD
4.5. Prediction of Recovery Using Different DTI Parameters in Studies with Ischemic Cohorts: The Role of Fiber Number Ratio
4.6. Prediction of Recovery Using Different DTI Parameters in Studies with Hemorrhagic Cohorts: The Role of FA
4.7. Prediction of Recovery Using Different DTI Parameters in Studies with Hemorrhagic Cohorts: The Role of FA Ratio
4.8. Prediction of Recovery Using Different DTI Parameters in Studies with Hemorrhagic Cohorts: The Role of Qualitative Assessment of CST Integrity
4.9. Prediction of Recovery Using Different DTI Parameters in Studies with Both Ischemic and Hemorrhagic Cohorts: The Role of FA and the FA Ratio
4.10. Methodological Considerations
4.11. Common Shortcomings
4.12. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef]
- Karatzetzou, S.; Tsiptsios, D.; Terzoudi, A.; Aggeloussis, N.; Vadikolias, K. Transcranial magnetic stimulation implementation on stroke prognosis. Neurol. Sci. 2022, 43, 873–888. [Google Scholar] [CrossRef] [PubMed]
- Gkantzios, A.; Tsiptsios, D.; Karatzetzou, S.; Kitmeridou, S.; Karapepera, V.; Giannakou, E.; Vlotinou, P.; Aggelousis, N.; Vadikolias, K. Stroke and Emerging Blood Biomarkers: A Clinical Prospective. Neurol. Int. 2022, 14, 65. [Google Scholar] [CrossRef]
- Moura, L.M.; Luccas, R.; de Paiva, J.P.Q.; Amaro, E., Jr.; Leemans, A.; Leite, C.D.C.; Otaduy, M.C.G.; Conforto, A.B. Diffusion Tensor Imaging Biomarkers to Predict Motor Outcomes in Stroke: A Narrative Review. Front. Neurol. 2019, 10, 445. [Google Scholar] [CrossRef] [Green Version]
- Mori, S.; Zhang, J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006, 51, 527–539. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.W.; Chou, M.C.; Chen, C.Y. Principles and limitations of computational algorithms in clinical diffusion tensor MR tractography. AJNR Am. J. Neuroradiol. 2011, 32, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Winklewski, P.J.; Sabisz, A.; Naumczyk, P.; Jodzio, K.; Szurowska, E.; Szarmach, A. Understanding the Physiopathology Behind Axial and Radial Diffusivity Changes-What Do We Know? Front. Neurol. 2018, 9, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, S.H. The corticospinal tract from the viewpoint of brain rehabilitation. J. Rehabil. Med. 2014, 46, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H. The role of the corticospinal tract in motor recovery in patients with a stroke: A review. NeuroRehabilitation 2009, 24, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Puig, J.; Blasco, G.; Schlaug, G.; Stinear, C.M.; Daunis, I.E.P.; Biarnes, C.; Figueras, J.; Serena, J.; Hernandez-Perez, M.; Alberich-Bayarri, A.; et al. Diffusion tensor imaging as a prognostic biomarker for motor recovery and rehabilitation after stroke. Neuroradiology 2017, 59, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, A.; Srivastava, P.; Kumaran, S.S. Correlation of DTI-Derived Measures to Therapy-Mediated Recovery after Stroke: Preliminary Findings. Neurol. India 2021, 69, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Alegiani, A.C.; MacLean, S.; Braass, H.; Siemonsen, S.; Gerloff, C.; Fiehler, J.; Cho, T.H.; Derex, L.; Hermier, M.; Berthezene, Y.; et al. Comprehensive analysis of early fractional anisotropy changes in acute ischemic stroke. PLoS ONE 2017, 12, e0188318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, S.H. Diffusion tensor imaging studies on arcuate fasciculus in stroke patients: A review. Front. Hum. Neurosci. 2013, 7, 749. [Google Scholar] [CrossRef] [Green Version]
- Breier, J.I.; Hasan, K.M.; Zhang, W.; Men, D.; Papanicolaou, A.C. Language dysfunction after stroke and damage to white matter tracts evaluated using diffusion tensor imaging. AJNR Am. J. Neuroradiol. 2008, 29, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Kourtidou, E.; Kasselimis, D.; Angelopoulou, G.; Karavasilis, E.; Velonakis, G.; Kelekis, N.; Zalonis, I.; Evdokimidis, I.; Potagas, C.; Petrides, M. The Role of the Right Hemisphere White Matter Tracts in Chronic Aphasic Patients After Damage of the Language Tracts in the Left Hemisphere. Front. Hum. Neurosci. 2021, 15, 635750. [Google Scholar] [CrossRef]
- Moulton, E.; Magno, S.; Valabregue, R.; Amor-Sahli, M.; Pires, C.; Lehericy, S.; Leger, A.; Samson, Y.; Rosso, C. Acute Diffusivity Biomarkers for Prediction of Motor and Language Outcome in Mild-to-Severe Stroke Patients. Stroke 2019, 50, 2050–2056. [Google Scholar] [CrossRef]
- Zavanone, C.; Samson, Y.; Arbizu, C.; Dupont, S.; Dormont, D.; Rosso, C. Critical brain regions related to post-stroke aphasia severity identified by early diffusion imaging are not the same when predicting short- and long-term outcome. Brain Lang 2018, 186, 1–7. [Google Scholar] [CrossRef]
- Kim, S.H.; Jang, S.H. Prediction of aphasia outcome using diffusion tensor tractography for arcuate fasciculus in stroke. AJNR Am. J. Neuroradiol. 2013, 34, 785–790. [Google Scholar] [CrossRef]
- Chen, J.L.; Schlaug, G. Resting state interhemispheric motor connectivity and white matter integrity correlate with motor impairment in chronic stroke. Front. Neurol. 2013, 4, 178. [Google Scholar] [CrossRef] [Green Version]
- Rong, D.; Zhang, M.; Ma, Q.; Lu, J.; Li, K. Corticospinal tract change during motor recovery in patients with medulla infarct: A diffusion tensor imaging study. Biomed Res. Int. 2014, 2014, 524096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berndt, M.T.; Purner, D.; Maegerlein, C.; Wunderlich, S.; Friedrich, B.; Zimmer, C.; Sepp, D.; Kaesmacher, J.; Boeckh-Behrens, T. Basal Ganglia versus Peripheral Infarcts: Predictive Value of Early Fiber Alterations. AJNR Am. J. Neuroradiol. 2021, 42, 264–270. [Google Scholar] [CrossRef]
- Bigourdan, A.; Munsch, F.; Coupe, P.; Guttmann, C.R.; Sagnier, S.; Renou, P.; Debruxelles, S.; Poli, M.; Dousset, V.; Sibon, I.; et al. Early Fiber Number Ratio Is a Surrogate of Corticospinal Tract Integrity and Predicts Motor Recovery After Stroke. Stroke 2016, 47, 1053–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Dang, C.; Chen, X.; Xing, S.; Dani, K.; Xie, C.; Peng, K.; Zhang, J.; Li, J.; Zhang, J.; et al. Structural remodeling of white matter in the contralesional hemisphere is correlated with early motor recovery in patients with subcortical infarction. Restor. Neurol. Neurosci. 2015, 33, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Rong, D.D.; Shan, Y.; Zhang, M.; Zhao, C.; Lu, J. Brain Abnormalities in Pontine Infarction: A Longitudinal Diffusion Tensor Imaging and Functional Magnetic Resonance Imaging study. J. Stroke Cerebrovasc. Dis. 2022, 31, 106205. [Google Scholar] [CrossRef]
- Liu, G.; Tan, S.; Dang, C.; Peng, K.; Xie, C.; Xing, S.; Zeng, J. Motor Recovery Prediction With Clinical Assessment and Local Diffusion Homogeneity After Acute Subcortical Infarction. Stroke 2017, 48, 2121–2128. [Google Scholar] [CrossRef]
- Takenobu, Y.; Hayashi, T.; Moriwaki, H.; Nagatsuka, K.; Naritomi, H.; Fukuyama, H. Motor recovery and microstructural change in rubro-spinal tract in subcortical stroke. Neuroimage Clin. 2014, 4, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Forkel, S.J.; de Schotten, M.T.; Dell’Acqua, F.; Kalra, L.; Murphy, D.G.; Williams, S.C.; Catani, M. Anatomical predictors of aphasia recovery: A tractography study of bilateral perisylvian language networks. Brain 2014, 137, 2027–2039. [Google Scholar] [CrossRef]
- Keser, Z.; Sebastian, R.; Hasan, K.M.; Hillis, A.E. Right Hemispheric Homologous Language Pathways Negatively Predicts Poststroke Naming Recovery. Stroke 2020, 51, 1002–1005. [Google Scholar] [CrossRef]
- Fragata, I.; Alves, M.; Papoila, A.L.; Nunes, A.P.; Ferreira, P.; Canto-Moreira, N.; Canhao, P. Early Prediction of Delayed Ischemia and Functional Outcome in Acute Subarachnoid Hemorrhage: Role of Diffusion Tensor Imaging. Stroke 2017, 48, 2091–2097. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Guo, Y.; Dang, C.; Peng, K.; Tan, S.; Xie, C.; Xing, S.; Zeng, J. Longitudinal changes in the inferior cerebellar peduncle and lower limb motor recovery following subcortical infarction. BMC Neurol. 2021, 21, 320. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Huang, G.; Quan, X.; Qin, Q.; Li, H.; Xu, C.; Liang, Z. Dynamic Structural and Functional Reorganizations Following Motor Stroke. Med. Sci. Monit. 2021, 27, e929092. [Google Scholar] [CrossRef]
- Okamoto, Y.; Ishii, D.; Yamamoto, S.; Ishibashi, K.; Wakatabi, M.; Kohno, Y.; Numata, K. Relationship Between Motor Function, DTI, and Neurophysiological Parameters in Patients with Stroke in the Recovery Rehabilitation unit. J. Stroke Cerebrovasc. Dis. 2021, 30, 105889. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, A.; Li, Z.; Zhou, X.; Zhou, S. Longitudinal study of diffusion tensor imaging properties of affected cortical spinal tracts in acute and chronic hemorrhagic stroke. J. Clin. Neurosci. 2014, 21, 1388–1392. [Google Scholar] [CrossRef] [PubMed]
- Kuzu, Y.; Inoue, T.; Kanbara, Y.; Nishimoto, H.; Fujiwara, S.; Ogasawara, K.; Ogawa, A. Prediction of motor function outcome after intracerebral hemorrhage using fractional anisotropy calculated from diffusion tensor imaging. Cerebrovasc. Dis. 2012, 33, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, B.E.; Mohammad, M.E.; Serour, D.K. What can DTI add in acute ischemic stroke patients? Egypt. J. Radiol. Nucl. Med. 2019, 50, 67. [Google Scholar] [CrossRef]
- Shaheen, H.A.; Sayed, S.S.; Magdy, M.M.; Saad, M.A.; Magdy, A.M.; Daker, L.I. Prediction of motor recovery after ischemic stroke: Clinical and diffusion tensor imaging study. J. Clin. Neurosci. 2022, 96, 68–73. [Google Scholar] [CrossRef]
- Nakashima, A.; Moriuchi, T.; Mitsunaga, W.; Yonezawa, T.; Kataoka, H.; Nakashima, R.; Koizumi, T.; Shimizu, T.; Ryu, N.; Higashi, T. Prediction of prognosis of upper-extremity function following stroke-related paralysis using brain imaging. J. Phys. Ther. Sci. 2017, 29, 1438–1443. [Google Scholar] [CrossRef] [Green Version]
- Koyama, T.; Koumo, M.; Uchiyama, Y.; Domen, K. Utility of Fractional Anisotropy in Cerebral Peduncle for Stroke Outcome Prediction: Comparison of Hemorrhagic and Ischemic Strokes. J. Stroke Cerebrovasc. Dis. 2018, 27, 878–885. [Google Scholar] [CrossRef]
- Koyama, T.; Marumoto, K.; Miyake, H.; Ohmura, T.; Domen, K. Relationship between diffusion-tensor fractional anisotropy and long-term outcome in patients with hemiparesis after intracerebral hemorrhage. NeuroRehabilitation 2013, 32, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Marumoto, K.; Uchiyama, Y.; Miyake, H.; Domen, K. Outcome assessment of hemiparesis due to intracerebral hemorrhage using diffusion tensor fractional anisotropy. J. Stroke Cerebrovasc. Dis. 2015, 24, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Tsuji, M.; Nishimura, H.; Miyake, H.; Ohmura, T.; Domen, K. Diffusion tensor imaging for intracerebral hemorrhage outcome prediction: Comparison using data from the corona radiata/internal capsule and the cerebral peduncle. J. Stroke Cerebrovasc. Dis. 2013, 22, 72–79. [Google Scholar] [CrossRef]
- Puig, J.; Blasco, G.; Daunis, I.E.J.; Thomalla, G.; Castellanos, M.; Figueras, J.; Remollo, S.; van Eendenburg, C.; Sanchez-Gonzalez, J.; Serena, J.; et al. Decreased corticospinal tract fractional anisotropy predicts long-term motor outcome after stroke. Stroke 2013, 44, 2016–2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Z.; Zhang, R.; Jiang, W.; Fu, Z. Integrity of The Hand Fibers of The Corticospinal Tract Shown by Diffusion Tensor Imaging Predicts Hand Function Recovery After Hemorrhagic Stroke. J. Stroke Cerebrovasc. Dis. 2021, 30, 105447. [Google Scholar] [CrossRef]
- Ali, G.G.; Elhameed, A.M.A. Prediction of motor outcome in ischemic stroke involving the pyramidal tract using diffusion tensor imaging. Egypt. J. Radiol. Nucl. Med. 2012, 43, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Imura, T.; Nagasawa, Y.; Inagawa, T.; Imada, N.; Izumi, H.; Emoto, K.; Tani, I.; Yamasaki, H.; Ota, Y.; Oki, S.; et al. Prediction of motor outcomes and activities of daily living function using diffusion tensor tractography in acute hemiparetic stroke patients. J. Phys. Ther. Sci. 2015, 27, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Min, Y.S.; Jang, K.E.; Park, E.; Kim, A.R.; Kang, M.G.; Cheong, Y.S.; Kim, J.H.; Jung, S.H.; Park, J.; Jung, T.D. Prediction of Motor Recovery in Patients with Basal Ganglia Hemorrhage Using Diffusion Tensor Imaging. J. Clin. Med. 2020, 9, 1304. [Google Scholar] [CrossRef] [PubMed]
- Doughty, C.; Wang, J.; Feng, W.; Hackney, D.; Pani, E.; Schlaug, G. Detection and Predictive Value of Fractional Anisotropy Changes of the Corticospinal Tract in the Acute Phase of a Stroke. Stroke 2016, 47, 1520–1526. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.D.; Wang, J.; Schlaug, G.; Liu, M.; Selim, M.H. A comparative study of fractional anisotropy measures and ICH score in predicting functional outcomes after intracerebral hemorrhage. Neurocritical Care 2014, 21, 417–425. [Google Scholar] [CrossRef]
- Feng, W.; Wang, J.; Chhatbar, P.Y.; Doughty, C.; Landsittel, D.; Lioutas, V.A.; Kautz, S.A.; Schlaug, G. Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes. Ann. Neurol. 2015, 78, 860–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulton, E.; Amor-Sahli, M.; Perlbarg, V.; Pires, C.; Crozier, S.; Galanaud, D.; Valabregue, R.; Yger, M.; Baronnet-Chauvet, F.; Samson, Y.; et al. Axial Diffusivity of the Corona Radiata at 24 Hours Post-Stroke: A New Biomarker for Motor and Global Outcome. PLoS ONE 2015, 10, e0142910. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Hsu, C.Y.; Huang, Y.C.; Tsai, Y.H.; Hsu, H.T.; Yang, W.H.; Lin, H.C.; Wang, T.C.; Cheng, W.C.; Yang, J.T.; et al. Motor outcome of deep intracerebral haemorrhage in diffusion tensor imaging: Comparison of data from different locations along the corticospinal tract. Neurol. Res. 2015, 37, 774–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darwish, H.S.; ElShafey, R.; Kamel, H. Prediction of Motor Recovery after Stroke by Assessment of Corticospinal Tract Wallerian Degeneration Using Diffusion Tensor Imaging. Indian J. Radiol. Imaging 2021, 31, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H.; Lee, J.; Lee, M.Y.; Park, S.M.; Choi, W.H.; Do, K.H. Prediction of motor outcome using remaining corticospinal tract in patients with pontine infarct: Diffusion tensor imaging study. Somatosens. Mot. Res. 2016, 33, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.H.; Jeoung, Y.J.; Lee, J.; Son, S.M.; Kim, S.; Kim, C.; Jang, S.H. Predictability of motor outcome according to the time of diffusion tensor imaging in patients with cerebral infarct. Neuroradiology 2012, 54, 691–697. [Google Scholar] [CrossRef]
- Maraka, S.; Jiang, Q.; Jafari-Khouzani, K.; Li, L.; Malik, S.; Hamidian, H.; Zhang, T.; Lu, M.; Soltanian-Zadeh, H.; Chopp, M.; et al. Degree of corticospinal tract damage correlates with motor function after stroke. Ann. Clin. Transl. Neurol. 2014, 1, 891–899. [Google Scholar] [CrossRef]
- Liu, G.; Peng, K.; Dang, C.; Tan, S.; Chen, H.; Xie, C.; Xing, S.; Zeng, J. Axial diffusivity changes in the motor pathway above stroke foci and functional recovery after subcortical infarction. Restor. Neurol. Neurosci. 2018, 36, 173–182. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Zeng, J.; Li, W.; Zeng, S.; Ye, B.; Liang, Z. Proliferation of Bilateral Nerve Fibers Following Thalamic Infarction Contributes to Neurological Function Recovery: A Diffusion Tensor Imaging (DTI) Study. Med. Sci. Monit. 2018, 24, 1464–1472. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Lin, Q.; Lu, J.; Rong, D.; Zhao, Z.; Ma, Q.; Liu, H.; Shu, N.; He, Y.; Li, K. Pontine infarction: Diffusion-tensor imaging of motor pathways-a longitudinal study. Radiology 2015, 274, 841–850. [Google Scholar] [CrossRef]
- Etherton, M.R.; Wu, O.; Giese, A.K.; Lauer, A.; Boulouis, G.; Mills, B.; Cloonan, L.; Donahue, K.L.; Copen, W.; Schaefer, P.; et al. White Matter Integrity and Early Outcomes After Acute Ischemic Stroke. Transl. Stroke Res. 2019, 10, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Groisser, B.N.; Copen, W.A.; Singhal, A.B.; Hirai, K.K.; Schaechter, J.D. Corticospinal tract diffusion abnormalities early after stroke predict motor outcome. Neurorehabilit. Neural Repair 2014, 28, 751–760. [Google Scholar] [CrossRef] [Green Version]
- Kulesh, A.A.; Drobakha, V.E.; Sobyanin, K.V.; Kulikova, S.P.; Bykova, A.Y.; Kaileva, N.A.; Monak, A.A.; Shardakov, I.N.; Shestakov, V.V. Role of cerebral reserve assessed using diffusion-weighted magnetic resonance imaging in determining the rehabilitation potential of acute ischemic stroke. Neurol. Neuropsychiatry Psychosom. 2019, 11, 26–34. [Google Scholar] [CrossRef]
- Wang, D.M.; Li, J.; Liu, J.R.; Hu, H.Y. Diffusion tensor imaging predicts long-term motor functional outcome in patients with acute supratentorial intracranial hemorrhage. Cerebrovasc. Dis. 2012, 34, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Ye, F.Q.; Irfanoglu, M.O.; Modi, P.; Saleem, K.S.; Leopold, D.A.; Pierpaoli, C. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl. Acad. Sci. USA 2014, 111, 16574–16579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, D.C.; Barker, G.J.; Arridge, S.R. Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 2002, 48, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.K. Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn. Reson. Med. 2003, 49, 7–12. [Google Scholar] [CrossRef]
- Jones, D.K.; Cercignani, M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 2010, 23, 803–820. [Google Scholar] [CrossRef]
- Wheeler-Kingshott, C.A.; Cercignani, M. About "axial" and "radial" diffusivities. Magn. Reson. Med. 2009, 61, 1255–1260. [Google Scholar] [CrossRef]
- Irfanoglu, M.O.; Walker, L.; Sarlls, J.; Marenco, S.; Pierpaoli, C. Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. Neuroimage 2012, 61, 275–288. [Google Scholar] [CrossRef]
- Alexander, D.C.; Barker, G.J. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. Neuroimage 2005, 27, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Barrio-Arranz, G.; de Luis-Garcia, R.; Tristan-Vega, A.; Martin-Fernandez, M.; Aja-Fernandez, S. Impact of MR Acquisition Parameters on DTI Scalar Indexes: A Tractography Based Approach. PLoS ONE 2015, 10, e0137905. [Google Scholar] [CrossRef] [Green Version]
- Zhan, L.; Mueller, B.A.; Jahanshad, N.; Jin, Y.; Lenglet, C.; Yacoub, E.; Sapiro, G.; Ugurbil, K.; Harel, N.; Toga, A.W.; et al. Magnetic resonance field strength effects on diffusion measures and brain connectivity networks. Brain Connect. 2013, 3, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Tournier, J.D. The biophysics of crossing fibers. In Diffusion MRI: Theory, Methods, and Application; Jones, D.K., Ed.; Oxford University Press: Oxford, UK, 2010; pp. 465–481. [Google Scholar]
- Christidi, F.; Karavasilis, E.; Samiotis, K.; Bisdas, S.; Papanikolaou, N. Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts. Eur. J. Radiol. Open 2016, 3, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Dyrby, T.B.; Sogaard, L.V.; Parker, G.J.; Alexander, D.C.; Lind, N.M.; Baare, W.F.; Hay-Schmidt, A.; Eriksen, N.; Pakkenberg, B.; Paulson, O.B.; et al. Validation of in vitro probabilistic tractography. Neuroimage 2007, 37, 1267–1277. [Google Scholar] [CrossRef]
- Knosche, T.R.; Anwander, A.; Liptrot, M.; Dyrby, T.B. Validation of tractography: Comparison with manganese tracing. Hum. Brain Mapp. 2015, 36, 4116–4134. [Google Scholar] [CrossRef] [Green Version]
- Maier-Hein, K.H.; Neher, P.F.; Houde, J.C.; Cote, M.A.; Garyfallidis, E.; Zhong, J.; Chamberland, M.; Yeh, F.C.; Lin, Y.C.; Ji, Q.; et al. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 2017, 8, 1349. [Google Scholar] [CrossRef] [Green Version]
- Soares, J.M.; Marques, P.; Alves, V.; Sousa, N. A hitchhiker’s guide to diffusion tensor imaging. Front. Neurosci. 2013, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Kulikova, S.P.; Nikulin, V.V.; Dobrynina, L.A.; Nazarova, M.A. A Possible Sensory Interpretation of Alternate Motor Fibers Relating to Structural Reserve during Stroke Recovery. Front. Neurol. 2017, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- DiBella, E.V.R.; Sharma, A.; Richards, L.; Prabhakaran, V.; Majersik, J.J.; HashemizadehKolowri, S.K. Beyond Diffusion Tensor MRI Methods for Improved Characterization of the Brain after Ischemic Stroke: A Review. AJNR Am. J. Neuroradiol. 2022, 43, 661–669. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christidi, F.; Tsiptsios, D.; Fotiadou, A.; Kitmeridou, S.; Karatzetzou, S.; Tsamakis, K.; Sousanidou, A.; Psatha, E.A.; Karavasilis, E.; Seimenis, I.; et al. Diffusion Tensor Imaging as a Prognostic Tool for Recovery in Acute and Hyperacute Stroke. Neurol. Int. 2022, 14, 841-874. https://doi.org/10.3390/neurolint14040069
Christidi F, Tsiptsios D, Fotiadou A, Kitmeridou S, Karatzetzou S, Tsamakis K, Sousanidou A, Psatha EA, Karavasilis E, Seimenis I, et al. Diffusion Tensor Imaging as a Prognostic Tool for Recovery in Acute and Hyperacute Stroke. Neurology International. 2022; 14(4):841-874. https://doi.org/10.3390/neurolint14040069
Chicago/Turabian StyleChristidi, Foteini, Dimitrios Tsiptsios, Aggeliki Fotiadou, Sofia Kitmeridou, Stella Karatzetzou, Konstantinos Tsamakis, Anastasia Sousanidou, Evlampia A. Psatha, Efstratios Karavasilis, Ioannis Seimenis, and et al. 2022. "Diffusion Tensor Imaging as a Prognostic Tool for Recovery in Acute and Hyperacute Stroke" Neurology International 14, no. 4: 841-874. https://doi.org/10.3390/neurolint14040069
APA StyleChristidi, F., Tsiptsios, D., Fotiadou, A., Kitmeridou, S., Karatzetzou, S., Tsamakis, K., Sousanidou, A., Psatha, E. A., Karavasilis, E., Seimenis, I., Kokkotis, C., Aggelousis, N., & Vadikolias, K. (2022). Diffusion Tensor Imaging as a Prognostic Tool for Recovery in Acute and Hyperacute Stroke. Neurology International, 14(4), 841-874. https://doi.org/10.3390/neurolint14040069