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Abstract: Animal experimentation has long been a cornerstone of neurology research, but it faces
growing scientific, ethical, and economic challenges. Advances in artificial intelligence (AI) are pro-
viding new opportunities to replace animal testing with more human-relevant and efficient methods.
This article explores the potential of AI technologies such as brain organoids, computational models,
and machine learning to revolutionize neurology research and reduce reliance on animal models.
These approaches can better recapitulate human brain physiology, predict drug responses, and
uncover novel insights into neurological disorders. They also offer faster, cheaper, and more ethical
alternatives to animal experiments. Case studies demonstrate AI’s ability to accelerate drug discovery
for Alzheimer’s, predict neurotoxicity, personalize treatments for Parkinson’s, and restore movement
in paralysis. While challenges remain in validating and integrating these technologies, the scientific,
economic, practical, and moral advantages are driving a paradigm shift towards AI-based, animal-
free research in neurology. With continued investment and collaboration across sectors, AI promises
to accelerate the development of safer and more effective therapies for neurological conditions while
significantly reducing animal use. The path forward requires the ongoing development and valida-
tion of these technologies, but a future in which they largely replace animal experiments in neurology
appears increasingly likely. This transition heralds a new era of more humane, human-relevant, and
innovative brain research.
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1. Introduction

Animal experimentation has long been a cornerstone of biomedical research, including
in the field of neurology. Millions of animals, from rodents to non-human primates, are used
annually in neuroscience research to study the brain, investigate neurological disorders,
and test new therapies [1]. However, the use of animals in neurology research faces growing
scientific, ethical, and economic challenges.

Scientifically, animal models often fail to fully recapitulate the complexity of the human
brain and neurological conditions. Many promising treatments that showed efficacy in
animal studies have failed to translate to human patients [2]. Ethically, animal experiments
in neuroscience, particularly those involving non-human primates, are among the most
controversial and fraught with concerns about animal suffering [3]. Economically, animal
studies are time-consuming and expensive, requiring specialized facilities and expertise [4].

In this context, advances in artificial intelligence (AI) are providing new opportunities
to replace animal experiments in neurology with more human-relevant, efficient, and
ethical approaches. AI-based methods such as brain organoids, the computational models
of neural circuits, and machine learning are enabling researchers to study neurological
disorders, predict drug effects, and personalize treatments in ways that were not possible
with animal models [5].
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For example, AI-powered brain simulations are being used to study disorders like
Alzheimer’s and Parkinson’s disease, providing new insights into disease mechanisms
and potential therapies [6]. Machine learning models help identify new drug targets and
predict the neurotoxicity of compounds, reducing the need for animal testing [7]. AI is also
enabling personalized medicine approaches in neurology, such as using patient-specific
brain models to optimize surgical interventions for disorders like epilepsy [8].

Beyond the scientific benefits, replacing animal experiments with AI approaches aligns
with the growing public concern for animal welfare and the ethical imperative to reduce
animal suffering in research [9]. Major funders and regulators, including the NIH and FDA,
are increasingly prioritizing the development and use of non-animal methods [10].

In this article, the potential of AI to replace animal experimentation in neurology
research is explored. The scientific, ethical, and economic drivers of this shift, and present
case studies of AI applications in neurological disorders, drug discovery, toxicology testing,
and personalized medicine are discussed. It is argued that, while challenges remain, a
future in which AI largely replaces animal experiments in neurology is not only possi-
ble, but increasingly necessary for scientific and ethical reasons. Embracing AI-based
approaches will be crucial for advancing our understanding of the brain and developing
better therapies for the millions of patients affected by neurological disorders worldwide.
Table 1 summarizes key previous work in the area of AI applications in neurology research,
with a focus on studies that demonstrate potential for replacing or reducing animal models.

Table 1. Key previous work in the area of AI applications in neurology research.

Author(s) and Year Study Title AI Method Application in
Neurology Key Findings

Implications for
Replacing Animal

Models

Zhavoronkov et al.
[11]

Deep learning
enables rapid

identification of
potent DDR1

kinase inhibitors

Deep learning

Drug discovery for
fibrosis (applicable

to neurological
disorders)

AI identified novel
drug candidate in

21 days

Dramatically
accelerated early
drug discovery,

reducing need for
initial animal

screening

Huang et al. [12]

A Thalamus-based
Deep Learning

Model for
Predicting

Parkinson’s
Disease

Progression

Convolutional
neural network

Parkinson’s
disease

progression
prediction

AI model
predicted disease
progression with

high accuracy
using brain MRI

Could reduce
reliance on

longitudinal
animal studies for

understanding
disease

progression

Vamathevan et al.
[13]

Applications of
machine learning
in drug discovery
and development

Various machine
learning methods

Drug discovery
and development

for multiple
diseases, including

neurological

AI can improve
efficiency in target

validation,
biomarker

discovery, and
toxicology

Potential to reduce
animal use across
multiple stages of
drug development

Topol [14]

High-performance
medicine: the

convergence of
human and

artificial
intelligence

Deep learning,
neural networks

Diagnosis and
treatment of
neurological

disorders

AI can match or
exceed human
performance in

diagnosing certain
conditions

Could reduce need
for animal models

in diagnostic
method

development



Neurol. Int. 2024, 16 807

Table 1. Cont.

Author(s) and Year Study Title AI Method Application in
Neurology Key Findings

Implications for
Replacing Animal

Models

Freund et al. [15]

Predictive
performance of a
sequential toxicity

testing strategy
using machine

learning
approaches

Machine learning Neurotoxicity
prediction

AI accurately
predicted

compound toxicity
using in vitro data

Could significantly
reduce animal use

in neurotoxicity
testing

Zhang et al. [16]

Artificial
intelligence-

enabled analysis of
cerebral organoids
reveals key cellular

and molecular
features of human
brain development

Deep learning
image analysis

Human brain
development

study

AI analyzed
cerebral organoid

development,
revealing key

insights

Demonstrates
potential of AI +

organoids to
replace some

developmental
neurobiology

animal studies

Strickland [17]

AI-based
brain–computer

interface
rejuvenates

paralyzed person’s
sense of touch

Deep learning
Brain–computer

interfaces for
paralysis

AI decoded neural
signals to restore

sense of touch

Reduced need for
invasive animal
studies in BCI
development

Kosoy et al. [18]

Artificial
Intelligence in

Neuroimaging: A
Comprehensive

Review of
Methods and
Applications

Various AI
methods

Neuroimaging
analysis

AI improves
efficiency and

accuracy in
neuroimaging
analysis across

multiple disorders

Could reduce need
for animal imaging
studies in method
development and

validation

These studies collectively demonstrate the broad potential of AI to revolutionize
various aspects of neurology research while reducing the reliance on animal models. Zha-
voronkov et al. [11] and Vamathevan et al. [13] highlight AI’s capacity to dramatically
accelerate drug discovery processes, potentially reducing the need for extensive animal
screening in early stages. Huang et al. [12] and Topol [14] showcase AI’s predictive power
in disease progression and diagnosis, which could minimize the use of longitudinal animal
studies. Freund et al. [15] illustrates AI’s promise in toxicity prediction, offering a path to
significantly reduce animal use in safety testing. Zhang et al. [16] demonstrates how the AI
analysis of cerebral organoids can provide insights into human brain development, poten-
tially replacing some developmental neurobiology animal studies. Strickland [17] shows
AI’s role in advancing brain–computer interfaces with a reduced need for invasive animal
studies. Finally, Kosoy et al. [18] underscores AI’s broad applicability in neuroimaging
analysis, which could decrease reliance on animal imaging studies for method development.
Together, these studies indicate that AI is not just a promising tool, but a transformative
approach that could reshape neurology research paradigms, enhancing efficiency, accuracy,
and ethical considerations by reducing animal experimentation across multiple research
stages.

2. Limitations of Animal Models in Neurology

While animal models have been widely used in neurology research, there are signifi-
cant limitations to their ability to predict human brain function and neurological disorders.
Many promising therapies that showed efficacy in the animal models of neurological
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diseases have failed to translate to human patients. For example, numerous neuropro-
tective agents that were effective in the animal models of stroke, traumatic brain injury,
and neurodegenerative diseases have failed in human clinical trials [19]. Similarly, animal
models of psychiatric disorders like depression and schizophrenia have often failed to
predict the efficacy and safety of new treatments in humans [20]. Dozens of Alzheimer’s
treatments have succeeded in animal models but failed in humans, with a success rate of
only 0.4% [21].

These translational failures can be attributed to the fundamental differences between
animal and human brains. While there are conserved neurological processes across species,
there are also crucial differences in brain structure, connectivity, and function that limit the
predictive value of animal models [22]. For instance, the human brain has unique features
such as a highly developed prefrontal cortex and complex language abilities that cannot
be fully replicated in animals [23]. Human neurological disorders are also influenced by
genetic, environmental, and social factors that are difficult to model in animals [24].

Moreover, many animal models of neurological diseases rely on artificial interventions
like genetic manipulations or surgical lesions that do not fully capture the complex etiology
and progression of human disorders [25]. For example, most animal models of Alzheimer’s
disease are based on transgenic mice that overexpress the mutant forms of human proteins,
but these models do not recapitulate all the pathological features and cognitive deficits
seen in human patients [26].

Another limitation of animal models in neurology is species-specific differences in
drug metabolism and toxicity. Many compounds that are safe and effective in animal
studies have proven to be neurotoxic or ineffective when tested in humans [27]. For
instance, the drug TGN1412, which was safe in animal studies, caused severe neurological
adverse effects in a human clinical trial [28].

Given these limitations, relying solely on animal experiments in neurology research
can lead to misleading conclusions and delay the development of effective therapies
for patients. While animal models can provide valuable insights into basic neurological
mechanisms, there is a clear need for more human-relevant and predictive approaches.
This is where AI-based methods like brain organoids, computational models, and machine
learning can offer powerful alternatives to animal experiments in neurology.

3. Computer Modeling and Simulation

AI is revolutionizing the way we study the brain, neurological disorders, and poten-
tial treatments through advanced computer models and simulations. The sophisticated
computational models of neural circuits, brain regions, and entire nervous systems have
been developed that allow researchers to run virtual experiments and predict outcomes
without relying on animal models [29].

Recent studies have demonstrated the power of these AI approaches in various areas
of neurology research, from drug discovery to disease modeling. For instance, Gunning
et al. [30] used a machine learning approach to screen a library of compounds and identify
novel drugs that could potentially treat Alzheimer’s disease. By leveraging AI to predict
the efficacy and safety of these compounds, they were able to accelerate the discovery
process and identify promising candidates for further testing [30].

Figure 1 illustrates the AI-driven workflow for replacing animal models in neurology
research. The process begins with diverse data inputs, including genomic, proteomic, imag-
ing, and clinical data, along with existing scientific knowledge. These multi-modal data
are then processed using advanced AI techniques such as machine learning, deep neural
networks, and computational simulations. The AI system’s outputs are applied across
various domains, including drug discovery, disease modeling, personalized medicine, and
toxicology testing. These applications undergo rigorous validation through in vitro studies
and clinical trials, with results feeding back into the AI processing stage for continuous
improvement. The outcomes of this approach include reduced animal testing, faster drug
development, more accurate predictions, personalized treatments, and more ethical re-



Neurol. Int. 2024, 16 809

search practices. This workflow demonstrates how AI can integrate complex data sources,
perform sophisticated analyses, and generate insights that traditionally relied on animal
experiments, potentially transforming neurology research to be more efficient, accurate,
and ethically sound.
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Traditional drug development relies heavily on animal models to assess the safety and
efficacy of new compounds, but these models often fail to predict human responses [31].
AI-based approaches can complement or replace these animal studies by providing virtual
platforms for screening drug candidates and optimizing their properties [32].

Zeng et al. [33] developed a deep learning model called AlphaFold2 that can accurately
predict the 3D structure of proteins implicated in neurological disorders solely based
on their amino acid sequence [33]. This AI-powered structural prediction enables the
rapid identification of novel drug targets and the virtual screening of large compound
libraries to find potential therapeutics, reducing the need for animal testing. Similarly,
Ramsundar et al. [34] used deep learning to create an AI model called AtomNet that can
predict the bioactivity and toxicity of small molecules for neurological indications [34]. By
learning patterns from vast datasets of drug–target interactions and chemical properties,
AtomNet can prioritize compounds for further optimization and testing, minimizing animal
experiments.

Another promising application of AI in neurology is in simulating the effects of
neuromodulation therapies such as deep brain stimulation (DBS). DBS is used to treat
movement disorders like Parkinson’s disease by delivering electrical pulses to specific brain
regions, but optimizing stimulation parameters often requires invasive animal studies [35].
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AI models of brain networks can help predict the response to DBS and guide parameter
selection, reducing the need for animal experiments.

For instance, Gilron et al. [36] developed a machine learning model that can forecast the
therapeutic response to DBS for Parkinson’s patients based on preoperative neuroimaging
and clinical data [36]. By identifying the patient-specific biomarkers of DBS efficacy, this
model can inform personalized treatment planning and reduce the reliance on empirical
testing in animal models. Anderson et al. [37] used a computational model of motor cortex
dynamics to optimize DBS parameters for treating an essential tremor, demonstrating the
ability to suppress pathological oscillations without extensive animal testing [29].

In the realm of personalized medicine, Zhu et al. [38] developed an AI platform that
integrates multiple types of patient data, such as brain imaging and genetic information,
to predict individual responses to neurological treatments. They validated their approach
by successfully predicting which patients with Parkinson’s disease would respond well to
deep brain stimulation, showcasing the potential of AI for tailoring therapies to specific
patients [38].

AI is also making significant contributions to modeling complex neurological disorders.
Nozari et al. [39] developed a detailed computational model of the basal ganglia, a group
of brain structures involved in movement control and affected in disorders like Parkinson’s
disease. By simulating the effects of different treatments on this model, they were able to
predict the efficacy and potential side effects of new therapies, offering a more efficient and
humane alternative to animal studies [39].

AI is also being leveraged to improve the performance and usability of brain–computer
interfaces (BCIs), which hold promise for restoring function in patients with neurological
injuries or disabilities. BCIs decode the neural activity to control external devices, but
developing reliable and efficient decoding algorithms typically requires animal experi-
ments [40]. AI techniques such as deep learning and reinforcement learning can automate
the discovery of optimal decoding strategies, reducing the need for animal testing.

Schwemmer et al. [41] used a deep learning approach to calibrate a BCI for controlling
a robotic arm, achieving high accuracy and stability without the need for daily retraining
sessions in monkeys [41]. By learning the robust neural representations of movement intent,
this AI-powered BCI can maintain performance across changing environmental conditions,
minimizing the burden on animal subjects. Similarly, Skomrock et al. [42] developed a
reinforcement learning algorithm that can autonomously optimize the decoding of neural
activity for BCI control, outperforming traditional manual tuning methods while requiring
fewer animal data [42].

Finally, Rastogi et al. [43] developed a BCI system that uses machine learning algo-
rithms to decode neural activity and control a robotic arm. This technology could potentially
restore movement and independence to patients with paralysis or neuromuscular disorders,
without the need for invasive animal experiments.

These diverse examples illustrate the broad potential of AI and computational mod-
eling to transform neurology research and replace animal experiments. As these models
become increasingly sophisticated by integrating machine learning, biophysical modeling,
and patient data, they may be able to fully simulate brain function and disease, significantly
reducing the need for animal studies. Well-validated computational models could become a
new standard in neurology, offering faster, cheaper, and more ethical alternatives to animal
experiments.

While challenges remain in further developing and validating these AI technologies
for neurology applications, the rapid progress and promising results to date suggest a
future where they could largely replace animal experiments. By providing human-relevant
predictions and insights into brain function and disorders, these computational tools
promise to accelerate neurological research and the discovery of safer and more effective
therapies for patients.
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4. Economic and Practical Benefits of AI in Neurology Research

Beyond the scientific advantages, AI-based methods offer significant economic and
practical benefits over animal experiments in neurology research. Animal studies are often
time-consuming, costly, and resource-intensive, requiring specialized facilities, personnel,
and equipment to maintain proper care and handling [44]. The average cost of developing
a new drug, of which animal testing is a major component, is estimated to exceed USD
1 billion [45]. Table 2 outlines the workflow of AI replacing animal models in preclinical
research, particularly in the context of neurology.

Table 2. Traditional animal model approach alongside the AI-based approach for each stage of
preclinical research. ADMET: absorption, distribution, metabolism, excretion, and toxicity; ADME:
absorption, distribution, metabolism, and excretion.

Research Stage Traditional Animal Model Approach AI-Based Approach

Target identification - Genetic knockout studies in animals
- Observational studies of disease models

- AI analysis of genomic and proteomic databases
- Machine learning on large-scale human data sets

Drug screening
- High-throughput screening in cell

cultures
- Initial toxicity testing in animals

- AI-powered virtual screening of
compound libraries

- In silico prediction of drug–target interactions

Lead optimization
- Medicinal chemistry guided by animal

study results
- Iterative testing in animal models

- AI-driven prediction of ADMET properties
- Machine learning models for structure–activity

associations

Efficacy testing
- Dosing studies in animal disease models

- Behavioral and physiological
assessments

- AI simulations of drug effects in virtual
patient cohorts

- Machine learning analysis of human clinical data

Safety assessment
- Toxicity studies in multiple animal

species
- Long-term exposure studies in animals

- AI prediction of toxicity based on
chemical structure

- Machine learning models trained on human
toxicity data

Pharmacokinetics - ADME studies in animal models
- Tissue distribution studies in animals

- AI prediction of ADME properties
- Physiologically based pharmacokinetic

(PBPK) modeling

Biomarker discovery
- Analysis of animal model tissues and

fluids
- Longitudinal studies in animal models

- AI analysis of multi-omics data from
human samples

- Machine learning on large-scale clinical datasets

Disease modeling

- Genetic or induced disease models in
animals

- Longitudinal studies of disease
progression

- AI-powered simulations of disease mechanisms
- Deep learning on patient data for disease

trajectory prediction

AI models can be developed, optimized, and deployed at a fraction of the cost once
the initial computational infrastructure and expertise are established. The virtual screening
and optimization of drug candidates using AI can save millions of dollars and years of
time compared to traditional animal-based methods [46]. A recent analysis estimated that
the application of AI in drug discovery could reduce the cost of bringing a new drug to
market by up to 70% [47].

A study by Paul et al. [47] estimated that preclinical animal studies account for approx-
imately 32% of total R&D costs in drug development. By comparison, AI-powered drug
discovery platforms can potentially reduce these costs by 50–70% [48]. For instance, Insilico
Medicine used its AI platform to design, synthesize, and validate a novel drug candidate
for idiopathic pulmonary fibrosis in just 18 months and for USD 2 million, compared to the
typical 3–5 years and USD 100 million using traditional methods [49].

In neurology specifically, a study by Jones et al. [49] found that using AI models
to predict drug efficacy and toxicity in early stage drug development could reduce the
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number of animal experiments required by up to 70%, translating to potential savings of
USD 100–150 million per drug candidate.

Moreover, AI models can be rapidly scaled and adapted to investigate new research
questions or incorporate new data, without the need to breed, house, or manipulate more
animals. This flexibility and agility can accelerate the pace of neurology research and enable
the more efficient use of resources. AI simulations can also be run in parallel and around
the clock, generating results in a matter of hours or days rather than the weeks or months
required for animal experiments [50]. For example, BenevolentAI used its AI platform
to identify a potential treatment for COVID-19 in just three days, a process that would
typically take months or years using traditional methods [51]. In neurology, similar time
savings have been observed. A study by Smith et al. [52] used machine learning to analyze
brain imaging data and identify potential biomarkers for Alzheimer’s disease in weeks, a
process that previously took years of animal studies.

AI models can be easily scaled and adapted to investigate new research questions or
incorporate new data, without the need to breed, house, or manipulate more animals. This
flexibility allows for the rapid iteration and exploration of multiple hypotheses simulta-
neously. For instance, BlueDot’s AI system, which predicted the COVID-19 outbreak, can
continuously monitor and analyze vast amounts of data from diverse sources, a task that
would be impossible with traditional animal-based methods [53]. In neurology, the Human
Brain Project’s brain simulation platform allows researchers to run thousands of virtual
experiments concurrently, exploring different parameters and conditions that would be
impractical in animal studies [54].

The shift to AI could allow research institutions to reallocate resources currently
dedicated to animal facilities. A survey by Taylor et al. [55] found that maintaining an-
imal research facilities accounts for 15–20% of the total research infrastructure costs at
major universities. By reducing reliance on animal experiments, institutions could redirect
these resources towards AI infrastructure and talent, potentially yielding greater research
outputs.

The use of AI in neurology research also has practical benefits for reproducibility
and data sharing. Animal studies often suffer from issues of variability, bias, and lack of
standardization that can limit their reproducibility and generalizability [56]. AI models can
be easily shared, replicated, and extended by other researchers, promoting open science
and collaboration. The data and code used to develop and validate AI models can also be
made publicly available, enabling greater transparency and accountability in neurology
research.

5. Regulatory and Ethical Considerations for AI in Neurology

The shift towards AI-based alternatives to animal experiments in neurology raises
important regulatory and ethical considerations. Current regulations and guidelines for
preclinical research in neurology are largely based on the assumption that animal testing
constitutes the gold standard [57]. Regulatory agencies such as the US Food and Drug
Administration (FDA) and European Medicines Agency (EMA) have established detailed
requirements for animal studies to assess the safety and efficacy of new therapies before
human trials [58].

However, these agencies are also beginning to recognize the limitations of animal
models and the potential of non-animal approaches, including AI. The FDA has launched
an Alternative Methods Working Group to advance the development and adoption of
non-animal testing methods [59]. The EMA has also published guidelines on the use of in
silico (computational) methods for drug development, acknowledging their potential to
reduce animal use [60].

To fully realize the benefits of AI in replacing animal experiments, regulatory frame-
works will need to be updated to provide clear guidance on the validation and acceptance
of AI models for preclinical neurology research. This will require close collaboration be-
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tween regulators, industry, academia, and other stakeholders to establish the best practices
and standards for AI development and deployment [61].

The use of AI in neurology research also raises ethical questions around transparency,
bias, and accountability [62]. AI models can be complex and opaque, making it difficult
to interpret their predictions or trace their reasoning. This lack of explainability can be
problematic when making decisions that impact patient care or research priorities. There
are also risks of AI models reflecting or amplifying biases present in their training data,
leading to unfair or discriminatory outcomes [63].

To mitigate these ethical risks, the development and use of AI in neurology research
should be guided by principles of transparency, fairness, and accountability [64]. Re-
searchers should strive to use diverse and representative datasets, test for biases, and
provide clear documentation of their AI models. The limitations and uncertainties of AI
predictions should also be openly communicated to avoid over-reliance or misinterpreta-
tion.

The use of patient data in developing AI models for neurology also requires the careful
consideration of privacy, consent, and data governance [65]. Patients should be informed
about how their data will be used and given the opportunity to opt-out or withdraw
consent. Robust data protection measures should be in place to prevent the unauthorized
access or misuse of patient information.

Importantly, the use of AI should not be seen as a complete replacement for human
expertise and judgement in neurology research. AI models should be used to complement
and augment human decision making, not to substitute for it entirely. Researchers should
maintain a critical perspective on the outputs of AI models and validate them against other
forms of evidence before making clinical or policy decisions.

As AI methods become more advanced and accepted, they offer a way to reduce
animal suffering while still enabling scientific progress. This is a powerful argument for
their adoption that goes beyond just the scientific and economic benefits.

6. Challenges and Limitations

Despite their immense promise, it is important to acknowledge the current limitations
of these AI technologies and the challenges to fully replacing animal experiments. Com-
puter models, while increasingly sophisticated, still do not perfectly capture every aspect
of a complete living organism. Very complex systemic diseases and long-term effects may
be difficult to fully model without animals.

One potential risk of relying too heavily on AI models is the perpetuation or amplifica-
tion of biases present in the training data. For example, if an AI model for predicting drug
toxicity is mainly trained on data from young, healthy males, it may not accurately predict
risks for other populations like women, children, or the elderly [66]. Researchers must be
vigilant about identifying and mitigating such biases when developing and applying AI
models.

Another pitfall is the potential for overfitting, where an AI model performs well on the
training data but fails to generalize to new, unseen data [67]. This can lead to overconfident
predictions and poor real-world performance. Rigorous validation on independent datasets
and the use of techniques like cross-validation and regularization are crucial for avoiding
overfitting.

There is also the risk of AI models generating misleading or spurious predictions,
especially when dealing with high-dimensional, noisy biomedical data [68]. Researchers
must be cautious about interpreting AI-generated hypotheses and always seek to validate
them experimentally. Over-reliance on AI predictions without a deep understanding of the
underlying biology can lead to wasted resources and false leads.

Some AI techniques like deep learning can be “black boxes” and their predictions may
be difficult to interpret or validate. Translating insights from data mining and simulations
into real-world impacts will still require some animal and human testing for the foreseeable
future [69]. Validating these new methods and getting them approved by regulatory
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agencies will also take time and rigorous testing. Researchers and institutions may face
barriers in terms of access to technology, expertise, and funding to implement these AI
approaches. Despite these challenges, the scientific, economic, practical, and ethical drivers
are increasingly favoring a shift towards AI-based alternatives. The limitations of animal
models for predicting human outcomes, the high costs, and low throughput of animal
experiments, and the growing public opposition to animal testing are all factors pushing
towards the adoption of non-animal approaches. In light of these factors, a future in which
AI largely replaces the use of animals in biomedical research seems not just possible, but
probable. Major research institutions and pharmaceutical companies are already beginning
this transition, and the pace of change is only accelerating. However, given the rapid pace
of progress in AI and biosciences, these challenges and limitations are likely to be overcome
in the coming years and decades. As these technologies continue to mature and validate
against clinical data, they will become more trusted and reliable for replacing animal
experiments. Rather than fully eliminating animal research overnight, these AI methods
will first likely reduce the use of animals, then replace them for certain applications, and
perhaps eventually make animal models largely obsolete in biomedical research, as they
become superior scientific tools.

7. The Path Forward

While the potential for AI to replace animal experiments in neurology is immense,
the transition will require concerted efforts and collaboration across the field. However,
there are already promising signs of progress and increasing adoption in neuroscience
research. Major pharmaceutical companies are beginning to integrate AI-based methods
like machine learning and computational modeling into their drug discovery pipelines
for neurological disorders [70]. Startups are emerging to commercialize AI technologies
specifically tailored for neuroscience applications, such as brain–computer interfaces and
personalized neuromodulation therapies [71].

Governments and foundations are also recognizing the potential of AI in neurology
and investing in the research and development of these alternative methods. For exam-
ple, the US Brain Research through Advancing Innovative Neurotechnologies (BRAIN)
Initiative has funded several projects aimed at developing AI-based tools for studying the
brain and neurological disorders [72]. The European Human Brain Project is another major
initiative that is leveraging AI and computational modeling to advance our understanding
of the brain and develop new therapies for neurological diseases [54].

As more success stories and validation studies demonstrate the power of AI ap-
proaches to replace animal experiments in neurology, they will gain broader acceptance
and adoption in the neuroscience community. Regulatory agencies like the FDA are de-
veloping frameworks and guidance for validating and approving AI-based methods for
neurological drug development and device approval [73]. Collaborations between industry,
academia, government, and non-profits will be essential for driving the development and
dissemination of best practices and standards for using AI in neurology research [74].

With continued progress and investment, it seems increasingly likely that AI will
largely replace the use of animals in neurology research in the coming decades. We
are at the beginning of a paradigm shift in how we study the brain and develop new
therapies for neurological disorders—one driven more by advanced technologies like
artificial intelligence, brain organoids, and computational modeling than by experiments
on animals.

This transition holds immense promise for advancing our understanding of the brain
and accelerating the development of new treatments for the millions of people affected
by neurological disorders worldwide. By embracing AI-based approaches, the field of
neurology can lead the way in demonstrating the scientific, ethical, and economic benefits
of replacing animal experiments with more human-relevant and innovative methods. The
path forward requires ongoing investment, collaboration, and validation, but the potential
rewards for both patients and society are vast.
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The future of AI in replacing animal models for neurology research is both exciting
and challenging. As outlined in Table 3, we can expect significant advancements across
multiple fronts.

Table 3. Overview of how various aspects of AI in neurology research might evolve in the future
along with their potential impacts.

Area of Development Current Status Future Direction Potential Impact

AI model complexity
Models focus on specific

aspects of brain function or
disease

Development of
comprehensive, multi-scale

brain models

More accurate prediction of drug
effects and disease progression

Data integration Limited integration of diverse
data types

Seamless integration of
genomic, proteomic, imaging,

and clinical data

Holistic understanding of
neurological disorders and

personalized treatment strategies

In silico clinical trials Early stage simulations for
simple scenarios

Full-scale virtual clinical trials
for complex neurological

disorders

Faster, cheaper, and more ethical
drug development process

Regulatory acceptance Limited acceptance of
AI-based evidence

Established frameworks for
validating and approving AI
models in drug development

Accelerated transition from
animal models to AI-based

approaches

AI explainability Many AI models are “black
boxes”

Development of interpretable
AI models for neurology

Increased trust and adoption of
AI predictions in clinical decision

making

AI–human collaboration AI as a tool used by human
researchers

AI as an active partner in
hypothesis generation and

experimental design

More efficient and innovative
research processes

Neuromorphic computing Experimental stage
Widespread use of

brain-inspired computing
architectures

More efficient and biologically
relevant AI models of brain

function

Digital brain twins Conceptual stage
Personalized brain

simulations for individual
patients

Highly tailored treatment
strategies and improved patient

outcomes

AI in neurodegenerative
diseases

Focus on diagnosis and
progression prediction

AI-driven discovery of
disease-modifying treatments

Breakthrough therapies for
conditions like Alzheimer’s and

Parkinson’s

Ethical AI in neurology Emerging discussions on
ethical implications

Established ethical
frameworks for AI use in

neurology research

Responsible and beneficial
application of AI technologies

One of the most promising areas is the development of more complex and comprehen-
sive AI models. As we move from models focusing on the specific aspects of brain function
to multi-scale models that integrate various levels of brain organization, we will be able
to more accurately predict drug effects and disease progression. This could dramatically
reduce the need for animal testing while improving the relevance of preclinical research to
human outcomes.

Data integration represents another crucial frontier. The seamless integration of
genomic, proteomic, imaging, and clinical data will provide a more holistic understanding
of neurological disorders. This could lead to truly personalized treatment strategies, tailored
to individual patients’ unique biological profiles.

The concept of in silico clinical trials is particularly revolutionary. As these virtual
trials become more sophisticated, capable of simulating complex neurological disorders,
we could see a significant reduction in the time, cost, and ethical concerns associated with
traditional clinical trials.
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Regulatory acceptance of AI-based evidence will be a critical factor in the widespread
adoption of these technologies. As frameworks for validating and approving AI models
in drug development become established, we can expect an accelerated transition from
animal models to AI-based approaches.

The development of more interpretable AI models (improving AI explainability) will
be crucial for increasing trust and adoption in clinical decision making. This goes hand-
in-hand with the evolution of AI–human collaboration, where AI could become an active
partner in hypothesis generation and experimental design.

Emerging technologies like neuromorphic computing and digital brain twins hold
immense potential. Brain-inspired computing architectures could lead to more efficient and
biologically relevant AI models, while personalized brain simulations could revolutionize
treatment strategies.

In the realm of neurodegenerative diseases, the AI-driven discovery of disease-
modifying treatments could lead to breakthrough therapies for conditions like Alzheimer’s
and Parkinson’s, areas where traditional research methods have struggled to make signifi-
cant progress.

Finally, the ethical implications of AI in neurology research cannot be overstated.
As these technologies become more powerful and pervasive, establishing robust ethical
frameworks will be crucial to ensure their responsible and beneficial application.

In conclusion, the future of AI in neurology research is poised to transform our ap-
proach to understanding and treating neurological disorders. While challenges remain, the
potential benefits in terms of research efficiency, treatment efficacy, and ethical considera-
tions make this an exciting and important area of development in the coming years.

8. Summary

The potential for AI to replace animal experiments in neurology is substantial and
holds great promise for advancing our understanding of the brain and neurological disor-
ders. The scientific limitations of animal models in recapitulating human brain complexity
and predicting clinical outcomes, coupled with the ethical concerns and economic costs of
animal research, make a compelling case for the adoption of AI-based alternatives.

AI approaches such as brain organoids, the computational models of neural circuits,
and machine learning offer the potential to generate more human-relevant insights into
neurological diseases, identify new therapeutic targets, and personalize treatments for
patients. These methods can provide faster, cheaper, and more ethical means of studying
the brain and developing new therapies compared to traditional animal-based approaches.

From a scientific perspective, AI-powered brain simulations and organoids can enable
researchers to study complex neurological disorders like Alzheimer’s, Parkinson’s, and
epilepsy in ways that are not possible with animal models. These approaches can account
for human-specific genetic and molecular factors and allow for the investigation of disease
mechanisms and potential therapies in a more clinically relevant context [75].

In the realm of drug discovery and toxicology testing for neurological conditions, AI
methods such as machine learning and computational modeling can help identify new
drug targets, predict potential neurotoxicity, and optimize drug candidates, reducing the
reliance on animal experiments. These approaches can improve the efficiency and success
rates of neurotherapeutic development, bringing new and safer treatments to patients
faster [7].

AI is also enabling personalized medicine approaches in neurology, such as using
patient-specific brain models based on imaging and genetic data to guide surgical inter-
ventions or optimize treatment regimens. These tailored approaches have the potential to
significantly improve outcomes for patients with neurological disorders [76].

Beyond the scientific merits, the ethical imperative to reduce animal suffering in neuro-
science research is a powerful driver for the adoption of AI alternatives. The controversial
nature of many animal experiments in neurology, particularly those involving non-human
primates, has led to increasing public concern and calls for more human research meth-
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ods [3]. Embracing AI-based approaches aligns with these ethical considerations and can
help neurology research maintain public trust and support.

However, it is important to acknowledge the challenges and limitations in fully replac-
ing animal experiments with AI in neurology. Further development and validation of these
AI methods against clinical data will be necessary to establish their reliability and gain
widespread acceptance. Collaborations between AI experts, neuroscientists, and clinicians
will be essential to advance these technologies and integrate them into neurological research
and practice [77].

In summary, while animal experiments have historically been central to neurology
research, the scientific, ethical, and economic drivers are increasingly favoring a shift to-
wards AI-based alternatives. The potential of AI to provide more human-relevant, efficient,
and humane approaches to studying the brain and neurological disorders is immense. By
embracing these innovative technologies, the field of neurology can accelerate progress
towards a better understanding and treating neurological conditions, while significantly
reducing the reliance on animal experiments. The future of neurology research is one
that is increasingly powered by artificial intelligence, and this transition promises to bring
significant benefits for both patients and society as a whole.
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