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Abstract: Background: Neuroplasticity, involving cortical and subcortical reorganization,
plays a critical role in the adaptation and compensation process post-amputation. However,
underlying neurophysiological changes remain unclear, particularly in brain oscillations.
Methods: This is a cross-sectional analysis that includes baseline data from 48 individuals
with lower limb amputation from our DEFINE Cohort Study project. EEG data were
collected using a 64-channel system during a 5-min resting-state period. Preprocessed data
were analyzed for delta and alpha oscillations across frontal, central, and parietal regions.
Logistic regression models examined associations between EEG oscillations and clinical
variables, including cognition (MoCA), functional independence (FIM), and phantom limb
sensations (PLS). Results: The multivariate logistic regression analysis revealed distinct
patterns of association between EEG oscillations and clinical variables. Delta oscillations
were inversely associated with cognitive scores (OR: 0.69; p = 0.048), while higher delta
power was related to the absence of PLS (OR: 58.55; p < 0.01). Frontal alpha power
was positively linked to cognitive function (OR: 1.55; p = 0.02) but negatively associated
with functional independence (OR: 0.75; p = 0.04). Conclusions: These findings suggest
that lower frequencies, such as delta oscillations, play a role as potential compensatory
brain rhythms. In contrast, alpha oscillations may reflect a more adapted pattern of brain
reorganization after amputation.

Keywords: neurophysiological biomarkers; brain oscillations; electroencephalography;
amputation; clinical predictors

1. Introduction
Limb loss is a significant cause of morbidity and economic burden, affecting patients

and healthcare systems worldwide. The primary causes of lower limb amputation include
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trauma, metabolic conditions, and vascular diseases, such as diabetes mellitus and pe-
ripheral arterial disease [1]. From 2008 to 2020, Brazil recorded over 600,000 lower limb
amputations [2]. In the United States, approximately 120,000 lower limb amputations are
performed each year, with the lifetime healthcare cost per individual estimated at around
USD 650,000 in 2013 [3].

Amputation significantly reduces quality of life, often resulting in decreased work
productivity, increased susceptibility to further health complications, and a higher mortality
risk than the general population [4]. Additionally, most amputees develop phantom limb
pain (PLP), with studies reporting a prevalence of 70–80% [5,6]. Despite the high prevalence
and impact of PLP and other amputation-related complications, providing effective care
for this population remains challenging, as the mechanisms underlying structural brain
reorganization following limb amputation are not yet fully understood.

Following an upper or lower limb amputation, neuroplasticity processes are activated
to adapt cortical and subcortical regions to the absence of the limb. This reorganization
involves several circuits, including cortical, corticothalamic, and limbic pathways associated
with motor execution, somatosensory function, nociception, and spatial awareness [7–11].
Neuroimaging studies in both animals and humans have shown structural remodeling
in cortical and subcortical areas following limb loss [12–15]. Due to its low cost and high
temporal resolution, electroencephalography (EEG) is widely used to quantify cortical
activity changes in patients across various medical conditions [16].

In our previous research based on the DEFINE cohort [17] and other projects, we inves-
tigated resting-state EEG oscillations as potential biomarkers of adaptive and compensatory
mechanisms linked to clinical recovery and rehabilitation outcomes across multiple condi-
tions, including chronic neuropathic pain, fibromyalgia, stroke, KOA, and NSLBP [18–25].

One of these studies, focused on chronic neuropathic pain, identified delta and theta
bands as compensatory oscillations negatively associated with pain level. In contrast,
higher frequencies, particularly in the alpha range, were linked to disruptive mechanisms,
such as pain and mood impairment related to pain [18]. In fibromyalgia, increased theta
power was associated with a greater likelihood of memory complaints and other clinical
features, including older age, sleep problems, and anxiety, suggesting a compensatory role
for the theta band.

In stroke, delta and beta power increases were proposed as markers of maladaptive
brain plasticity associated with poorer functional outcomes. By contrast, increased theta
and alpha power were linked to better sensorimotor outcomes, indicating these bands
as compensatory oscillations [26]. In knee osteoarthritis (KOA), findings showed a pos-
itive association between fronto-central alpha and pain intensity, alongside a negative
association between theta activity and pain intensity [20]. These results suggested that
elevated alpha over sensorimotor areas may reflect a maladaptive compensatory response
to impaired motor function and advanced joint degeneration, thus highlighting distinct
KOA phenotypes [20]. On the other hand, the presence of physical disability and chronic
pain can lead to chronic distress, inflammation, and downregulation of neural activity in
the hippocampus, resulting in lower cognitive performances, like working memory, often
associated with EEG low-frequency bands [25]. Moreover, diffuse delta and theta power
were positively associated with poor cognition, aging, and depressive symptoms [20].

These studies are essential for understanding the mechanisms underlying pathologi-
cal, compensatory, and adaptive processes in these health conditions, and they may help
identify biomarkers to improve healthcare and management strategies. However, neuro-
physiological research into structural and functional changes after amputations and other
neurological conditions still yields varied results given the diversity of conditions and
metrics involved. In this exploratory study, we examine the predictive value of clinical and
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demographic factors on brain resting-state oscillations, assessing their potential as neuro-
physiological markers of adaptation and compensation following lower limb amputation.

2. Materials and Methods
2.1. Participants, Study Design, and Sample Size

This is an exploratory cross-sectional analysis that includes baseline data from 48 in-
dividuals with lower limb amputation from our DEFINE Cohort Study project [17]. All
participants were admitted to the Instituto de Medicina Física e Reabilitação (IMREA) at
the University of Sao Paulo (USP), Brazil. Patients with a previous history of neurological
conditions such as stroke, epilepsy, dementia, brain injury, or psychiatric conditions were
excluded. This project was approved by the Ethics Committee of the Hospital das Clínicas,
Faculty of Medicine of the University of Sao Paulo. All participants provided informed
consent following the Declaration of Helsinki (1964) [27].

2.2. Demographic and Clinical Variables

Demographic and medical history data were collected from participants, including
age, sex assigned at birth, race, educational level, body mass index (BMI), the cause of
amputation, and the presence and frequency of phantom limb sensation (PLS) and other
phantom phenomena as evaluated in the Groningen Questionnaire Problems After Leg Am-
putation. Additionally, validated scales were used to assess functional and cognitive status,
including the Functional Independence Measure (FIM), Montreal Cognitive Assessment
(MoCA), and the Visual Analog Scale (VAS) for pain. Further details on these instruments
can be found in our cohort study protocol [17].

2.3. Electroencephalography (EEG)

EEG data were collected using two systems: the ANT Neuro 64-channel EEG system
(ANT Neuro, Enschede, The Netherlands) and the Brain Vision ActiCHamp 64-channel
EEG system (Brain Products GmbH, Gilching, Germany) during a 5-min eyes-closed resting-
state period. The data were then exported and analyzed offline using MATLAB (R2014b,
The MathWorks Inc., Natick, MA, USA) and EEGLab.

The preprocessing pipeline included the following steps: (i) bandpass filtering with a
high-pass filter at 1 Hz and a low-pass filter at 50 Hz, (ii) downsampling from 1000 Hz to
250 Hz, (iii) re-referencing the channels using the average of all electrodes, and (iv) 60 Hz
power line noise correction (specific to Brazil).

An expert clinical neurophysiologist visually inspected the EEG data to identify
artifacts and any potential clinical abnormalities before performing an Independent Com-
ponent Analysis (ICA). Channels were removed if they met any of the following criteria:
(i) flat for longer than three seconds, (ii) exhibiting high-frequency noise exceeding two
standard deviations, or (iii) showing a correlation with neighboring channels of less than
0.8, as assessed using the Clean_rawdata EEGLAB plugin (v2.2). The remaining channels
were then processed using the Infomax ICA algorithm, implemented with the Darbeliai plu-
gin, identifying and removing artifacts [28,29]. ICA algorithms are particularly effective at
eliminating noise signals from heart rate, muscle activity, blinking, and eye movements [30].

The following standard frequency bands were analyzed: delta (1–3.9 Hz), theta
(4–7.9 Hz), low-alpha (8–9.9 Hz), high-alpha (10–12.9 Hz), alpha (8–12.9 Hz), low-beta
1 (13–19.9 Hz), high-beta 2 (20–30 Hz), and beta (13–30 Hz). These bands were analyzed in
the following regions of interest (ROIs): frontal (F3, F4, F7, F8, FCz, FP1, FP2, Fz), central
(C3, C4, CP1, CP2, CP5, CP6, Cz), and parietal (O1, O2, Oz, P3, P4, Pz) areas.
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2.4. Statistical Analysis

Our analysis followed several steps. First, because the EEG oscillation data were not
normally distributed, we converted them into binary categories based on the median value
for each oscillation. Logistic regression was then used to model the relationships between
these binary outcomes and the independent variables. Univariate logistic regressions
were conducted against all demographic and clinical variables for each EEG oscillation.
Variables with a univariate p-value < 0.25 and those considered clinically meaningful
were subsequently included in the multivariate models. No adjustments for multiple
comparisons were made to maximize sensitivity in this exploratory study. Statistical
analyses were performed using RStudio (Version 2023.06.0 + 421). Results were considered
statistically significant at p < 0.05.

3. Results
3.1. Sample Characteristics

Baseline data were collected from 48 participants included in the study, with a median
age of 49 years (IQR: 25.5). The sample was predominantly male (40 individuals, 83%) and
included a smaller proportion of females (8 individuals, 17%). Most amputations were
above the knee (65%, 31 participants), while 35% were below the knee (17 participants). The
median duration since amputation was 21.4 months (IQR: 21.7). A detailed characterization
of the sample, including relevant clinical and demographic features, is provided in Table 1.

Table 1. Characterization of the sample (n = 48).

Variable Median (IQR) or n (%)

Age 49 (25.5)
Sex

Male 40 (83%)
Female 8 (17%)

Race
White 30 (63%)

Non-white 18 (37%)
Civil status

Single 18 (37%)
Married 21 (43%)
Divorced 7 (15%)
Widowed 2 (5%)

Amputation side
Right 18 (37%)
Left 28 (59%)

Bilateral 2 (4%)
Amputation level
Above the knee 31 (65%)
Below the knee 17 (35%)

BMI 24.6 (5.1)
Amputation duration (months) 21.4 (21.7)

Education (years) 10 (6)
FIM 117 (5.25)

MOCA 22 (6)
PLS

Presence 34 (70%)
Absence 14 (30%)

BMI: body mass index; FIM: Functional Independence Measure; MOCA: Montreal Cognitive Assessment;
PLS: phantom limb sensation.
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3.2. Description of Dependent Variables

EEG data were collected from 48 participants. Table 2 presents brain oscillations,
averaged across both hemispheres, revealing distinct patterns across different regions.
Delta oscillations in the central region had a median value of 0.14 (IQR: 0.11), while alpha
oscillations in the frontal region exhibited a higher median value of 0.51 (IQR: 0.29).

Table 2. Descriptive data of the dependent variables (brain oscillations), n = 48.

Variable Median (IQR)

Delta Oscillations
Central Region 0.14 (0.11)

Alpha Oscillations
Frontal Region 0.51 (0.29)

3.3. Univariate Analysis

We first conducted univariate logistic regression to identify variables associated with
EEG oscillations. This analysis revealed statistically significant relationships between each
oscillation and various independent variables.

3.4. Multivariate Analysis

Subsequently, multivariate logistic regression models were constructed using a for-
ward selection technique. Variables were added sequentially based on either univariate
significance (p < 0.25) or their clinical relevance to the study. This approach allowed us
to investigate the relationship between EEG oscillations and clinical variables, assessing
whether these oscillations could be linked to compensatory system activity in this patient
group. Age was not a significant factor in any model. The variables finally included for
each model can be seen in Table 3.

Table 3. Multivariate logistic regression models.

Models OR (95% CI) Std. Error p-Value t-Stat AUC

Delta
Oscillations 0.93

MOCA 0.69 (0.43–0.94) 0.05 0.048 3.74

PLS 58.55
(6.21–1762) 1.37 0.003 42.8

Alpha
Oscillations 0.82

MOCA 1.55 (1.13–2.47) 0.19 0.022 8.08
FIM 0.75 (0.52–0.92) 0.14 0.041 5.22

MOCA: Montreal Cognitive Assessment; PLS: phantom limb sensation; FIM: Functional Independence Measure.
AUC: area under the curve.

3.5. Delta Oscillations

For delta oscillations, we observed significant associations with both MOCA scores
and the presence of PLS (n = 31). Specifically, there was a negative association with MOCA
scores, where each unit increase in the MOCA was associated with a decrease in the
odds of delta oscillations (OR = 0.69; 95% CI = 0.43–0.94; p = 0.048). In contrast, a strong
positive association was found with PLS, with patients reporting PLS having significantly
higher odds of delta oscillations (OR = 58.55; 95% CI = 6.21–1762; p = 0.003). The model’s
McFadden’s R2 was 0.46.
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3.6. Alpha Oscillations

Significant associations were identified with both MOCA and FIM scores for alpha
oscillations (n = 27). A positive association was observed with the MOCA, where each
unit increase in the MOCA was linked to higher odds of alpha oscillations (OR = 1.55;
95% CI = 1.13–2.47; p = 0.022). Conversely, FIM scores showed a negative association,
with higher FIM scores corresponding to lower odds of alpha oscillations (OR = 0.75; 95%
CI = 0.52–0.92; p = 0.041). The model’s McFadden’s R2 was 0.28.

4. Discussion
This study explored the association between sociodemographic, clinical variables, and

resting-state EEG spectral power in individuals with lower limb amputations, addressing a
gap in the current literature. Following limb amputation, neural reorganization processes,
such as cortical remapping, are expected to occur in sensorimotor cortices and other cortical
regions, including interhemispheric changes [7,8,31]. Additionally, these changes may be
influenced by an individual’s ability to adapt to their new situation, whether positively
or negatively. For example, some individuals develop chronic phantom and residual limb
pain, and related emotional and cognitive comorbidities, while others adjust functionally
and pain-free [7,32]. Thus, changes in brain oscillations may reflect this adaptation process.
Our findings suggest that delta and alpha oscillations showed cortical reorganization in
individuals with lower limb amputation, which could be crucial in the compensatory
adjustments within the brain’s networks during their medical rehabilitation. These results
provide relevant insights to be deeply investigated in future longitudinal studies. In this
study, we built two multivariate models to investigate delta and alpha EEG oscillations in
the frontal and central brain areas and their relationships with cognitive, functional, and
clinical predictors.

4.1. Central Delta Oscillations Model

Our model revealed significant associations between cognition, the presence of phan-
tom limb sensation (PLS), and central delta power. Specifically, better cognitive function
was associated with lower delta power, while the absence of PLS was strongly associated
with higher delta power. A previous study suggested that delta oscillations could serve
as compensatory markers, as they were found to correlate with lower levels of chronic
neuropathic pain [18]. In this context, higher delta power may indicate a more effective
compensatory response. However, in our study, pain was not associated with delta power.
Instead, increased delta power was observed in participants without PLS. PLS has been
linked to positive adaptation after limb amputation, where intense non-painful PLS, espe-
cially phantom limb movement, is associated with less pain and better adaptation, likely
reflecting compensatory mechanisms in sensorimotor networks [33,34]. This interpretation
is reinforced by the results of three previous studies showing that a decreased central delta
power was associated with better motor function in stroke and lower levels of pain in KOA
and NSLBP [19,23,26,35].

PLS can encompass a plethora of phantom manifestations, including electric, itching,
and touching; some can be very intense and disturbing, even when not felt as a painful
sensation [33]. In this sense, an alternative interpretation is that the absence of PLS could
represent a positive sign of adaptation, supporting higher delta power as a marker of
better compensatory response, consistent with findings in chronic neuropathic pain. On the
other hand, stroke and limb amputation share mechanisms of hemispheric impairment and
interhemispheric imbalances, which may underlie similar reorganization and sensorimotor
adaptation processes. Thus, decreased delta power could be interpreted as a marker of
better adaptation.
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Cognitive function is a critical factor after amputation, influencing mobility and
participation in post-amputation rehabilitation. For instance, cognition has been associated
with mobility, daily living activities, and prosthetic use in individuals with non-traumatic
lower limb amputations [36,37]. Additionally, cognitive function and delta power in
the central, frontal, and parietal areas have been linked to conditions such as KOA and
stroke [20]. Delta oscillations, reflecting corticothalamic interactions, have been associated
with homeostatic sleep drive, sensory processing, and aging [20,38,39]. The limb loss can
still have an important representation in the motor and sensory cortical areas even many
years after the amputation, which often leads to an overreaction of low-frequency bands
in the presence of PLP in M1 and S1 [7,40,41]. Therefore, in the context of the amputee
population, a reduction in delta oscillations seems to indicate neuroplasticity processes and
better clinical outcomes. Additionally, decreases in delta power have also been linked to
improved cognitive therapy outcomes in sleep medicine, while increased delta power has
been associated with poorer recovery post-stroke [38,42]. Our findings suggest that central
delta power could serve as a potential biomarker for adaptation and functional recovery
after amputation.

4.2. Frontal Alpha Oscillations Model

This model shows a positive association between cognitive function and frontal alpha
power. On the other hand, it shows a negative association between functional independence
and alpha power in the frontal area. Alpha oscillations are related to different brain
functions such as cognitive processing, sensorimotor regulation, and emotional and pain
control [43–45]. Our results are in line with previous studies that observed a positive
relationship between cognition and alpha oscillations in both healthy adults and those with
cognitive decline [45–48].

The negative association with functional independence, however, warrants further
consideration. In our prior studies, divergent associations were observed depending on the
condition. For instance, high alpha power was positively associated with pain and impaired
mood in chronic neuropathic pain and with pain and stiffness in KOA [18,20]; however, in
stroke, it was positively associated with sensorimotor outcomes and negatively associated
with depression [26]. Alpha oscillations are modulated during movement preparation and
are suppressed by sensorimotor activity. Consequently, higher resting alpha power might
reflect overactive sensorimotor networks, while lower alpha power at rest may indicate
better-adjusted sensorimotor networks, similar to what is observed after motor learning [49].
This could explain the negative relationship regarding functional independence observed in
our model. In fact, changes in the functional network in the alpha band have been reported
after amputation, suggesting increased neural synchronization [50]. It was hypothesized
that these changes may reflect the unmasking and strengthening of silent or previously
subthreshold connections at local and network levels and likely relate to reported phantom
limb perception or phantom limb pain, which could interfere with motor performance and
functional outcomes. However, the observed relationship should be seen with caution as
we identified slight variance in functional independence in our sample, with most of it
showing high levels of autonomy. Therefore, the odds ratio for this predictor may be less
reliable or inflated due to a potential ceiling effect.

4.3. Limitations and Future Directions

The main limitations of our study are related to the exploratory cross-sectional design,
the absence of a control group, and the sample size. The small sample reduced statistical
power, particularly when adjusting for multiple variables. Some adjustments would be of
great importance. For example, in the central delta power model, adjusting for factors like
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time since amputation, sleep quality, sex, and age would have been valuable but was not
possible due to sample constraints.

Future studies could solve these limitations by extending the sample size and the
number of observations and testing some of the raised hypotheses in longitudinal studies
to observe the change in brain reorganization over time. For example, it can reproduce
the models and test the sensibility of the delta and alpha oscillations to detect changes in
cognition, motor function, and other metrics of neural adaptation over time from pre- to
post-amputation. Crucially, mechanistic studies must investigate the role of these EEG
markers across different health conditions to clarify if the changes in these oscillations
serve as general markers of brain adaptation and compensatory response or reflect unique
condition- or conditions-specific pathways.

5. Conclusions
This study provides novel insights into the relationship between resting-state EEG

oscillations and clinical, cognitive, and functional variables in individuals with lower limb
amputations. We identified distinct associations between delta and alpha oscillations and
factors such as cognitive function and phantom limb sensation. Our findings suggest that
EEG oscillations may be biomarkers of neural adaptation and compensatory responses
following amputation in the delta and alpha bands. Specifically, increased delta power in
the absence of phantom limb sensation may indicate positive neural adaptation. In contrast,
frontal alpha power could reflect the balance between sensorimotor network regulation
and functional independence.

Although this study’s exploratory nature and sample size limit generalizability, these
findings open avenues for future research. More extensive, longitudinal studies are needed
to confirm the sensitivity of EEG oscillations as markers of functional recovery and neural
adaptation in this population. We believe that EEG oscillations during resting state can
indicate cortical reorganization and are potential tools to help clinicians with the diagnosis
and evaluate treatment responses in the medical rehabilitation field related to phantom limb
pain and physical and cognitive functions. Understanding the mechanistic role of these
oscillations across different conditions will be crucial for refining rehabilitation strategies
and improving outcomes for individuals with amputations.
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48. Lejko, N.; Larabi, D.I.; Herrmann, C.S.; Aleman, A.; Ćurčić-Blake, B. Alpha Power and Functional Connectivity in Cognitive
Decline: A Systematic Review and Meta-Analysis. J. Alzheimers. Dis. 2020, 78, 1047–1088. [CrossRef]

49. Gallicchio, G.; Cooke, A.; Ring, C. Practice Makes Efficient: Cortical Alpha Oscillations Are Associated With Improved Golf
Putting Performance. Sport Exerc. Perform. Psychol. 2017, 6, 89–102. [CrossRef]

50. Lyu, Y.; Guo, X.; Wang, Z.; Tong, S. Resting-state EEG network change in alpha and beta bands after upper limb amputation.
Annu. Int. Conf. IEEE. Eng. Med. Biol. Soc. 2016, 49–52. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41467-018-08012-0
https://doi.org/10.1073/pnas.1811465115
https://doi.org/10.3233/JAD-200962
https://doi.org/10.1037/spy0000077
https://doi.org/10.1109/embc.2016.7590637

	Introduction 
	Materials and Methods 
	Participants, Study Design, and Sample Size 
	Demographic and Clinical Variables 
	Electroencephalography (EEG) 
	Statistical Analysis 

	Results 
	Sample Characteristics 
	Description of Dependent Variables 
	Univariate Analysis 
	Multivariate Analysis 
	Delta Oscillations 
	Alpha Oscillations 

	Discussion 
	Central Delta Oscillations Model 
	Frontal Alpha Oscillations Model 
	Limitations and Future Directions 

	Conclusions 
	References

