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Abstract: Colonoscopy is a gold standard procedure for tracking the lower gastrointestinal region. A
colorectal polyp is one such condition that is detected through colonoscopy. Even though technical
advancements have improved the early detection of colorectal polyps, there is still a high percentage
of misses due to various factors. Polyp segmentation can play a significant role in the detection
of polyps at the early stage and can thus help reduce the severity of the disease. In this work,
the authors implemented several image pre-processing techniques such as coherence transport
and contrast limited adaptive histogram equalization (CLAHE) to handle different challenges in
colonoscopy images. The processed image was then segmented into a polyp and normal pixel
using a U-Net-based deep learning segmentation model named UPolySeg. The main framework
of UPolySeg has an encoder–decoder section with feature concatenation in the same layer as the
encoder–decoder along with the use of dilated convolution. The model was experimentally verified
using the publicly available Kvasir-SEG dataset, which gives a global accuracy of 96.77%, a dice
coefficient of 96.86%, an IoU of 87.91%, a recall of 95.57%, and a precision of 92.29%. The new
framework for the polyp segmentation implementing UPolySeg improved the performance by 1.93%
compared with prior work.

Keywords: segmentation; polyp; U-Net; colonoscopy; deep learning

1. Introduction
1.1. Motivation and Incitement

Colorectal cancer (CC) is a major concern in the modern era, where it ranks second
in worldwide mortality [1]. It is also the third most common cancer in both genders [2].
Figure 1 shows the cases of colorectal cancer worldwide considering both genders [2].
Polyps are considered an initial sign of colorectal cancer and need to be detected at the early
stage. Colorectal polyps can be categorized into various types such as adenoma, serrated
adenoma polyp, hyperplastic polyp, and inflammatory polyp sessile [3]. Each category has
a different level of risk of developing into CC [4]. Inflammatory and hyperplastic polyps
have the lowest risk of developing into CC, while adenoma and serrated adenoma polyps
have a high risk of developing into CC. Detection at the early stage is a very crucial task that
is carried out by experienced gastroenterologists through colonoscopy [5]. Even though
colonoscopy is very effective, it comes with its own limitations. In many cases, polyps
can be missed by professionals due to technical or professional errors. This can be due
to several factors such as quick scanning through the affected area, polyps not appearing
within the visual field, or the polyp size and texture not being very specific [1]. Sometimes,
neoplastic polyps can be very hard to detect, even by experts. Another limitation is that it is

Gastroenterol. Insights 2022, 13, 264–274. https://doi.org/10.3390/gastroent13030027 https://www.mdpi.com/journal/gastroent

https://doi.org/10.3390/gastroent13030027
https://doi.org/10.3390/gastroent13030027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/gastroent
https://www.mdpi.com
https://orcid.org/0000-0002-9389-1425
https://orcid.org/0000-0003-2160-4703
https://doi.org/10.3390/gastroent13030027
https://www.mdpi.com/journal/gastroent
https://www.mdpi.com/article/10.3390/gastroent13030027?type=check_update&version=1


Gastroenterol. Insights 2022, 13 265

a time-consuming process for gastroenterologists and is also a labor-intensive procedure [3].
For these reasons, the cost of the examination is high in high-population countries [3]. In
this regard, a smart system can help practitioners reduce the polyp miss rate and thus
can further reduce the severity of colorectal cancer. To be more specific, implementing an
intelligent segmentation system that can segment the specific polyp region within an image
will definitely increase the effectiveness of detecting polyps.
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Figure 1. Chart showing the incidences of colorectum cancer worldwide.

The main challenge in the case of region-of-interest extraction in polyps is that the
number, size, and shape of polyps vary widely [6]. This can be well visualized in Figure 2 [7].
To handle this, an efficient segmentation network is required to segment each type of
polyp in an image. Another point is that, in the colonoscopy polyp images, there can be
some artifacts such as a green or black patch signifying the placement of the colonoscope
inside the body, specularity (white patch or spots due to reflection of light) [8], as well as
image contrast [9]. This fact motivated the authors to take up the challenge of efficiently
segmenting the polyp region in colonoscopy images by implementing various image-
processing techniques to remove these artifacts and by designing an intelligent deep
learning model based on U-Net [10].
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Figure 2. Sample of polyp images along with their masks showing the difference in number, shape,
and size of polyps. The first and third images show the original image, while the second and fourth
images show the corresponding ground truths provided in the Kvasir-SEG [7] dataset.

1.2. Prior Work

There are several studies available in the literature that show the automatic segmen-
tation of polyp. These methodologies can be broadly divided into two categories. The
first approach is based on implementing machine learning techniques that use the hand-
crafted feature for segmentation. The second approach is based on using deep learning
techniques for polyp segmentation. Here, a summarized review is presented for previous
work on polyp detection and segmentation. Yao and Summers [11] proposed a fuzzy
c-mean clustering technique for segregating the polyp region using computed tomography
colonography images. The fuzzy c-mean was followed by adaptive deformable models
for polyp segmentation. Sánchez-González et al. [12] proposed a system to segment the
polyp by considering features such as the shape, color, region, and curvature of the edges
of the polyps. Yuan et al. [13] proposed automatic detection of polyps using colonoscopy
videos. They considered using sparse autoencoders to extract super-pixel features along
with various saliency techniques to segment polyp areas.
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The authors in [14] designed and implemented two variants of a fully convolution neu-
ral network for Gastrointestinal Image ANAlysis (GIANA) polyp segmentation. Baldeon-
Calisto and Lai-Yuen [15] proposed a multi-objective adaptive residual U-Net for the
segmentation of medical images that can adapt to any new dataset while reducing the
network size. Tomar et al. [16] designed a novel network dual decoder attention network
experimented on the Kvasir-SEG [7] dataset and validated on an unseen dataset. The
network achieved a dice coefficient of 0.7874, a mean intersection of union (mIoU) of
0.7010, a recall of 0.7987, and a precision of 0.8577. Zhang et al. [17] proposed a fused
network for segmentation combining transformers and convolutional neural networks
(CNNs) in a parallel way known as TransFuse as well as a BiFusion module that compe-
tently combines multi-level features from both branches. Zhang et al. [18] proposed an
adaptive context selection-based encoder–decoder model for polyp segmentation using
the Kvasir-seg and EndoScene datasets. The network comprises different modules such as
local context attention, a global context module, and an adaptive selection module.

The authors in [19] designed a CNN named HarDNet-MSEG for the segmentation of
polyps using five different datasets, one of which was the Kvasir-SEG polyp dataset, and for
this data, the model delivered a mean dice score of 0.904 for 86.7 fps. An encoder–decoder
module-dependent deep neural network framework was proposed by Mahmud et al. [20]
for polyp segmentation using four different datasets. The network was named PolypSegNet
and aims to handle various issues of traditional models. The authors in [6] benchmarked
various state-of-the-art techniques using the Kvasir-SEG dataset on ColonSegNet for polyp
detection, localization, and segmentation. The model achieved a competitive dice coefficient
of 0.8206 and a best average speed of 182.38 frames per second for the segmentation task
using 512 × 512 images. The network was implemented using PyTorch, and the model was
trained using NVIDIA Quadro RTX 6000 hardware. The authors in [6] did not consider any
image pre-processing techniques to enhance the data. As stated earlier, colonoscopy images
can have some issues such as specularity [8], saturation, contrast, and a few others for
which some pre-processing steps can be incorporated. Additionally, the hyperparameters
of the deep network were not tuned in [6].

1.3. Major Contribution

The above-mentioned literature review provides a detailed analysis of related re-
cent approaches proposed for polyp segmentation. The major outcomes, challenges,
and research gaps are clearly highlighted and discussed. In order to deal with the
above-mentioned challenges, this study proposed a new model comprising an image
pre-processing unit for handling image issues and a deep learning-based network for
polyp segmentation.

The main contribution of this work can be stated as follows.

• An image pre-processing module that pre-processes the input image in three general
steps was designed. In the first step, the image was resized and then a coherent
transport module was used to remove specularity in the image. The final step included
the contrast enhancement module, which used the contrast limited adaptive histogram
equalization (CLAHE) technique to enhance the image.

• A U-Net model (UPolySeg) was designed from scratch by implementing some ad-
vanced modules within the architecture for segmentation of the polyp using the
Kvasir-SEG dataset.

• The hyperparameters for the UPolySeg were selected after extensive experimental work.
• To justify the effectiveness of the UPolySeg, it was compared with a similar model,

ColonSegNet, which was designed for the segmentation of polyps.

The authors hypothesize that handling the specularity and contrast issue of colonoscopy
images through coherence transport and CLAHE, respectively, will help the segmentation
network segment out each polyp more effectively. Again, improving the U-Net structure
by applying advanced processing parameters and tuning the hyperparameters can help
the network accomplish necessary tasks more accurately.
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2. Materials and Methods

The authors designed a U-Net [10]-based polyp segmentation (UPolySeg) framework
using the publicly available Kvasir-SEG dataset. Details about the dataset and the tech-
niques used in this work are described in this section. The complete framework of the
proposed model is illustrated in Figure 3.
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2.1. Dataset

There are various datasets available [20], such as CVC-ClinicDB [21], ETIS-Larib [22],
Endoscene [23], CVC-ColonDB [24], and Kvasir-SEG, that consist of different polyp images
along with their ground truths. This study was carried out using the Kvasir-SEG dataset.
The dataset consists of two different folders, one with the polyp images and another
with the corresponding ground truth of the original polyp images. Each of these folders
have 1000 images of the polyps and the ground truth mask images. The dataset also has a
JavaScript Object Notation (JSON) file that consists of bounding boxes for the corresponding
polyp images. The mask of the polyp region of the original polyp images was created
using the Labelbox tool. The margin of polyp regions was manually constructed under the
supervision of an engineer and a medical professional. The final annotation of the polyp
mask was later confirmed by experienced gastroenterologists. Out of these 1000 images,
900 images were used for training and 100 were used for testing.

2.2. Image Pre-Processing

In this work, the dataset used was the publicly available Kvasir-SEG dataset consisting
of colorectal polyp images captured through colonoscopy. In general, the images can be
of different sizes and can have some artifacts or noise, affecting the performance of any
classification or segmentation model. Then, image pre-processing was performed. In the
image pre-processing process, the first step was resizing the image. As each image in the
dataset was of varying sizes, the images were resized to 416 × 416 pixels. This size was
chosen after an experimental analysis was performed; higher dimension images increased
the execution time as well as the memory required. The next two steps are explained in
detail in this section.

2.2.1. Specular Reflection and Patch

To remove the image artifacts, the authors used the inpainting method. One inpaint-
ing technique is the partial differential equation (PDE)-based coherence transport (CT)
technique, which is a pixel-based method. CT is an efficient PDE technique that uses a
first-order PDE, so iterates through each pixel only once [25]. The first step is to find a
binary mask of the image using an image segmenter, where the nonzero pixels in the mask
represent the region to be filled up. CT inpaints the pixels by sequentially traversing the
particular pixels beginning from the boundary and moving towards the interior. The pixels
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are ordered by evaluating the Euclidean distance of the pixel to the image boundary. Each
ordered pixel is inpainted according to Equation (1).

wi
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)
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∑x∈N<
ε, i (pj)

u
(

pj, x
)
wi (x)
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ε, i (pj)
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where wi gives the weight value of any given pixel; pj represents ordered pixels to be
inpainted; m signifies the total number of pixels to be inpainted; u

(
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)
is a non-negative

weight function; and N<
ε, i

(
pj
)

is a space that contains original or previously inpainted
pixels, which is given by Equation (2).
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(
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where αi contains the pixels outside the inpainting area.

2.2.2. Contrast

To enhance the quality of the colonoscopy images, the contrast limited adaptive
histogram equalization (CLAHE) technique was implemented as it is the most popular
technique used for medical image enhancement [26]. The whole process of CLAHE is
performed in two broad steps. In the first step, the original image is divided into mul-
tiple non-overlapping areas of almost the same size. The individual region is evaluated.
After the histogram is evaluated, each region is redistributed such that the height of the
histogram does not exceed the clip limit. The clip limit is set by the value α and is given
by Equation (3).

α =
RC
N

(
1 +

β

100
(Slmax − 1)

)
(3)

where α represents the clip limit; RC represents the pixel value in each area; N is the
number of grayscales; β represents the clip factor, which ranges from 0 to 100; and Slmax is
the maximum allowable slope. In this work, the R and C values are taken to be 8, and the
clip limit is set to 0.002. Figure 4 illustrates a sample image after each pre-processing step.
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2.3. Deep Learning for Image Segmentation

In this work, the UPolySeg model was designed based on the U-Net [10] architecture.
U-Net is a very popular deep learning network specially designed for medical image
segmentation and performs better than other architectures [27]. The detailed deep learning
architecture of UPolySeg is illustrated in Figure 5. The main module is the encoder–decoder
connected in a U-shaped structure. Each encoder–decoder in the same layer is linked for
feature concatenation. The proposed UPolySeg model has three levels of encoder–decoders.
Each of the encoders in the contracting path consists of a 3 × 3 convolution followed by a
leaky rectified linear unit (LReLU). Each contracting module is followed by a 2 × 2 max
pooling layer for downsampling. Again, each module of the decoder in the expanding path
starts with 2 × 2 transposed convolutions for upsampling. Then, 3 × 3 convolutions are
followed by LReLU with 2 × 2 max pooling. The output of the last decoder module is sent
to 1 × 1 convolution layers. A softmax activation unit is used for evaluating the probability
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of each pixel. Finally, a pixel classification unit with dice loss is used to generate the binary
mask of the image.
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As there is a class imbalance in the segmentation task, dice loss helps improve the
condition. In this network, the convolution used is the dilated convolutions with various
dilation factors [28]. Dilated convolutions are used as it does not increase the number of
parameters but expands the area of the receptive field. The dilation factor controls the
area of the receptive field. Again, LReLU, which is an advanced version of ReLU, is used.
LReLU is represented by g(y) = max(0.01 ∗ y, y), where y is an input value. The main
significance of LReLU is that it always generates an output value for both negative and
positive input data. Therefore, it helps eliminate dead neurons in the network.

2.4. Performance Indicators

The network was evaluated using various parameters [6], such as global accuracy
(GA), dice coefficient (DC), intersection over union (IoU), recall (R), and precision (P). The
UPolySeg model was trained using different hyper parameters. Here, the global accuracy
represents the proportion of correct predictions. The global accuracy is calculated using
Equation (4). The intersection over union, also known as the Jaccard index, shows the
proportion of overlap between the predicted value and the ground truth mask (represented
in Equation (5)). The dice coefficient is quite similar to the IoU, but it double counts
the intersection, as shown in Equation (6). Precision signifies the purity of a positive
detection compared with the ground truth, whereas recall signifies the completeness of
a positive detection compared with ground truth. Precision and recall can be evaluated
using Equation (7) and Equation (8), respectively. Each of the parameters was evaluated
by taking into account the true-positive (Tp), true-negative (Tn), false-positive (Fp), and
false-negative (Fn) rates.

GA =
Tp + Tn

Tp + Tn + Fp + Fn
(4)

IoU =
Tp

Tp + Fp + Fn
(5)
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DC =
2·Tp

2·Tp + Fp + Fn
(6)

P =
Tp

Tp + Fp
(7)

R =
Tp

Tp + Fn
(8)

3. Results

The proposed UPolySeg model was trained on a system with Intel Core 2.60 GHz i7
CPU running Windows 10 with 16 GB RAM, NVIDIA GeForce GTX 1650 GPU. All of the
experiments were performed using MATLAB version 2020.

The hyperparameters were set after performing experimental work in exactly five
different sets of parameters. Table 1 presents the training accuracy (TA) for different
parameter sets. Here, the optimizer used was stochastic gradient descent with momentum
(SGDM), the learning rate (LR) was set to 0.0001, L2regularization (L2reg) was 0.005,
momentum was 0.9, and the network was trained for 50 epochs. As the network was stable
and achieved an accuracy of 97.66% for the training set (Table 1), training was performed
for 50 epochs. The evaluated performance measures were compared with the performance
value of ColonSegNet [6].

Table 1. Training accuracy for different parameter sets.

LR L2reg Momentum Epoch TA

0.0001 - - 20 85.23%

0.0001 - - 40 87.82%

0.0001 0.001 0.5 40 90.87%

0.0001 0.005 0.5 40 93.02%

0.0001 0.005 0.9 50 97.66%

Figure 6 illustrates an overlay of the final segmented image along with the ground
truth image for the best case. Here, the IoU obtained was 0.98, whereas the worst-case IoU
achieved 0.8. Figure 7 illustrates an overlay of the final segmented image along with ground
truth image for the worst case. Table 2 presents the calculated values of the evaluation
parameters for UPolySeg compared with ColonSegNet. It is observed from the evaluation
matrix (Table 2) that the UPolySeg model performed better than ColonSegNet. The global
accuracy of UPolySeg was 96.77%, DC was 96.86%, IoU was 87.91%, recall was 95.57%, and
precision was 92.29%.
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4. Discussion

In this work, the authors designed a framework for colonoscopy polyp image pre-
processing along with polyp segmentation. Various challenges from ColonSegNet were
addressed in this work. Handling the artifacts present in medical images along with
incorporating various advanced options in UPolySeg helped improve the performance of
the segmentation task. In the pre-processing stage, various techniques such as coherence
transport and CLAHE were implemented. UPolySeg, a segmentation network that gives a
better performance than a prior work such as ColonSegNet, was proposed. Here, dilated
convolution was used to increase the area of the receptive field and LReLU helped remove
dead neurons in the network to enhance the efficiency of the network. The proposed
model obtained a global accuracy of 96.77%, a DC of 96.86%, an IoU of 87.91%, a recall of
95.57%, and a precision of 92.29%, whereas the values given by ColonSegNet were 94.93%
overall accuracy, 82.06% DC, 72.39% IoU, 85.97% recall, and 84.35% precision. These results
show an improvement of 1.93% in accuracy obtained by UPolySeg. The authors conclude
that enhancing the input image by applying coherence transport and CLAHE before
training, implementing various advanced parameters in the deep network, and tuning the
hyperparameters of the network helped UPolySeg obtain a better performance. It is to
be noted that the hardware environment and the hyperparameters used in ColonSegNet
are different compared with that of this work of art. Therefore, this comparison could be
conducted because the dataset is the same and the approach is quite similar. The deep
learning model could be deployed to assist gastroenterologists and can help reduce the
adenoma miss rate and detect the disease at the early stage to reduce the death rate due to
colorectal cancer.

Even though the network has shown a good performance, there is still room for further
exploration. In this work, the authors implemented image pre-processing techniques and
tried to improve the U-Net model by applying various advanced units in the training
network. Another aspect of the research that can be explored is an ablation study to
determine the improvement in efficiency at each step of the study. Here, the authors have
used image processing for handling the specularity and contrast of the colonoscopy images.
In medical images, there can be other issues (such as noise and distortion) that need to
be resolved for better classification performance. Another limitation is that the authors
have focused on enhancing only the U-Net architecture for the segmentation of polyps. It
would be more effective if several other deep networks could be designed and trained for
such a purpose along with a comparative analysis. This will help researchers understand
the strengths and weaknesses of various networks used for polyp segmentation. Some
advanced optimization techniques can be implemented to tune the hyperparameters of
the network. This work is carried out by taking the polyp images from a single source:
the Kvasir-SEG database. In this regard, more sophisticated retrospective studies can be
carried out by combining different datasets available for public research. The study can
even be converted into a prospective study by taking into account a case study of patients
directly from a hospital. The research scope remains open for researchers working in this
domain to develop a more efficient system for the segmentation of polyps.
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5. Conclusions

Even though colonoscopy can help obtain a detailed visual of an internal portion
of the colon and is better at determining the presence of a polyp, the adenoma miss
rate is still high. This can be reduced by considering deep learning and finding polyps
by segmenting colonoscopy images. This could help professionals even determine the
severity of the disease by observing the size of the polyp that is segmented out. In the
literature, various state-of-the-art work has been carried out on the segmentation of polyps
but few challenges have yet to be handled. The proposed framework was designed by
keeping in mind unresolved challenges in ColonSegNet. UPolySeg has a pre-processing
module for enhancing the image contrast and for removing specularity in coloscopy images.
Additionally, some advanced options are selected and designed in the network based
on the U-Net architecture. The pre-processing unit along with UPolySeg increased the
performance by 1.93% compared with other work, but there is still room for improvement.
Detecting different categories of polyps using deep learning techniques can be very helpful
for experts to determine the level of risk for colorectal cancer. Other segmentation networks
can also be implemented to evaluate the segmentation task on the Kvasir-SEG dataset or a
different dataset. Fine-tuning of the network can be performed using various optimization
techniques, which gives a scope for future research.
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DC Dice Coefficient
R Recall
P Precision
TA Training Accuracy
SGDM Stochastic Gradient Descent with Momentum
LR Learning Rate
L2reg L2regularization

https://datasets.simula.no/kvasir-seg/


Gastroenterol. Insights 2022, 13 273

References
1. Jha, D.; Smedsrud, P.H.; Johansen, D.; de Lange, T.; Johansen, H.D.; Halvorsen, P.; Riegler, M.A. A Comprehensive Study on

Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation. IEEE J. Biomed. Health
Inform. 2021, 25, 2029–2040. [CrossRef] [PubMed]

2. Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [CrossRef] [PubMed]
3. Xu, Y.; Ding, W.; Wang, Y.; Tan, Y.; Xi, C.; Ye, N.; Wu, D.; Xu, X. Comparison of diagnostic performance between convolutional

neural networks and human endoscopists for diagnosis of colorectal polyp: A systematic review and meta-analysis. PLoS ONE
2021, 16, e0246892. [CrossRef] [PubMed]

4. Mahmud, T.; Paul, B.; Fattah, S.A. PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation
from colonoscopy images. Comput. Biol. Med. 2020, 128, 104119. [CrossRef] [PubMed]

5. Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Johansen, D.; De Lange, T.; Halvorsen, P.; Johansen, H.D. ResUNet++: An Advanced
Architecture for Medical Image Segmentation. In Proceeding of the IEEE International Symposium on Multimedia (ISM), San
Diego, CA, USA, 9–11 December 2019; pp. 225–2255. [CrossRef]

6. Jha, D.; Ali, S.; Tomar, N.K.; Johansen, H.D.; Johansen, D.; Rittscher, J.; Riegler, M.A.; Halvorsen, P. Real-Time Polyp Detection,
Localization and Segmentation in Colonoscopy Using Deep Learning. IEEE Access 2021, 9, 40496–40510. [CrossRef] [PubMed]

7. Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Halvorsen, P.; Lange, T.D.; Johansen, D.; Johansen, H.D. Kvasir-seg: A segmented polyp
dataset. In International Conference on Multimedia Modeling; Springer: Cham, Switzerland, 2020; pp. 451–462.

8. Kayser, M.; Soberanis-Mukul, R.D.; Zvereva, A.M.; Klare, P.; Navab, N.; Albarqouni, S. Understanding the effects of artifacts on
automated polyp detection and incorporating that knowledge via learning without forgetting. arXiv 2020, arXiv:2002.02883.

9. Mohapatra, S.; Nayak, J.; Mishra, M.; Pati, G.K.; Naik, B.; Swarnkar, T. Wavelet Transform and Deep Convolutional Neural
Network-Based Smart Healthcare System for Gastrointestinal Disease Detection. Interdiscip. Sci. Comput. Life Sci. 2021, 13, 212–228.
[CrossRef] [PubMed]

10. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference
on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241.

11. Yao, J.; Summers, R.M. Adaptive deformable model for colonic polyp segmentation and measurement on CT colonography. Med.
Phys. 2007, 34, 1655–1664. [CrossRef] [PubMed]

12. Sánchez-González, A.; García-Zapirain, B.; Sierra-Sosa, D.; Elmaghraby, A. Automatized colon polyp segmentation via contour
region analysis. Comput. Biol. Med. 2018, 100, 152–164. [CrossRef] [PubMed]

13. Yuan, Y.; Li, D.; Meng, M.Q.H. Automatic polyp detection via a novel unified bottom-up and top-down saliency approach. IEEE J.
Biomed. Health Inform. 2017, 22, 1250–1260. [CrossRef] [PubMed]

14. Guo, Y.B.; Matuszewski, B. Giana polyp segmentation with fully convolutional dilation neural networks. In Proceedings of the
14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Prague,
Czech Republic, 25–27 February 2019; SciTePress-Science and Technology Publications: Setubal, Portugal, 2019; pp. 632–641.

15. Baldeon-Calisto, M.; Lai-Yuen, S.K. AdaResU-Net: Multiobjective adaptive convolutional neural network for medical image
segmentation. Neurocomputing 2020, 392, 325–340. [CrossRef]

16. Tomar, N.K.; Jha, D.; Ali, S.; Johansen, H.D.; Johansen, D.; Riegler, M.A.; Halvorsen, P. DDANet: Dual Decoder Attention
Network for Automatic Polyp Segmentation. In International Conference on Pattern Recognition; Springer: Cham, Switzerland,
2021; pp. 307–314. [CrossRef]

17. Zhang, Y.; Liu, H.; Hu, Q. Transfuse: Fusing transformers and CNNs for medical image segmentation. In International Conference
on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2021; pp. 14–24.

18. Zhang, R.; Li, G.; Li, Z.; Cui, S.; Qian, D.; Yu, Y. Adaptive context selection for polyp segmentation. In International Conference on
Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2020; pp. 253–262.

19. Huang, C.H.; Wu, H.Y.; Lin, Y.L. Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves
over 0.9 mean dice and 86 fps. arXiv 2021, arXiv:2101.07172.

20. Patel, K.; Bur, A.M.; Wang, G. Enhanced u-net: A feature enhancement network for polyp segmentation. In Proceedings of the
2021 18th Conference on Robots and Vision (CRV), Burnaby, BC, Canada, 26–28 May 2021; pp. 181–188.

21. Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C.; Vilariño, F. WM-DOVA maps for accurate polyp
highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 2015, 43, 99–111.
[CrossRef] [PubMed]

22. Silva, J.; Histace, A.; Romain, O.; Dray, X.; Granado, B. Toward embedded detection of polyps in WCE images for early diagnosis
of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 283–293. [CrossRef] [PubMed]

23. Vázquez, D.; Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, M.G.; López, A.M.; Romero, A.; Drozdzal, M.; Courville, A. A
Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images. J. Healthc. Eng. 2017, 2017, 4037190. [CrossRef]
[PubMed]

24. Bernal, J.; Sánchez, J.; Vilariño, F. Towards automatic polyp detection with a polyp appearance model. Pattern Recognit. 2012,
45, 3166–3182. [CrossRef]

25. März, T. A well-posedness framework for inpainting based on coherence transport. Found. Comput. Math. 2015, 15, 973–1033.
[CrossRef]

http://doi.org/10.1109/JBHI.2021.3049304
http://www.ncbi.nlm.nih.gov/pubmed/33400658
http://doi.org/10.1016/j.tranon.2021.101174
http://www.ncbi.nlm.nih.gov/pubmed/34243011
http://doi.org/10.1371/journal.pone.0246892
http://www.ncbi.nlm.nih.gov/pubmed/33592048
http://doi.org/10.1016/j.compbiomed.2020.104119
http://www.ncbi.nlm.nih.gov/pubmed/33254083
http://doi.org/10.1109/ism46123.2019.00049
http://doi.org/10.1109/ACCESS.2021.3063716
http://www.ncbi.nlm.nih.gov/pubmed/33747684
http://doi.org/10.1007/s12539-021-00417-8
http://www.ncbi.nlm.nih.gov/pubmed/33566337
http://doi.org/10.1118/1.2717411
http://www.ncbi.nlm.nih.gov/pubmed/17555247
http://doi.org/10.1016/j.compbiomed.2018.07.002
http://www.ncbi.nlm.nih.gov/pubmed/30015012
http://doi.org/10.1109/JBHI.2017.2734329
http://www.ncbi.nlm.nih.gov/pubmed/28783650
http://doi.org/10.1016/j.neucom.2019.01.110
http://doi.org/10.1007/978-3-030-68793-9_23
http://doi.org/10.1016/j.compmedimag.2015.02.007
http://www.ncbi.nlm.nih.gov/pubmed/25863519
http://doi.org/10.1007/s11548-013-0926-3
http://www.ncbi.nlm.nih.gov/pubmed/24037504
http://doi.org/10.1155/2017/4037190
http://www.ncbi.nlm.nih.gov/pubmed/29065595
http://doi.org/10.1016/j.patcog.2012.03.002
http://doi.org/10.1007/s10208-014-9199-7


Gastroenterol. Insights 2022, 13 274

26. Koonsanit, K.; Thongvigitmanee, S.; Pongnapang, N.; Thajchayapong, P. Image enhancement on digital X-ray images using
n-clahe. In Proceedings of the 2017 10th Biomedical Engineering International Conference (BMEiCON), Hokkaido, Japan, 31
August–2 September 2017; pp. 1–4.

27. Rundo, L.; Han, C.; Zhang, J.; Hataya, R.; Nagano, Y.; Militello, C.; Ferretti, C.; Nobile, M.S.; Tangherloni, A.; Gilardi, M.C.; et al.
CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study. In Neural Approaches to Dynamics
of Signal Exchanges; Springer: Singapore, 2020; pp. 269–280.

28. Zhang, J.; Lu, C.; Wang, J.; Wang, L.; Yue, X.-G. Concrete Cracks Detection Based on FCN with Dilated Convolution. Appl. Sci.
2019, 9, 2686. [CrossRef]

http://doi.org/10.3390/app9132686

	Introduction 
	Motivation and Incitement 
	Prior Work 
	Major Contribution 

	Materials and Methods 
	Dataset 
	Image Pre-Processing 
	Specular Reflection and Patch 
	Contrast 

	Deep Learning for Image Segmentation 
	Performance Indicators 

	Results 
	Discussion 
	Conclusions 
	References

