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Abstract: Background: The induced repolarization of tumor growth-promoting M2 macrophages
into tumor growth-inhibiting M1 macrophages is a matter of intensive research and is expected to
lead towards a novel targetable approach in HCC therapy. Methods: Differentially expressed M2
macrophage-related genes between normal and tumor samples with high and low M2 macrophage
infiltration in the Gene Expression Omnibus (GEO) and TCGA datasets were identified. A risk score
was constructed based on univariate Cox analysis and LASSO-penalized Cox regression analysis.
The relationship between the different risk score groups and clinical pathological characteristics as
well as immune infiltration characteristics was studied. Subsequently, a nomogram was constructed
to predict patients’ prognosis. Western blot and RT-qPCR were carried out to validate the results in
human HCC samples. Results: Increased M2 macrophage infiltration was associated with a shorter
overall survival (OS). Four important M2 macrophage-related genes (SLC22A1, CPS1, SLC10A1,
CYP2C9) were discovered to be strongly correlated with OS and M2 macrophage infiltration. A
nomogram incorporating the signature and tumor stage was developed for final clinical translation.
Conclusions: SLC22A1, CPS1, SLC10A1 and CYP2C9 genes are associated with tumor-promoting
M2 macrophage infiltration and might be potential targets for macrophage-related immunotherapy
in HCC patients. Further, this four-gene signature is a potential tool for predicting prognosis in
these patients.

Keywords: hepatocellular carcinoma; M2 macrophages; gene expression; tumor immune
microenvironment; gene signature; oncological prognosis

1. Introduction

Hepatocellular carcinoma (HCC) is a major health burden and the most common
primary liver cancer [1]. From a global perspective, HCC ranks sixth in its incidence among
cancers and is the third-most-common cause of cancer-related mortality [2]. Because of
the late diagnosis and high post-therapeutic recurrence rates, HCC still has a poor overall
prognosis [3]. Effective biomarkers and therapeutic strategies might therefore notably
improve outcomes in these patients. As a result, research on useful biomarkers and the
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development of innovative predictive models and novel therapeutic strategies for HCC
has been in the focus of the scientific community for more than a decade.

It has been proven that the tumor microenvironment (TME) significantly affects the
body’s immune response and thus is essential in cancer progression and tumorigenesis—
for example, by promoting tumor cell survival, proliferation and metastasis [4]. As HCC
is frequently accompanied by chronic inflammation, immune cells (e.g., macrophages, T
lymphocytes, etc.) interact with cancer cells in both pro- and anti-tumor activity by releasing
cytokines or directly killing target cells [5]. As a result, HCC immunotherapy has been
investigated previously [6]. Immune checkpoint inhibitors (ICIs), including durvalumab,
atezolizumab, pembrolizumab, nivolumab, etc., have been recently studied; however,
most trials investigating single-agent ICIs have shown disappointing results. In contrast,
immune-based combinations have been more encouraging but warrant further research
in terms of the mechanistical basis of the success of combination therapies [7]. Tumor-
associated macrophages (TAMs), macrophages linked to a specific clinical environment,
are one of the most significant immune cells in the tumor microenvironment [8]. It has
been demonstrated that macrophages can differentiate into type M1 after stimulation with
lipopolysaccharide (LPS) and interferon-gamma (IFN-γ; classical activation pathway), or
type M2 after stimulation with IL-4 (selective activation pathway) [9]. M2 TAMs promote
metastasis and tumor growth by various cytokines (e.g., TGF-β, IL-10, IL-8, and others).
Subsequently, M2 TAMs stimulate angiogenesis, suppress anticancer immunity and induce
epithelial-mesenchymal transition (EMT) [10–12].

M2 macrophages have become a novel target for anti-tumor therapy due to their
crucial role in tumor growth and metastasis [13]. Repolarizing M2 into M1 TAMs with
anticancer activity—by removing variables that facilitate M2 TAM activation or reversing
its active phenotype through exogenous stimuli—is currently being investigated, with
the intention to restore macrophage cytotoxic function, reduce (lymph) angiogenesis, and
prevent tumor growth and invasion as well as metastasis. However, TAM polarization and
the associated regulatory processes have not been fully unraveled yet.

Therefore, we analyzed multigene expression datasets of HCC patients to identify
clinically useful M2 macrophage-related gene biomarkers that might be used to predict
prognosis and might also be targets for the repolarization of M2 TAMs into M1 TAMs. In
addition, we aimed to create a biomarker-based prognostic signature to predict oncological
outcomes in HCC patients.

2. Materials and Methods
2.1. Data Collection and Human Samples

We collected the mRNA sequencing data and clinical data of HCC patients from
three datasets, including the TCGA training cohort (https://immport.niaid.nih.gov, ac-
cessed on 15 August 2022), the International Cancer Genome Consortium (ICGC) val-
idation cohort (https://dcc.icgc.org, accessed on 15 August 2022), and the GSE76427
validation cohort (https://www.ncbi.nlm.nih.gov/geo/, accessed on 15 August 2022). A
further six RNA-Seq datasets without clinical data, e.g., GSE145520, GSE25097, GSE39791,
GSE57957, GSE54236 and GSE36376, were included in the dataset. The sequencing data
of these databases were all based on the “Illumina” platform (San Diego, CA, USA). Basic
information regarding the databases is shown in Table S1. All human HCC tissue sam-
ples used in this study were obtained from patients undergoing surgical resection at Qilu
Hospital (Qingdao), Cheeloo College of Medicine, Shandong University. The study was
approved by the medical ethics committee of Qilu Hospital (Qingdao), Cheeloo College of
Medicine, Shandong University (ID: KYLL-KS-2022130), and was conducted in accordance
with the Declaration of Helsinki. Informed consent was acquired from each patient. The
samples were immediately snap-frozen after resection and stored at −80 ◦C.

https://immport.niaid.nih.gov
https://dcc.icgc.org
https://www.ncbi.nlm.nih.gov/geo/
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2.2. Identification and Enrichment of DEGs

We used the “Limma” function [14] in R (R Core Team, Vienna, Austria) to identify
differentially expressed genes (DEGs) between HCC and normal tissues, between high-
and low-M2 macrophage groups, and between high- and low-risk-score groups. DEGs
were defined as those showing |log2(fold change) | > 1 and p < 0.05. After converting
DEG identifiers using the “org.Hs.eg.db” program (version 3.19) within R, we analyzed
DEGs for functional enrichment based on GO (Gene Ontology) [15] and the KEGG (Kyoto
Encyclopedia of Genes and Genomes) [16] using the “clusterProfiler” package.

2.3. Construction and Verification of Prognostic Signature

We integrated univariate Cox regression and Kaplan–Meier analysis (patients were
subclassified into high and low expression groups considering the optimal cutoff gene
expression level) to identify M2 macrophage-related genes associated with prognosis. The
least absolute shrinkage and selection operator (LASSO) [17] method based on the “glmnet”
R package minimized the scope of prognostic M2 macrophage-related genes in order
to construct a prognostic model. We subsampled the dataset 1000 times and chose the
predictive genes over 900 times while undertaking the LASSO-penalized Cox analysis. A
penalty proportionate to their size was used to decrease the regression coefficient, resulting
in the detection of a subset of important genes. Genes with a regression coefficient of 0 were
excluded. Following this, risk scores were calculated by multiplying gene expression
by a linear mixture of regression coefficients, derived using multivariate Cox regression,
as follows:

Risk score = i × Xi

Patients were assigned to high-risk and low-risk groups according to the median risk
score. The “survival” package was used to perform a Kaplan–Meier analysis to assess
overall survival between high- and low-risk groups. The R software package “timeROC”
was used to create the receiver operating characteristic (ROC) curve to analyze the prog-
nostic efficacy of the risk score for 1, 2, and 3 years of follow-up. Furthermore, we used the
same model and same coefficients as those in the TCGA dataset in the ICGC cohort and
GSE72647 cohort to determine the robustness of the signature.

2.4. Risk Score, Clinical Characteristics, and Immune Infiltration

We investigated the relationships between risk score and clinicopathological factors
(gender, age, body mass index (BMI), prior malignancy, family cancer history, histolog-
ical grade, AJCC stage and vascular invasion). To investigate independent variables of
prognosis in the full dataset, univariate and multivariate Cox regression analyses were
performed to identify independent prognostic variables. In addition, we conducted an
internal validation of the prognostic model based on different clinical features of HCC
patients. The immune score between the high- and low-risk groups was explored by using
the ESTIMATE algorithm [18]. To assess the proportion of tumor-infiltrating lymphocytes
(TILs) in the TME, CIBERSORT [19] and ssGSEA [20] were performed to quantify and
qualify the levels of multiple immune cell types in the two groups. We also used heatmaps
to show the differential expression levels of immunostimulatory and immunoinhibitory
genes between the two groups.

2.5. Establishment of a Survival Prediction Nomogram

The “rms” R package was used to create a nomogram in the TCGA cohort, and
the calibration curve and ROC analysis were used to test the nomogram’s prognos-
tic performance. In addition, decision curve analysis was used to assess the nomo-
gram’s net clinical benefit. The ICGC cohort was later used to validate the nomogram’s
prognostic value.



Gastroenterol. Insights 2024, 15 767

2.6. Weighted Gene Co-Expression Network Analysis

Weighted gene co-expression network analysis (WGCNA) was performed on DEGs
identified between high- and low-risk group [21]. We chose six as the soft threshold (power)
to ensure that the constructed co-expression network approached scale-free distribution.
We calculated the modules’ correlation with the group, ESTIMATE score, immune score,
stromal score and tumor purity. Subsequently, we obtained the hub genes according to
the calculation of module membership (MM) and gene significance (GS). We then built a
protein–protein interaction (PPI) network using the STRING database and analyzed the
Spearman’s gene–gene and gene–ESTIMATE correlations [22].

2.7. The Human Protein Atlas

Data on the protein expression of the target genes identified in this study, collected
by the immunohistochemical analysis of pathological samples, were downloaded from
the Human Protein Atlas (https://www.proteinatlas.org/, accessed on 15 August 2024).
Staining intensity and patients’ information can be obtained online.

2.8. Western Blotting and Antibodies

Total proteins were extracted from the HCCs and normal tissues, and after protein
concentration was determined, a Western blot assay was performed. The primary antibod-
ies used were as follows: Carbamoyl-phosphate synthase 1 (CPS1) antibody (AFFINITY;
Cincinnati, OH, USA) (diluted at 1:1000), Solute carrier family 22 member 1 (SLC22A1)
antibody (AFFINITY; Cincinnati, OH, USA) (diluted at 1:1000), Cytochrome P450 family
2 subfamily C member 9 (CYP2C9) antibody (AFFINITY; Cincinnati, OH, USA) (diluted
at 1:1000), Solute carrier family 10 member 1 (SLC10A1) antibody (AFFINITY; Cincinnati,
OH, USA) (diluted at 1:1000) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
recombinant antibody (proteintech, AFFINITY; Cincinnati, OH, USA) (diluted at 1:1000)
at room temperature for 1 h. After washing three times with TBST for 5 min/wash, the
membrane was incubated with HRP-labeled mouse antirabbit IgG (AFFINITY; Cincinnati,
OH, USA) (diluted at 1:5000) as the secondary antibody for 1 h at room temperature. Finally,
the signal was detected by chemiluminescence.

2.9. Reverse Transcription Quantitative-Polymerase Chain Reaction

The same tissue samples were used to evaluate gene expression. Total RNA
was extracted from liver tissue and reverse-transcribed into complementary DNA.
Next, the relative mRNA expression of genes was normalized to beta-tubulin, and the
fold-change was evaluated using the 2−∆∆CT method. The primer sequences used for
quantitative real-time quantitative PCR (RT-qPCR) were obtained from the literature
and were as follows: CPS1 [23] forward 5′-CCCCGTCAATTAGACTATGACA-
3′, reverse 5′-CATTGTTGTCTGTGTCGATCTG-3′; CYP2C9 [24] forward 5′-
CTGGTTACCACTGCCACCTT-3′, reverse 5′-CTGGCCCAGCTTAGACGTAG-3′;
SLC10A1 [25] forward 5′-GACACCACTCTTGATTGCCACCTC-3′, reverse 5′-
GCGTCTGCACCGTCCATTGAG-3′; SL22A1 [26] forward 5′-GTG TGT AGA CCC CCT
GGC TA-3′, reverse 5′-GTG TAG CCA GCC ATC CAG TT-3′; and ACTB [27] forward
5′-CAGAGACGACAAGCACAACCCT-3′, reverse 5′-ATGTGGCTCCTGTCTTGCATGC-3′.

2.10. Statistical Analysis

Statistical analysis was conducted using R software (version 4.1.1). The Wilcox test
was employed to contrast the successive variates between the two groups of independent
samples. The Chi-square test was performed to compare the differences in clinical features.
Kaplan–Meier analysis with a log-rank test was used to compare the OS between different
subgroups, to identify independent risk factors for overall survival. Univariate and multi-
variate Cox regression analyses were performed to adjust covariates. A p-value < 0.05 was
considered statistically significant.

https://www.proteinatlas.org/
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3. Results
3.1. Analyses of the Immune Cell Infiltration and Prognostic Significance of M2 Macrophages

The clinical characteristics of patients with HCC in the training and validation sets
are provided in Table 1. We reviewed and summarized the generation and function of
M1/M2 macrophages and their role in immunotherapy (Figure 1A). In the TCGA cohort,
the infiltration of immune cells such as B cell-naive, monocytes, M2 macrophages, and
neutrophils was significantly higher in normal tissues compared to cancer tissues, whereas
the infiltration of M0 macrophages, activated NK cells, and Tregs was significantly higher in
the cancer group compared to the normal group (Figure 1B). Of note, M2 macrophages were
also the most-abundant immune cell type in the normal tissue, which can be explained
as M2 macrophages play a key role in all chronic liver diseases, such as non-alcoholic
fatty liver disease, alcoholic liver disease, liver fibrosis, and cirrhosis [28,29]. As HCC is
clinically accompanied by chronic liver disease in almost every case, this observation can be
explained. We further used median filtration and optimal cutoff (calculated by “survminer”
package in R) to divide HCC patients into high- and low-infiltration groups and discovered
that HCC patients with a high infiltration of M2 macrophages displayed worse prognoses
than those with low infiltration (p = 0.009, 0.006, respectively) (Figure 1C,D). We chose the
optimal cutoff grouping method for the following research.

Table 1. Clinicopathological characteristics of HCC patients.

Characteristics
Training Set Validation Set

TCGA-LICH ICGC-LIRI-JR GSE76427

Sample size * 363 240 115

Median OS (year) 1.63 (0.08–10.7) 2.14 (0.08–5.92) 1.16 (0.08–7.76)

Number of deaths 130 (35.8%) 42 (18.5%) 23 (20.0%)

Age (year)
≤65 227 (62.5%) 88 (38.8%) 65 (56.5%)
>65 136 (37.5%) 139 (61.2%) 50 (43.5%)

Gender
Male 245 (67.5%) 170 (70.8%) 93 (80.9%)

Female 118 (32.5%) 70 (29.2%) 22 (19.1%)

AJCC stage
Stage I–II 263 (77.6%) 138 (60.8%) 90 (78.9%)

Stage III–IV 76 (22.4%) 89 (39.2%) 24 (21.1%)

Histologic grade
G1–2 230 (64.2%) - -
G3–4 128 (35.8%) - -

Vascular invasion
Positive 205 (66.3%) - -

Negative 104 (33.7%) - -

Prior malignancy
Yes 34 (9.4%) 43 (17.9%) -
No 329 (90.6%) 197 (82.1%) -

Family cancer history
Yes 110 (35.1%) -
No 204 (64.9%) -

BCLC stage
0–A - - 78 (67.8%)
B–C - - 37 (32.2%)

* Sum of the frequency of some variables may not be equal to the total sample size due to the missing values.
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Figure 1. The immune infiltration landscape in HCC samples and survival analysis of M2 macro-
phages in TCGA cohort. (A) The generation, function and mechanisms of M1/M2 macrophages (B) 
The box plot of 22 types of immune cell infiltration abundances in cancer and normal groups. (C) 
The Kaplan–Meier survival analysis of the median value of M2 macrophages infiltration for HCC. 
(D) The optimal cutoff determined by the “survminer” package in R. (E) The Kaplan–Meier survival 
analysis of the optimal cut-off value of M2 macrophages infiltration for HCC. *** p < 0.001, * p < 0.05, 
ns not significant. 

Figure 1. The immune infiltration landscape in HCC samples and survival analysis of M2
macrophages in TCGA cohort. (A) The generation, function and mechanisms of M1/M2 macrophages
(B) The box plot of 22 types of immune cell infiltration abundances in cancer and normal groups.
(C) The Kaplan–Meier survival analysis of the median value of M2 macrophages infiltration for HCC.
(D) The optimal cutoff determined by the “survminer” package in R. (E) The Kaplan–Meier survival
analysis of the optimal cut-off value of M2 macrophages infiltration for HCC. *** p < 0.001, * p < 0.05,
ns not significant.

3.2. Identification of DEGs and Establishment of a Prognostic Risk Model

To determine DEGs between HCC and normal tissues, we integrated eight datasets,
including TCGA, GSE76427, GSE145520, GSE25097, GSE39791, GSE57957, GSE54236 and
GSE36376. More details of the datasets are presented in Table S1. Based on the prede-
fined screening criteria, 60 genes were found to be significantly differentially expressed
(Figure 2A). We also explored DEGs between high- and low-M2 macrophage group and
obtained 1997 M2 macrophage-related genes in total, for which heatmaps were plotted
(Figure 2B). Finally, we acquired 30 interaction M2 macrophage-related DEGs by using a
Venn plot (Figure 2C). Eighteen M2 macrophage-related DEGs were significantly correlated
with overall survival based on Cox univariate analysis in the TCGA training set (p < 0.05,
Figure 2D, Table S2). We then conducted a LASSO Cox analysis to further reduce prognostic
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M2 macrophage-related DEGs, and we filtered out four genes (SLC22A1, CPS1, SLC10A1
and CYP2C9; Table S3) to create the following risk score (Figure 2E,F): Risk score = SLC22A1
× −0.002596 + CPS1 × −0.004410 + SLC10A1 × −0.012437 + CYP2C9 × −0.066339.
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Figure 2. Identification of DEGs and establishment of prognostic risk model. (A) Sixty differential
expressed genes between HCC and normal tissues from eight public databases (B) The heatmap of
differential expressed genes between high- and low-M2 macrophage infiltration groups in TCGA
dataset. (C) The Venn plot of DEGs form (A,B). (D) The forest plot of prognostic M2 macrophage-
related DEGs identified by univariate Cox analysis. (E) LASSO coefficient profiles of the 18 genes in
the TCGA dataset. (F) Selection of the optimal parameter (lambda) in the LASSO model.

3.3. Validation of Risk Model

The risk scores were computed for each patient in the TCGA, ICGC and GSE76427
datasets (Table 1). Based on the risk score, patients were divided into low- and high-risk
groups based on the median cutoff (Figure 3A–C). Accordingly, patients with high risk
scores displayed shorter OS than those with low risk scores (PTCGA < 0.001, PICGC < 0.001,
PGSE76427 = 0.016; Figure 3D–F). The AUC of the TCGA cohort registered 0.79, 0.75, 0.70,
0.73 and 0.69 at 1, 2, 3, 4, and 5 years, respectively (Figure 3G), while the AUC of the ICGC
cohort was 0.70, 0.75, 0.74, and 0.75 at 1, 2, 3, and 4 years, respectively (Figure 3H). Similarly,
the GSE76427 cohort’s AUC values were 0.74, 0.76, 0.68, and 0.76 at 1, 2, 3, and 4 years,
respectively (Figure 3I).
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Figure 3. Validation of the four-gene signature in the TCGA, ICGC, and GSE76427 datasets.
(A–C) Risk-score distribution plots for the three datasets. In each plot, from top to bottom: dis-
tribution of riskscores (A), distribution of survival status (B), expression patterns of the four genes
(C). (D–F) K–M survival curves showing OS of patients in the high- and low-risk-score subgroups
across three datasets. (G–I) Time dependent ROC curves of the signature.
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In addition, we divided subsets of patients of the TCGA dataset into low- and high-risk
groups according to clinical characteristics, e.g., grouping by gender or age, and examined
the variations in OS of the different subsets (Figure S1A). The OS of low-risk individuals
was considerably greater than that of high-risk patients in the subgroups with male gender,
age > 60, age ≤ 60, no prior malignance, vascular invasion, no vascular invasion, BMI
> 24, BMI ≤ 24, T1/2 stage, T3/4 stage, tumor grade 1/2 and AJCC stage (Figure S1).
Furthermore, although there was no significant statistical difference, we discovered a
tendency for decreased OS in the high-risk group in patients with female gender, prior
malignancy, or 3/4 grade tumors (Figure S1). We used the Chi-square test to explore the
relationship between risk score and clinical features. In the TCGA cohort, a high risk score
was associated with advanced tumors (p = 0.025), vascular invasion (p = 0.016) and poor
tumor differentiation (p = 0.001) (Table 2). Moreover, univariable and multivariable Cox
regressive analyses of the gene signature and other clinicopathological variables in the
TCGA, ICGC and GSE76427 databases demonstrated that the risk score is independently
prognostic in each database (Figure 4A–C).

Table 2. Correlation of risk score with clinicopathological characteristics of HCC patients in
TCGA Cohort.

Characteristics
TCGA Cohort * p Value **

High Risk Score
(n = 181)

Low Risk Score
(n = 182)

Age (year)
0.432≤60 91 (50.2%) 82 (54.9%)

>60 90 (49.8%) 100 (45.1%)

Gender
<0.001Female 75 (41.4%) 43 (23.6%)

Male 106 (58.6%) 139 (76.4%)

AJCC stage
0.025Stage I–II 122 (72.2%) 141 (82.9%)

Stage III–Iv 47 (27.8%) 29 (17.1%)

Histologic grade
0.001G1-2 97 (54.5%) 129 (71.7%)

G3-4 81 (45.5%) 51 (28.2%)

T Stage
0.009T1/T2 125 (56.7%) 146 (72.8%)

T3/T4 56 (43.3%) 33 (27.2%)

Vascular invasion
0.016Positive 60 (40.8%) 44 (27.2%)

Negative 87 (59.2%) 118 (72.8%)

BMI (kg/m2)
0.011≤24 90 (54.2%) 66 (36.2%)

>24 76 (45.8%) 100 (63.8%)

Family cancer history
0.731Yes 52 (33.8%) 58 (26.3%)

No 102 (66.2%) 102 (63.7%)

Prior malignancy
0.377Yes 14 (2.3%) 20 (11.0%)

No 167 (97.7%) 162 (89.0%)
* Sum of the frequency of some variables may not be equal to the total sample size due to the missing values; **
The constituent ratio of variables between high- and low-risk groups was compared using the Pearson chi-square
test. Bold p values indicate statistical significance.
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tumor grading (C) and TNM stage (D). (E) Univariate and multivariate Cox analysis in ICGC cohort.
(F) Univariate and multivariate Cox analysis in GSE76427 cohort. Bold p values indicate statistical
significance.

3.4. Establishment and Evaluation of a Prognostic Risk Score-Based Nomogram

Based on the TCGA cohort, we developed a risk score-based nomogram to further
assess the feasibility of our risk model in forecasting patient outcomes. The nomogram
particularly includes the risk model and AJCC stage as these variables were independently
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associated with OS. Then, we applied it to forecast the 1-, 2-, and 3-year OS (Figure 5A).
The 3- and 5-year OS predictions under the nomogram and the actual probability matched
reasonably well, as seen by the calibration curve (Figure 5B). ROC curve analysis told
us that the nomogram could effectively predict OS (Figure 5C). We further conducted
a decision curve analysis to see if the net clinical advantage of the risk score or AJCC
stage alone could be increased when they were integrated into the nomogram. The results
showed that the nomogram demonstrated stronger prognostic value compared to clinical
features alone (Figure 5D). Moreover, the nomogram’s outstanding prediction accuracy
was likewise confirmed by the ICGC cohort (Figure 5E).
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(A) Development a nomogram for predicting the probability of 1-, 3-, and 5-year OS for HCC patients.
(B) Calibration plot of the nomogram for predicting the probability of OS at 3 and 5 years. (C) ROC
curve analyses of the nomogram. (D) Decision curve analysis of the net clinical benefit of the
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analysis in ICGC cohort.
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3.5. Comparison of Immune Activity between Risk Score Subgroups

ESTIMATE, CIBERSORT, and ssGSEA were used to investigate the differences in
immunological function. In the HCC samples of the TCGA dataset, immune cell infiltration
was investigated by CIBERSORT (Figure 6A) and ssGESA analysis (Figure 6C) between
high- and low-risk-score groups according to the risk score. We discovered that patients in
high- and low-risk-score subgroups showed significant differences, with a higher abun-
dance of tumor-infiltrating lymphocytes (TILs) and M1 and M2 macrophages and lower
infiltrations of M0 macrophages (naive or non-polarized macrophages) and regulatory T
(Treg) cells observed in low-risk-score groups (Figure 6B–D). Notably, many well-known
immunoinhibitory-related genes, such as IL10, PDCD1, CTLA4, LAG3, TIGIT, etc., were
highly expressed in the high-risk group (Figure 6E,F), while immunostimulatory-related
genes, like CD27, CD276, CD80, CD86, IL2RA, etc., mostly showed low expression in
the high-risk group (Figure 6G,H). The above results suggested a probable relationship
between our established signature and the immune microenvironment.
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on algorithm. (B) Boxplot of immune cell infiltration abundance based on CIBERSORT with significant
expression differences between high- and low-risk groups. (C) Heatmap of the correlation between
risk score and several immune cells based on ssGSEA algorithm. (D) Boxplot of immune cell
infiltration abundance based on ssGSEA with significant expression differences between high- and
low-risk groups. (E) Heatmap of the relationship between risk score and immunoinhibitory genes.
(F) Boxplot of immunoinhibitory-related genes with significant expression differences between high
and low risk groups. (G) Heatmap of the relationship between risk score and immunostimulatory
genes. (H) Boxplot of immunostimulatory-related genes with significant expression differences
between high- and low-risk groups. **** p < 0:0001, *** p < 0:001, ** p < 0:01, * p < 0:05.

3.6. Functional Enrichment and WGCNA of DEGs in High- and Low-Risk-Score Groups

Gene expression analysis was carried out and identified 1664 DEGs by comparing the
high- and low-risk subgroups in the TCGA dataset (Figure S2A). GO analysis demonstrated
that these DEGs were mostly enriched in cellular metabolic process, cell proliferation and
catalytic activity (Figure S2B,D). KEGG analysis indicated that these DEGs were closely
related to metabolism pathways, such as the PPAR pathway, cell cycle, metabolic pathway,
and drug metabolism (Figure S2C,E). In addition, KEGG enrichment analysis revealed that
the DEGs were also associated with enzymes and cytokines, suggesting that the subgroups
had a relationship with the immune microenvironments.

WGCNA was used to construct a network based on the expression matrix of 1664 DEGs
(Figure 7A,B). The red module was selected owing to its correlation with the immune
score (r = 0.82, p < 0.001, Figure 7C). Thereafter, 44 hub genes were obtained from the
red module based on MM > 0.8 and GS > 0.25. We then conducted PPI analysis and
checked for correlations across the hub genes (Figure 7D,E). Spearman’s correlation analysis
between genes and ESTIMATE (stromal score, immune score, ESTIMATE score and tumor
purity) demonstrated that all of the hub genes were significantly correlated with immunity
(Figure 7F). In order determine the biochemical functions of the 44 genes, we conducted
GO and KEGG enrichment analysis. The most significant GO and KEGG term was the
negative regulation of the immune system (Figure 7G,H).

3.7. Expression and Prognostic Role of 4 M2 Macrophage-Related Genes

The prognostic role of the four gene signature was further investigated in the TCGA
cohort. We obtained the four genes’ expression data for 33 types of cancers and found
that differences in the expression of genes between normal and tumor samples of each
cancer type were almost significant (Figure S3A–D). It was found that the levels of SLC22A1
(Figure S3A), CYP2C9 (Figure S3B), SLC10A1 (Figure S3C) and CPS1 (Figure S3D) were
higher in normal samples than in HCC tissues.

It is worth noting that, according to the Spearman correlation analysis, the expression
levels of four M2 macrophage-related genes were inversely proportional to M2 macrophage
abundance (Figure S3E). Additionally, a high expression of the four genes in combination
with a low abundance of M2 macrophages showed favorable survival, while low gene
expression along with high M2 macrophage infiltration exhibited the worst prognosis
(Figures S3F). Moreover, the correlation matrix showed that these four genes were strongly
positively correlated with each other (Figure S4A), indicating that a synergistic relation-
ship among SLC22A1, CYP2C9, SLC10A1 and CPS1 may affect macrophage infiltration
and prognosis.

To further assess the prognostic value of SLC22A1, CYP2C9, SLC10A1 and CPS1 in
HCC, we divided patients into high- and low-gene-expression subgroups according to
the median cutoff to perform KM survival analysis. The results indicated that patients
with higher SLC22A1, CYP2C9, SLC10A1 and CPS1 expression achieved better OS in both
the TCGA (Figure S4B(a–d)) and ICGC (Figure S4C(a–d)) cohorts. Finally, we performed
multivariate analysis to investigate whether SLC22A1 (Figure S4D), CYP2C9 (Figure S4E),
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SLC10A1 (Figure S4F) and CPS1 (Figure S4G) could all be considered as independent
prognostic factors for HCC.
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3.8. The mRNA and Protein Expression Patterns of the Four M2 Macrophage-Related Genes
in HCC

To assess the protein expression of the four genes that were used for the construction
of the risk score signature, we acquired the immunohistochemistry data of pathological
specimens from the website of The Human Protein Atlas. As shown in Figure S5, the
protein expression of the four M2 macrophage-related genes is significantly downregulated
in HCC tissues compared to normal tissues (Figure S5A). We also performed Western blot
and RT-qPCR on six paired HCC samples and corresponding non-tumorous tissues for
basic experimental validation, to analyze gene expression and different regulation in the
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samples. Here, the mRNA of the four genes was notably less detected in HCC samples
compared to their respective normal liver tissue, with protein expression showing the same
tendency (Figure S5B,C).

4. Discussion

In hepatocarcinogenesis, macrophages act as a double-edged sword, regulating
chronic liver inflammation by balancing two types of Kupffer cells: anti-inflammatory
M1 macrophages and pro-inflammatory M2 macrophages [30]. M1 macrophages appear
to decrease early HCC tumorigeneses by eliminating cancer cells as adaptive immunity
soldiers. During the growth of HCC tumors, macrophages undergo a phenotypic transition
from M1 to M2 [31,32]. By inhibiting the adaptive immune system, M2 macrophages
increase cancer cell growth and invasion. Tumor-associated macrophages (TAMs) are
the most common form of leukocyte in HCC and play an important role in the disease’s
development. TAMs are orientated toward the M2 phenotype and are seen in the stroma of
HCC tissue [33]. However, the complete role of TAMs in the genesis and progression of
HCC has only been partially understood until now.

M1 macrophages are predominantly triggered by lipopolysaccharide (LPS) and
interferon-γ (IFN-γ) and are considered pro-inflammatory due to their ability to produce
a plethora of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, nitric oxide
synthase 2 (NOS2), and tumor necrosis factor-α (TNF-α) [34]. During acute infection, M1
macrophages are irreplaceable and protect the individual, fighting intracellular bacteria or
viruses by producing nitric oxide and reactive oxygen species (ROS) [35]. The main role of
M1 TAMs in tumor immunity is to destroy pathogens and drive type 1 T helper cell (Th1)
responses [36]. In our study, there was no difference in the expression of M1 macrophages
between tumor and normal tissues, and whether this can be used as a potential tumor
marker requires further research.

This study presents the first systematic bioinformatic analysis to unravel a gene-based
risk model focusing on M2 macrophages in large-scale cohorts of multicenter HCC patients.
The gene-based risk model is able to stratify HCC patients according to overall prognosis
and immunostimulatory/immunoinhibitory TME characteristics. The suggested gene
signature might therefore be useful in the scenario of modern immunotherapy in HCC.
In this study, we found that HCC patients with a high infiltration of M2 macrophages
displayed a worse prognosis than those with low infiltration. We subsequently inte-
grated eight datasets to determine DEGs between HCC and normal tissues, focusing on
M2 macrophages, and filtered out four prognostic genes (SLC22A1, CPS1, SLC10A1 and
CYP2C9) to create a risk model. Accordingly, patients with high risk scores displayed
shorter OS than those with low risk scores. A high risk score was associated with ad-
vanced tumors, poor tumor differentiation and vascular invasion. Moreover, univariable
and multivariable Cox regression analyses of the gene signature and other clinicopatho-
logical variables demonstrated that the risk score is independently prognostic in each
database. We developed a risk score-based nomogram that could effectively predict OS
in the dataset. We further discovered that patients in high- and low-risk-score subgroups
showed significant differences, with a higher abundance of tumor-infiltrating lymphocytes
(TILs) and M1/M2 macrophages and lower infiltrations of regulatory T (Treg) cells and
M0 macrophages (naive or non-polarized macrophages) in the low-risk-score group. In
our study, we found that HCC patients with a high infiltration of M2 macrophages dis-
played worse prognosis, and patients with low risk scores displayed better OS. Notably,
many well-known immunoinhibitory-related genes were highly expressed in the high-
risk group, while immunostimulatory-related genes mostly showed low expression in the
high-risk group.

HCC tissue enriches M2 macrophages, and the TME in HCC is frequently controlled by
immune regulatory cells, according to results from immunogenomic studies utilizing The
Cancer Genome Atlas (TCGA) [34,35]. Functionally repolarizing TAMs has recently been a
research focus, as a potential immunotherapeutic strategy. New research progress has been



Gastroenterol. Insights 2024, 15 779

made for baicalin [35], 8-Bromo-7-methoxychrysin (BrMC) [37], and colony-stimulating
factor-1 receptor CSF-1R blockers [38] in promoting the conversion of M2 TAMs to M1
TAMs. Tan et al. evaluated the presence of M1-/M2-like macrophages in the liver of
baicalin-treated animals to investigate if baicalin might re-program them towards an M1-
like phenotype [36]. In mice liver tissue, baicalin administration boosted the number of
iNOS+ M1-like macrophages while significantly reducing the number of MR+ M2-like
macrophages. The same group also demonstrated that baicalin suppressed tumor cell ex-
pansion by incurring a direct reprogramming effect on polarized macrophages. BrMC was
identified to significantly suppress the expression of the M2 macrophage marker CD163 [37].
Also, BrMC alters the profile of cytokines secreted by TAMs. Mechanistically, BrMC inhibits
NF-κB activation and reverses the M2 polarization of TAMs. Colony-stimulating factor-1
(CSF-1) and its receptor, CSF-1R, control the differentiation of macrophages and are crucial
for macrophage infiltration in HCC. Ao et al. discovered that inhibiting CSF-1R with the
competitive inhibitor PLX3397, which has a high level of specificity for CSF-1R tyrosine
kinase, significantly slows tumor growth in a mouse model. TAMs from the PLX3397-
treated tumors also exhibited polarization toward an M1-like phenotype. However, these
findings have yet to be validated in independent clinical trials, and the specific mechanism
of macrophage action on tumors remains unclear.

The discovery of genes linked to TAMs and immunological functions might facilitate
the development of novel biomarkers for HCC and further the introduction of effective
treatments focusing on TAMs. Therefore, we analyzed public genomic data to enlighten the
role of TAMs and their interaction with the host’s immune system on a genetic basis. We
used the CIBERSORT algorithms to conduct a complete and detailed assessment of immune
cell infiltration in HCC and observed a significant difference in the expression of immune-
related genes between groups with high and low M2 macrophage infiltration. With focus
on the function of the upregulated or downregulated genes that were in the two groups,
our results give rise to the hypothesis that M2 TAMs may influence the immunophenotype
of HCC, leading to various clinical observations. Our work identified 30 M2 macrophage-
related DEGs, with 18 of them being significantly related with overall prognosis and the
combination of four (SLC22A1, CYP2C9, SLC10A1 and CPS1) being highly prognostic
in HCC patients. It is therefore assumable that these genes drive patient prognosis by
influencing M2 macrophage infiltration levels.

The TME of HCC is associated with treatment resistance, immunosuppression, angio-
genesis, cell proliferation, and apoptosis [39]. ICIs are now the most popular immunother-
apy medications for HCC in clinical routine and studies [40]. Although immunotherapy
improved overall outcomes, the prognosis of HCC remains poor. It is increasingly nec-
essary to find more suitable biomarkers for developing precise treatment plans. Studies
have shown that tumor-infiltrating lymphocytes (TILs) are an essential component of the
adaptive immune system and the basis of current immunotherapy [41]. Usually, high
levels of TILs are mostly significantly associated with increased OS [42]. This is consistent
with our study, where the low-risk group was negatively correlated with the number of B
cells, gamma delta T cells, CD4 memory resting T cells, resting mast cells and monocytes.
Additionally, the low-risk-score group had much lower amount of regulatory T cells. To
our knowledge, there is a strong correlation between high tumor expression levels of
immune checkpoint inhibitor genes and a large number of regulatory T cells [43], which
may explain the higher number of immunoinhibitory-related genes in the high-risk-score
group. Similarly, the low expression of immunostimulatory-related genes in the low-risk
group may also explain its good prognosis. Immune cell and marker levels, such as CD68+
macrophages, CD8+ TILs, PD-L1, CD47, and NK cells, are elevated in response to im-
munotherapy [44], which can be used as the basis for immunotherapy. Additionally, in
our study, we performed WGCNA analysis to obtained 44 hub genes that synergistically
interacted with each other, and all were positively correlated to the immune score, which
could be a guideline for future immune-focused research.
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While the initial clinical studies investigating ICIs in HCC were disappointing, the
IMbrave150 trial investigating the combination of the antiangiogenic agent bevacizumab in
combination with atezolizumab (PD-L1 inhibitor) versus sorafenib has defined the new
gold-standard for HCC patients with progressed disease [45]. In this trial, atezolizumab-
bevacizumab has been shown to have statistically significant and clinically meaningful
benefits for several oncological outcomes. Further, the recent update reassured clinical
efficacy, with a median OS of more than 19 months in HCC patients receiving the immune-
based combination versus 13 months in the control arm [46]. Despite ICIs seeming to have
finally found their role in HCC as part of combinatorial strategies, many questions remain
unanswered. As only a proportion of HCC patients benefit from immunotherapy, a more
profound understanding of the role of potential biomarkers, including PD-L1 expression
and genetic characteristics, e.g., microsatellite instability (MSI) status and tumor mutational
burden (TMB), is essential. Also, clinical trials on HCC immunotherapy differ with respect
to designs, patient characteristics, investigated drugs and defined clinical outcomes [47,48].
As such, we believe that bioinformatic approaches identifying key genes that focus on
M2 macrophages as the main players on a cellular level are helpful for identifying and
furthering the transfer of genetic-based risk scores into the clinical reality of HCC treatment.

SLC22A1 (solute carrier family 22 member 1) transcripts for the identically named pro-
tein, also known as organic cation transporter 1 (OCT1), which transports many structurally
diverse endogenous and exogenous substrates [49]. Interestingly, Herraez et al. already
showed evidence that the downregulation of SLC22A1 mRNA expression is linked with
progressed tumor stages and unfavorable patient survival, by analyzing the expression
patterns of the SLC22A1 in a large series of HCC [50]. In addition, the downregulation
of SLC22A1 has a negative effect on the responsiveness to sorafenib [51]. However, no
association to macrophages has been reported in the literature yet. CYP2C9 (Cytochrome
P450 family 2 subfamily C member 9) encodes a member of the cytochrome P450 su-
perfamily of enzymes. The protein CYP2C9, which is mainly expressed in the liver and
intestine, metabolizes a variety of drugs and endogenous compounds as serotonin and
polyunsaturated fatty acids due to its epoxygenase activity concerning a wide range of
biological active products [52]. CYP2C9 is one of the most important and abundant xenobi-
otic metabolizing enzymes, and a high-activity CYP2C9 genotype is linked to an increased
risk of colorectal cancer [53], whereas a low-activity CYP2C9 genotype is linked to an
increased risk of colorectal adenoma [54] and lung cancer [55]. Additionally, some studies
found reduced CYP2C9 expression in HCC tissue, indicating a role of CYP2C9 in the
pathogenesis of HCC [56,57]. Of note, in a study about the role of CYP450 epoxygenases in
monocytes/macrophages, Bystrom et al. observed an induction of CYP2C9 mRNA in M2
macrophages [58]. SLC10A1 (Solute carrier family 10 member 1) encodes for the identically
named protein, also known as hepatic sodium/bile acid cotransporter, which transports
conjugated bile salts from plasma into the hepatocyte, facilitating the enterohepatic cir-
culation of bile salts, which is the basis for the absorption of dietary fat and fat-soluble
vitamins [59]. SLC10A1 was discovered to be an HBV receptor, and a variation of it has
been independently linked to a lower incidence of cirrhosis and HCC as well as resistance
to chronic hepatitis B infection [60]. Furthermore, there was a tendency in SLC10A1 for
a decreased expression of HCC [61]. However, no association to macrophages has been
reported in the literature yet. CPS1 (Carbamoyl-phosphate synthase 1) encodes for the
identically named ligase enzyme located in hepatic mitochondria. CPS1 is involved in
the urea cycle, where it serves as the rate-determining step by catalyzing the synthesis
of carbamoyl-phosphate from bicarbonate, ammonia and phosphate. Thus, CPS1 plays a
major role in removing excess ammonia from the cells and protein metabolism [62]. Ridder
et al. analyzed the expression of CPS1 by immunohistochemistry in a large cohort of
871 HCCs in 561 patients undergoing liver resection and found that CPS1 was downregu-
lated in HCC and reduced in distant metastases as well as recurrent tumors. Further, low
CPS1 was linked to shorter OS [63]. Interestingly, Park et al. showed that CPS1, which
is normally released into bile, can be released into serum in case of liver injury, where it
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induces the M2 polarization of monocytes/macrophages and homing to the liver [64]. This
illustrates that our results are in line with experimental data of previous studies and pro-
vides a basis to validate our gene-signature obtained by bioinformatic methods. However,
the relationship between these four genes and M2 macrophages and their roles in the tumor
immune microenvironment of HCC still require further clinical and preclinical research.

While we aggregated analyses across several omics datasets and ethnic groups to
show the robustness of our findings, there are still several limitations to this study. First,
we used two cohorts to reduce the negative impact of incomplete HCC patient clinical data
in public databases on statistical reliability and validity; however, a large-scale, prospective,
multi-central validation cohort would be extremely desirable in the future. This would
also help to overcome the limitation regarding the sample size of our analysis. Second,
more research is needed to determine whether our signature has relevance in identifying
molecular subgroups and directing immune treatments in HCC in clinical reality. This also
includes a larger experimental validation, also on a tissue level, in patients with different
clinical characteristics and with respect to the proposed four-gene signature. Third, despite
OS being the strongest oncological marker, other measures, e.g., progression-free survival,
would be very interesting in our context. However, detailed data about clinical treatment as
well as time to progression are not available in the genomic databases used. This underlines
the importance of validation in a clinical dataset. Also, our analysis and bioinformatic
framework was based on the differences in M2 macrophage infiltration; thus, we are
not able to elaborate on the role of M0 and M1 macrophages in our scenario. As other
polarization subtypes are also important in HCC, further research is required to fully
explore the role of macrophages in the prognosis of HCC patients.

5. Conclusions

We identified SLC22A1, CPS1, SLC10A1 and CYP2C9 genes to be associated with
tumor-promoting M2 macrophage infiltration in HCC patients. This four-gene signature is
further associated with overall prognosis in these patients and the immunological character-
istics of the TME. These results support the therapeutic relevance of M2 macrophage-related
genes and our prognostic model and provide new research directions for highly targeted
immunotherapy strategies.
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