Antimicrobial Susceptibility among Pathogens Isolated in Early- versus Late-Onset Ventilator-Associated Pneumonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Inclusion Criteria
2.2. Bacterial Identification, Antimicrobial Susceptibility Testing
2.3. Data Collection Protocol
2.4. Group Definitions and Evaluation Criteria/Clinical Outcome
2.5. Statistical Analysis
3. Results
3.1. Clinical History of Included Patients
3.2. Microbial and Antibacterial Resistance Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chastre, J.; Fagon, J.Y. Ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2002, 165, 867–903. [Google Scholar] [CrossRef]
- Vincent, J.L.; Bihari, D.J.; Suter, P.M.; Bruining, H.A.; White, J.; Nicolas-Chanoin, M.H.; Wolff, M.; Spencer, R.C.; Hemmer, M. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 1995, 274, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Safbar, N.; Dezfulian, C.; Collard, H.R.; Saint, S. Clinical and economic consequences of ventilator-associated pneumonia: A systematic review. Crit. Care Med. 2005, 33, 2184–2193. [Google Scholar]
- Dudeck, M.A.; Horan, T.C.; Peterson, K.D.; Allen-Bridson, K.; Morrell, G.; Pollock, D.A.; Edwards, J.R. National Healthcare Safety Network (NHSN) Report, data summary for 2010, device-associated module. Am. J. Infect. Control 2011, 39, 798–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, J.D. Ventilator associated pneumonia. BMJ 2012, 344, e3325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Restrepo, M.I.; Anzueto, A.; Arroliga, A.C.; Afessa, B.; Atkinson, M.J.; Ho, N.J.; Schinner, R.; Bracken, R.L.; Kollef, M.H. Economic burden of ventilator-associated pneumonia based on total resource utilization. Infect. Control Hosp. Epidemiol. 2010, 31, 509–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscedere, J.G.; Martin, C.M.; Heyland, D.K. The impact of ventilator-associated pneumonia on the Canadian health care system. J. Crit. Care 2008, 23, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Melsen, W.G.; Rovers, M.M.; Groenwold, R.H.; Bergmans, D.C.; Camus, C.; Bauer, T.T.; Hanisch, E.W.; Klarin, B.; Koeman, M.; Krueger, W.A.; et al. Attributable mortality of ventilator-associated pneumonia: A meta-analysis of individual patient data from randomised prevention studies. Lancet Infect. Dis. 2013, 13, 665–671. [Google Scholar] [CrossRef]
- American Thoracic Society. Infectious Diseases Society of America.Guidelines for the Management of Adults with Hospital-acquired, Ventilator associated, and Healthcare-associated Pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar] [CrossRef]
- Jones, R.N. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin. Infect. Dis. 2010, 51, S81–S87. [Google Scholar] [CrossRef] [Green Version]
- Dziri, R.; Ayari, I.; Barguellil, F.; Ouzari, H.I.; El Asli, M.S.; Klibi, N. First Report of NDM and VIM Coproducing Klebsiella pneumoniae in Tunisia and Emergence of Novel Clones. Microb. Drug Resist. 2019, 25, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, N.; Beji, O.; Abidi, N.; Kouraichi, N.; Blel, Y.; El Ghord, H.; Thabet, H.; Amamou, M. Epidemiology and risk factors for colonization and infection by Acinetobacter baumannii in an ICU in Tunisia, where this pathogen is endemic. J. Infect. Chemother. 2007, 13, 400–404. [Google Scholar] [CrossRef]
- Jaidane, N.; Mansour, W.; Bonnin, R.A.; Ghardallou, M.; Chaouch, C.; Golli, R.; Kalboussi, N.; Boujaafar, N.; Bouallegue, O.; Naas, T. Temporal Variation in Antibiotic Resistance of Acinetobacter baumannii in a Teaching Hospital in Tunisia: Correlation with Antimicrobial Consumption. Open Microbiol. J. 2019, 13, 106–111. [Google Scholar] [CrossRef]
- Manenzhe, R.I.; Zar, H.J.; Nicol, M.P.; Kaba, M. The spread of carbapenemase-producing bacteria in Africa: A systematic review. J. Antimicrob. Chemother. 2015, 70, 23–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johanson, W.G.; Pierce Ak Sandford, J.P.; Thamas, G.D. Nosocomial respiratory infections with gram-negative bacilli: The significance of colonization of the respiratory tract. Ann. Intern. Med. 1972, 77, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Brun-Buisson, C.; Fartoukh, M.; Lechapt, E.; Honoré, S.; Zahar, J.R.; Cerf, C.; Maitre, B. Contribution of blinded protected quantitative specimens to the diagnostic and therapeutic management of ventilator associated pneumonia. Chest 2005, 128, 533–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dortet, L.; Flonta, M.; Boudehen, Y.M.; Creton, E.; Bernabeu, S.; Vogel, A.; Naas, T. Dissemination of Carbapenemase-Producing Enterobacteriaceae and Pseudomonas aeruginosa in Romania. Antimicrob. Agents Chemother. 2015, 59, 7100–7103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 6.0. 2016. Available online: http://www.eucast.org (accessed on 26 April 2021).
- Schurink, C.A.; Van Nieuwenhoven, C.A.; Jacobs, J.A.; Rozenberg-Arska, M.; Joore, H.C.; Buskens, E.; Hoepelman, A.I.; Bonten, M.J. Clinical pulmonary infection score for ventilator-associated pneumonia: Accuracy and inter-observer variability. Intensive Care Med. 2004, 30, 217–224. [Google Scholar] [CrossRef]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; ARDS Definition Task Force. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [PubMed]
- Communicable Disease Threats to public Health in the European Union—Annual Epidemiological Report for 2018. Available online: https://www.ecdc.europa.eu/en/publications-data/communicable-disease-threats-public-health-eu-2018 (accessed on 26 April 2021).
- Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in United States; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2013. [Google Scholar]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- To, K.B.; Napolitano, L.M. Common complications in the critically ill patient. Surg. Clin. N. Am. 2012, 92, 1519–1557. [Google Scholar] [CrossRef] [Green Version]
- Luna, C.M.; Vujacich, P.; Niederman, M.S.; Vay, C.; Gherardi, C.; Matera, J.; Jolly, E.C. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 1997, 111, 676–685. [Google Scholar] [CrossRef]
- Kuti, E.L.; Patel, A.A.; Coleman, C.I. Impact of inappropriate antibiotic therapy on mortality in patients with ventilator-associated pneumonia and blood stream infection: A meta-analysis. J. Crit. Care 2008, 23, 91–100. [Google Scholar] [CrossRef]
- American Thoracic Society. Hospital-acquired pneumonia in adults: Diagnosis, assessment of severity, initial antimicrobial therapy, and preventive strategies. A consensus statement. Am. J. Respir. Crit. Care Med. 1996, 153, 1711–1725. [Google Scholar] [CrossRef] [PubMed]
- Trouillet, J.L.; Chastre, J.; Vuagnat, A.; Joly-Guillou, M.L.; Combaux, D.; Dombret, M.C.; Gibert, C. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am. J. Respir. Crit. Care Med. 1998, 157, 531–539. [Google Scholar] [CrossRef]
- Rello, J.; Sa-Borges, M.; Correa, H.; Leal, S.R.; Baraibar, J. Variations in etiology of ventilator-associated pneumonia across four treatment sites: Implications for antimicrobial prescribing practices. Am. J. Respir. Crit. Care Med. 1999, 160, 608–613. [Google Scholar] [CrossRef]
- Giantsou, E.; Liratzopoulos, N.; Efraimidou, E.; Panopoulou, M.; Alepopoulou, E.; Kartali-Ktenidou, S.; Minopoulos, G.I.; Zakynthinos, S.; Manolas, K.I. Both early-onset and late-onset ventilator-associated pneumonia are caused mainly by potentially multiresistant bacteria. Intensive Care Med. 2005, 31, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Golia, S.; Sangeetha, K.T.; Vasudha, C.L. Microbial profile of early andlate onset ventilator associated pneumonia in the intensive care unit of a tertiary care hospital in Bangalore, India. J. Clin. Diagn. Res. 2013, 7, 2462–2466. [Google Scholar] [PubMed]
- Charles, M.P.; Easow, J.M.; Joseph, N.M.; Ravishankar, M.; Kumar, S.; Sivaraman, U. Aetiological agents of ventilator-associated pneumonia and its resistance pattern—A threat for treatment. Australas. Med. J. 2013, 6, 430–434. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Deja, M.; Koulenti, D.; Dimopoulos, G.; Marsh, B.; Torres, A.; Niederman, M.S.; Rello, J. Potentially resistant microorganisms in intubatedpatients with hospital-acquired pneumonia: The interaction of ecology, shock and risk factors. Intensive Care Med. 2013, 39, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, M.I.; Peterson, J.; Fernandez, J.F.; Qin, Z.; Fisher, A.C.; Nicholson, S.C. Comparison of the bacterial etiology of early-onsetand late-onset ventilator-associated pneumonia in subjectsenrolled in 2 large clinical studies. Respir. Care 2013, 58, 1220–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, S.Y.; Kim, T.O.; Park, C.W.; Yu, J.Y.; Lee, B.; Lee, H.S.; Kim, Y.I.; Lim, S.C.; Kwon, Y.S. Bacterialpathogens of ventilator associated pneumonia in a tertiary referralhospital. Tuberc. Respir. Dis. 2012, 73, 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventilator-Associated Event. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/10-vae_final.pdf (accessed on 26 April 2021).
- Chastre, J.; Luyt, C.E.; Trouillet, J.L.; Fagon, J.Y. Pneumonies nosocomiales. In Dans: Livre de Reanimation Medicale, 2nd ed.; Masson: Paris, France, 2009; pp. 922–928. [Google Scholar]
- Ali, S.; Waheed, K.; Iqbal, Z.H. Microbiological pattern of ventilator associated pneumonia. J. Ayub Med. Coll. Abbottabad. 2015, 27, 117–119. [Google Scholar]
- Fagon, J.Y.; Chastre, J.; Domart, Y.; Trouillet, J.L.; Pierre, J.; Darne, C.; Gibert, C. Nosocomial pneumonia in patients receiving continuous mechanical ventilation: Prospective analysis of 52 episodes with use of a protected specimen brush and quantitative culture techniques. Am. Rev. Respir. Dis. 1989, 139, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Figliolini, C.; Trouillet, J.L.; Kassis, N.; Wolff, M.; Gibert, C.; Chastre, J. Incidence and outcome of polymicrobial ventilator-associated pneumonia. Chest 2002, 121, 1618–1623. [Google Scholar] [CrossRef] [PubMed]
- Harbarth, S.; Harris, A.D.; Carmeli, Y.; Samore, M.H. Parallel analysis of individual and aggregated data on antibiotic exposure and resistance in gram-negative bacilli. Clin. Infect. Dis. 2001, 33, 1462–1468. [Google Scholar] [CrossRef] [Green Version]
- Martin-Loeches, I.; Diaz, E.; Valles, J. Risks for multidrug-resistant pathogens in the ICU. Curr. Opin. Crit. Care. 2014, 20, 516–524. [Google Scholar] [CrossRef]
- Chang, H.H.; Cohen, T.; Grad, Y.H.; Hanage, W.P.; O’Brien, T.F.; Lipsitch, M. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol. Mol. Biol. Rev. 2015, 79, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Valachis, A.; Samonis, G.; Kofteridis, D.P. The role of aerosolized colistin in the treatment of ventilator-associated pneumonia: A systematic review and metaanalysis. Crit. Care Med. 2015, 43, 527–533. [Google Scholar] [CrossRef]
- Waters, B.; Muscedere, J.A. Update on Ventilator-Associated Pneumonia:New Insights on Its Prevention, Diagnosis, and Treatment. Curr. Infect. Dis. Rep. 2015, 17, 496. [Google Scholar] [CrossRef]
Clinical Data | Total Patients (n = 60) | Early-Onset VAP (n = 36) | Late-Onset VAP (n = 24) | p |
---|---|---|---|---|
Age, years (mean ± SD) | 38 ± 16 | 35 ± 15 | 42 ± 18 | 1.25 |
Sex-ratio (male/female) | 29/31 | 19/17 | 10/14 | 0.403 |
Underlying comorbidity | ||||
-Psychiatric disorders, n (%) | 20 (33) | |||
-COPD, n (%) | 5 (8.5) | |||
-Hypertension, n (%) | 4 (6.5) | |||
-Diabetes mellitus, n (%) | 2 (3) | |||
-No underlying comorbidity, n (%) | 29 (48) | |||
ICU admission diagnoses | ||||
-Acute poisoning, n (%) | 43 (72) | 33 (92) | 10 (42) | ˂10−3 |
-Acute respiratory failure, n (%) | 12 (20) | 2 (5) | 10 (42) | 0.004 |
-Endocrine disorders, n (%) | 1 | 0 | 1 | 0.4 |
-Neurologic disease, n (%) | 4 (7) | 2 (5) | 2 (8) | 1 |
Gravity scores | ||||
-SAPS II, median [IQR] | 40.5 [32–44] | 36.5 [32–44] | 41 [39–47] | 0.049 |
-APACHE II, median [IQR] | 19 [15–22] | 17 [15–22] | 21 [19–23] | 0.002 |
-SOFA, median [IQR] | 6 [5–10] | 5.5 [4–10] | 8 [6–10] | 0.037 |
-Prior antibiotic use, n (%) | 41(68) | 52 | 92 | 0.002 |
ICU stay | ||||
Duration of ICU stay days, median [IQR] | 17 [12–31] | |||
Duration mechanical ventilation, days, median [IQR] | 11 [8–24] | |||
Sepsis, n (%) | 7 (12) | |||
ARDS, n (%) | 9 (15) | |||
Mortality, n (%) | 32 (53) | |||
Mortality at D14 | 7 (19) | 3 (12) | 0.37 | |
Mortality at D28 | 12 (33) | 4 (17) | 0.061 |
Pathogens | n (%) |
---|---|
A. baumannii | 21 (35) |
P. aeruginosa | 12 (20) |
Enterobacterales | 10 (17) |
S. aureus | 3 (5) |
A. baumannii + P. aeruginosa | 7 (12) |
A. baumannii + Enterobacterales | 4 (6) |
P. aeruginosa + Enterobacterales | 3 (5) |
Pathogen | Total Isolates n (%) | Early-Onset VAP | Late-Onset VAP | p |
---|---|---|---|---|
A. baumannii | 32 (53) | 17 (47) | 15 (62) | 0.3 |
P. aeruginosa | 22 (37) | 13 (36) | 9 (37) | 1 |
Enterobacterales | 17 (28) | 11 (30) | 6 (25) | 0.77 |
S. aureus | 3 (5) | 3 (5) | _ | 0.27 |
-MSSA | 2 | 2 | _ | |
-MRSA | 1 | 1 | _ | |
Potentially MDR; n (%) | 58 (97) |
Pathogens | Antibiotic Resistance Pattern (% of Resistance) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMX | AMC | TIC | TCC | PIP | TZP | CAZ | IMP | GEN | AM | NET | CST | CIP | FOS | RIF | |
A. baumannii (n = 32) | - | - | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 85 | 26 | 0 | 100 | 85 | 60 |
P. aeruginosa (n = 22) | - | - | 77 | 55 | 44 | 0 | 67 | 44 | 77 | 11 | 0 | 0 | 48 | 11 | - |
Enterobacterales (n = 17) | 100 | 71 | 100 | 71 | 100 | 71 | 71 | 0 | 28 | 14 | 28 | - | 14 | - | - |
Antibiotic | A. baumannii (%) | p | P. aeruginosa (%) | p | Enterobacterales (%) | p | |||
---|---|---|---|---|---|---|---|---|---|
Early-Onset VAP (n = 17) | Late-Onset VAP (n = 15) | Early-Onset VAP (n = 13) | Late-Onset VAP (n = 9) | Early-Onset VAP (n = 11) | Late-Onset VAP (n = 6) | ||||
TIC | 100 | 100 | - | 62 | 66 | 1 | 100 | 100 | - |
TCC | 100 | 100 | - | 48 | 66 | 0.4 | 30 | 30 | |
PIP | 100 | 100 | - | 38 | 66 | 0.4 | 100 | 100 | - |
TZP | 100 | 100 | - | 31 | 25 | 1 | 30 | 30 | |
CAZ | 100 | 100 | - | 54 | 66 | 0.7 | 82 | 83 | |
IMP | 100 | 100 | - | 54 | 56 | 1 | 0 | 0 | - |
GEN | 88 | 93 | 1 | 75 | 62 | 0.6 | 40 | 50 | 0.3 |
AM | 71 | 82 | 0.2 | 23 | 25 | 0.6 | 34 | 50 | 0.3 |
NET | 12 | 33 | 0.6 | 11 | 8 | 1 | 10 | 0 | 1 |
CST | 0 | 0 | - | 100 | 100 | - | 0 | 0 | - |
CIP | 88 | 86 | 1 | 54 | 67 | 0.7 | 40 | 50 | 0.3 |
FOF | 0.76 | 100 | 0.1 | 25 | 28 | 0.6 | 40 | 50 | 0.3 |
RIF | 0.71 | 0.47 | 0.3 | 85 | 89 | 1 | 75 | 66 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Lakhal, H.; M’Rad, A.; Naas, T.; Brahmi, N. Antimicrobial Susceptibility among Pathogens Isolated in Early- versus Late-Onset Ventilator-Associated Pneumonia. Infect. Dis. Rep. 2021, 13, 401-410. https://doi.org/10.3390/idr13020038
Ben Lakhal H, M’Rad A, Naas T, Brahmi N. Antimicrobial Susceptibility among Pathogens Isolated in Early- versus Late-Onset Ventilator-Associated Pneumonia. Infectious Disease Reports. 2021; 13(2):401-410. https://doi.org/10.3390/idr13020038
Chicago/Turabian StyleBen Lakhal, Hend, Aymen M’Rad, Thierry Naas, and Nozha Brahmi. 2021. "Antimicrobial Susceptibility among Pathogens Isolated in Early- versus Late-Onset Ventilator-Associated Pneumonia" Infectious Disease Reports 13, no. 2: 401-410. https://doi.org/10.3390/idr13020038
APA StyleBen Lakhal, H., M’Rad, A., Naas, T., & Brahmi, N. (2021). Antimicrobial Susceptibility among Pathogens Isolated in Early- versus Late-Onset Ventilator-Associated Pneumonia. Infectious Disease Reports, 13(2), 401-410. https://doi.org/10.3390/idr13020038