Dynamics of Microbial Shedding in Market Pigs during Fasting and the Influence of Alginate Hydrogel Bead Supplementation during Transportation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Swine, Pen Assignments, and Experimental Design
2.2. Alginate Hydrogel Beads
2.3. Transportation and Bead Supplementation
2.4. Sample Collection
2.5. Microbial Analyses
2.5.1. Enumeration of Microbial Indicators
2.5.2. Salmonella and E. coli O157:H7 Detection
2.6. Data Analysis
3. Results
3.1. Enumeration of Enterobacteriaceae and E. coli
3.2. Detection of Salmonella sp. and E. coli O157:H7
3.3. Effect of Alginate Hydrogel Beads
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Self, J.L.; Luna-Gierke, R.E.; FothergillL, A.; Holt, K.G.; Viera, A.R. Outbreaks attributed to pork in the United States, 1998–2015. Epidemiol. Infect. 2017, 145, 2980–2990. [Google Scholar] [CrossRef] [Green Version]
- Djurković-Djaković, O.; Bobić, B.; Nikolić, A.; Klun, I.; Dupouy-Camet, J. Pork as a source of human parasitic infection. Clin. Microbiol. Infect. 2013, 19, 586–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosse, J.; Seegers, H.; Magras, C. Prevalence and Risk Factors for Bacterial Food-Borne Zoonotic Hazards in Slaughter Pigs: A Review. Zoonoses Public Health 2009, 56, 429–454. [Google Scholar] [CrossRef]
- Alhaji, N.B.; Odetokun, I.A. Assessment of Biosecurity Measures Against Highly Pathogenic Avian Influenza Risks in Small-Scale Commercial Farms and Free-Range Poultry Flocks in the Northcentral Nigeria. Transbound. Emerg. Dis. 2011, 58, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Gaggia, F.; Di Gioia, D.; Baffoni, L.; Biavati, B. The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci. Technol. 2011, 22, S58–S66. [Google Scholar] [CrossRef]
- Baer, A.A.; Miller, M.J.; Dilger, A.C. Pathogens of interest to the Pork industry: A review of research on interventions to ASSURE food safety. Compr. Rev. Food Sci. Food Saf. 2013, 12, 183–217. [Google Scholar] [CrossRef]
- Schwartzkopf-Genswein, K.S.; Faucitano, L.; Dadgar, S.; Shand, P.; González, L.A.; Crowe, T.G. Road transport of cattle, swine and poultry in North America and its impact on animal welfare, carcass and meat quality: A review. Meat Sci. 2012, 92, 227–243. [Google Scholar] [CrossRef]
- Huynh, T.T.T.; Aarnink, A.J.A.; Verstegen, M.W.A.; Gerrits, W.J.J.; Kemp, B.; Heetkamp, M.J.W. Pigs’ Physiological Responses at Different Relative Humidities and Increasing Temperatures. In Proceedings of the 2004 ASAE Annual Meeting, Ottawa, ON, Canada, 1–4 August 2004. [Google Scholar] [CrossRef]
- Talling, J.C.; Waran, N.K.; Wathes, C.M.; Lines, J.A. Behavioural and physiological responses of pigs to sound. Appl. Anim. Behav. Sci. 1996, 48, 187–201. [Google Scholar] [CrossRef]
- Sommavilla, R.; Faucitano, L.; Gonyou, H.; Seddon, Y.; Bergeron, R.; Widowski, T.; Crowe, T.; Connor, L.; Scheeren, M.; Goumon, S. Season, Transport Duration and Trailer Compartment Effects on Blood Stress Indicators in Pigs: Relationship to Environmental, Behavioral and Other Physiological Factors, and Pork Quality Traits. Animals 2017, 7, 8. [Google Scholar] [CrossRef]
- Williams, L.P.; Newell, K.W. Salmonella excretion in joy-riding pigs. Am. J. Public Health Nations Health 1970, 60, 926–929. [Google Scholar] [CrossRef]
- Isaacson, R.E.; Weigel, R.M.; Firkins, L.D.; Bahnson, P. The effect of feed withdrawal on the shedding of Salmonella typhimurium by swine. In Proceedings of the International Conference on the Epidemiology and Control of Biological, Chemical and Physical Hazards in Pigs and Pork, Washington, DC, USA, 5–7 August 1999. [Google Scholar] [CrossRef] [Green Version]
- Dowd, S.E.; Callaway, T.R.; Morrow-Tesch, J. Handling may cause increased shedding of Escherichia coli and TOTAL Coliforms in pigs. Foodborne Pathog. Dis. 2007, 4, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Eicher, S.D.; Rostango, M.H.; Lay, D.C. Feed withdrawal and transportation effects on Salmonella enterica levels in market-weight pigs. J. Anim. Sci. 2017, 95, 2848–2858. [Google Scholar] [CrossRef] [PubMed]
- Martín-Peláez, S.; Peralta, B.; Creus, E.; Dalmau, A.; Velarde, A.; Pérez, J.F.; Mateu, E.; Martín–Orúe, S.M. Different feed withdrawal times before slaughter influence caecal fermentation and faecal Salmonella shedding in pigs. Vet. J. 2009, 182, 469–473. [Google Scholar] [CrossRef]
- Harvey, R.B.; Anderson, R.C.; Young, C.R.; Swindle, M.M.; Genovese, K.J.; Hume, M.E.; Droleskey, R.E.; Farrington, L.A.; Ziprin, R.L.; Nisbet, D.J. Effects of feed withdrawal and transport on cecal environment and campylobacter concentrations in a swine surgical model. J. Food Prot. 2001, 64, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, K.M.; Thompson, K.L.; Einstein, M.E.; Applegate, T.J.; Patterson, J.A. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in Broilers. Poult. Sci. 2008, 87, 1734–1741. [Google Scholar] [CrossRef]
- Thompson, K.L.; Applegate, T.J. Feed withdrawal alters small-intestinal morphology and mucus of broilers. Poult. Sci. 2006, 85, 1535–1540. [Google Scholar] [CrossRef]
- World Health Organization. One Health. World Health Organization. Available online: https://www.who.int/news-room/q-a-detail/one-health (accessed on 30 August 2020).
- Garcia, S.N.; Osburn, B.I.; Cullor, J.S. A one health perspective on dairy production and Dairy food safety. One Health 2019, 7, 100086. [Google Scholar] [CrossRef] [PubMed]
- Wisener, L.V.; Sargeant, J.M.; O’Connor, A.M.; Faires, M.C.; Glass-Kaastra, S.K. The evidentiary value of Challenge trials for three pre-harvest food SAFETY Topics: A systematic assessment. Zoonoses Public Health 2013, 61, 449–476. [Google Scholar] [CrossRef]
- Gyles, D.A.; Castro, L.D.; Silva, J.O.; Ribeiro-Costa, R.M. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J. 2017, 88, 373–392. [Google Scholar] [CrossRef]
- Peppas, N. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Aswathy, S.H.; Narendrakumar, U.; Manjubala, I. Commercial hydrogels for biomedical applications. Heliyon 2020, 6, e03719. [Google Scholar] [CrossRef]
- Guo, L.; Goff, H.D.; Xu, F.; Liu, F.; Ma, J.; Chen, M.; Zhong, F. The effect of sodium alginate on nutrient digestion and metabolic responses during both in vitro and in vivo digestion process. Food Hydrocoll. 2020, 107, 105304. [Google Scholar] [CrossRef]
- Fratamico, P.M.; Wasilenko, J.L.; Garman, B.; DeMarco, D.R.; Varkey, S.; Jensen, M.; Rhoden, K.; Tice, G. Evaluation of a Multiplex Real-Time PCR Method for Detecting Shiga Toxin–Producing Escherichia coli in Beef and Comparison to the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology Laboratory Guidebook Method. J. Food Prot. 2014, 77, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.-Y.; Kwok, K.K.; Kam, K.M. Application of BAX system, Tecra UniqueTM Salmonella test, and a conventional culture method for the detection of Salmonella in ready-to-eat and raw foods. J. Appl. Microbiol. 2007, 103, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Feng, Z.; Yi, X. A general introduction to adjustment for multiple comparisons. J. Thorac. Dis. 2017, 9, 1725–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aviles-Rosa, E.O.; Surowiec, K.; McGlone, J. Identification of Faecal Maternal Semiochemicals in Swine (Sus scrofa) and their Effects on Weaned Piglets. Sci. Rep. 2020, 10, 5439. [Google Scholar] [CrossRef] [Green Version]
- Aviles Rosa, E.O. The Effect of Swine’s Semiochemicals on Pigs’ Behavior, Physiology and Production. Ph.D. Thesis, Texas Tech University, Lubbock, TX, USA, 2019. Available online: https://ttu-ir.tdl.org/handle/2346/84994 (accessed on 30 August 2020).
- Nowland, T.L.; Kirkwood, R.N.; Plush, K.J.; Barton, M.D.; Torok, V.A. Exposure to maternal feces in lactation influences piglet enteric microbiota, growth, and survival preweaning. J. Anim. Sci. 2021, 99, skab170. [Google Scholar] [CrossRef] [PubMed]
- Dalla Costa, F.A.; Dalla Costa, O.A.; Coldebella, A.; de Lima, G.J.; Ferraudo, A.S. How do season, on-farm fasting interval and lairage period affect swine welfare, carcass and meat quality traits? Int. J. Biometeorol. 2018, 63, 1497–1505. [Google Scholar] [CrossRef] [Green Version]
- Callaway, T.R.; Edrington, T.S.; Loneragan, G.H.; Nisbet, D.J. Shiga Toxin-Producing Escherichia coli (STEC) Ecology in Cattle and Management Based Options for Reducing Fecal Shedding. Agric. Food Anal. Bacteriol. 2013, 3, 39–69. [Google Scholar]
- Hurd, H.S.; McKean, J.D.; Griffith, R.W.; Wesley, I.V.; Rostagno, M.H. Salmonella enterica Infections in Market Swine with and without Transport and Holding. Appl. Environ. Microbiol. 2002, 68, 2376–2381. [Google Scholar] [CrossRef] [Green Version]
- U.S Government Information. TITLE 49—TRANSPORTATION. Authenticated, U.S. Government Information. Available online: https://www.govinfo.gov/content/pkg/USCODE-2011-title49/pdf/USCODE-2011-title49-subtitleX-chap805-sec80502.pdf (accessed on 14 September 2021)(n.d.).
- Bach, S.J.; McAllister, T.A.; Mears, G.J.; Schwartzkopf-Genswein, K.S. Long-Haul transport and lack Of Preconditioning Increases fecal shedding of Escherichia coli and Escherichia coli O157:H7 BY Calves. J. Food Prot. 2004, 67, 672–678. [Google Scholar] [CrossRef]
- Barham, A.R.; Barham, B.L.; Johnson, A.K.; Allen, D.M.; Blanton, J.R.; Miller, M.F. Effects of the transportation of beef cattle from THE feedyard to the packing plant on Prevalence levels of Escherichia coli O157 and Salmonella spp. J. Food Prot. 2002, 65, 280–283. [Google Scholar] [CrossRef]
- Pointon, A.; Kiermeier, A.; Fegan, N. Review of the impact OF Pre-slaughter Feed curfews of cattle, sheep and goats on food safety AND carcase hygiene in Australia. Food Control 2012, 26, 313–321. [Google Scholar] [CrossRef]
- Hansson, I.; Ederoth, M.; Andersson, L.; Vagsholm, I.; Olsson Engvall, E. Transmission of campylobacter spp. to chickens during transport to slaughter. J. Appl. Microbiol. 2005, 99, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Wanders, A.J.; van den Borne, J.J.; de Graaf, C.; Hulshof, T.; Jonathan, M.C.; Kristensen, M.; Mars, M.; Schols, H.A.; Feskens, E.J. Effects of dietary fibre on subjective appetite, energy intake and body weight: A systematic review of randomized controlled trials. Obes. Rev. 2011, 12, 724–739. [Google Scholar] [CrossRef]
- Corstens, M.N.; Berton-Carabin, C.C.; Elichiry-Ortiz, P.T.; Hol, K.; Troost, F.J.; Masclee, A.A.M.; Schroën, K. Emulsion-alginate beads designed to control in vitro intestinal lipolysis: Towards appetite control. J. Funct. Foods 2017, 34, 319–328. [Google Scholar] [CrossRef]
- Li, Y.; Hu, M.; Du, Y.; Xiao, H.; McClements, D.J. Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocoll. 2011, 25, 122–130. [Google Scholar] [CrossRef]
- Dafe, A.; Etemadi, H.; Dilmaghani, A.; Mahdavinia, G.R. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int. J. Biol. Macromol. 2017, 97, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, C.; Li, J.; Mu, Y.; Liu, Y.; Kong, M.; Cheng, X.; Chen, X. Construction of multilayer alginate hydrogel beads for oral delivery of probiotics cells. Int. J. Biol. Macromol. 2017, 105, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Chai, T.J.; Miao, Z.M. ERIC-PCR identification of the spread of airborne Escherichia coli in pig houses. Sci. Total Environ. 2010, 408, 1446–1450. [Google Scholar] [CrossRef] [PubMed]
Before Fast 1 | Before Transport 1 | After Transport 1 | ||||
---|---|---|---|---|---|---|
Salmonella | E. coli O157:H7 | Salmonella | E. coli O157:H7 | Salmonella | E. coli O157:H7 | |
Positive 2 | 0/60 | 32/60 | 2/59 | 27/59 | 1/53 | 30/53 |
Prevalence | 0% | 53.33% | 3.39% | 45.76% | 1.89% | 56.60% |
Treatment 1 | Control 2 | |||
---|---|---|---|---|
Salmonella | E. coli O157:H7 | Salmonella | E. coli O157:H7 | |
Positive 3 | 0/26 | 16/26 | 1/27 | 14/27 |
Prevalence | 0.00% | 61.54% | 3.70% | 51.85% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, M.; Garcia, A.; Vargas, D.A.; Calle, A. Dynamics of Microbial Shedding in Market Pigs during Fasting and the Influence of Alginate Hydrogel Bead Supplementation during Transportation. Microbiol. Res. 2021, 12, 888-898. https://doi.org/10.3390/microbiolres12040065
Fernandez M, Garcia A, Vargas DA, Calle A. Dynamics of Microbial Shedding in Market Pigs during Fasting and the Influence of Alginate Hydrogel Bead Supplementation during Transportation. Microbiology Research. 2021; 12(4):888-898. https://doi.org/10.3390/microbiolres12040065
Chicago/Turabian StyleFernandez, Mariana, Arlene Garcia, David A. Vargas, and Alexandra Calle. 2021. "Dynamics of Microbial Shedding in Market Pigs during Fasting and the Influence of Alginate Hydrogel Bead Supplementation during Transportation" Microbiology Research 12, no. 4: 888-898. https://doi.org/10.3390/microbiolres12040065
APA StyleFernandez, M., Garcia, A., Vargas, D. A., & Calle, A. (2021). Dynamics of Microbial Shedding in Market Pigs during Fasting and the Influence of Alginate Hydrogel Bead Supplementation during Transportation. Microbiology Research, 12(4), 888-898. https://doi.org/10.3390/microbiolres12040065