Characterization of Alistipes montrealensis sp. nov., Isolated from Human Feces of a Patient with Metastatic Melanoma Treated with Immune Checkpoint Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics and Sample Collection
2.2. Bacterial Strain Isolation and Identification
2.3. Morphologic and Phenotypic Characteristics
2.4. Genome Sequencing and Annotation
3. Results
3.1. Strain Identification and Phylogenetic Analysis
3.2. Phenotypic Features
3.3. Genome Characteristics
4. Discussions
5. Conclusions
Description of Alistipes montrealensis sp. nov.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANI | Average Nucleotide Identity |
anti-CTLA-4 | Anti-cytotoxic T lymphocyte antigen 4 |
anti-PD-1 | Anti-programmed cell death receptor 1 |
CECT | Colección Española de Cultivos Tipo |
CSUR | Collection de souches de l’Unité des Rickettsies |
DDH | DNA–DNA hybridization |
ICI | Immune checkpoint inhibitors |
irAE | Immune-related adverse events |
MALDI-TOF | Matrix-assisted laser desorption/ionization time-of-flight |
MS | Mass spectrometry |
ORR | Overall response rate |
References
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkrief, A.; Joubert, P.; Florescu, M.; Tehfe, M.; Blais, N.; Routy, B. Therapeutic landscape of metastatic non-small-cell lung cancer in Canada in 2020. Curr. Oncol. Tor. Ont. 2020, 27, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Esfahani, K.; Elkrief, A.; Calabrese, C.; Lapointe, R.; Hudson, M.; Routy, B.; Miller, W.H.; Calabrese, L. Moving towards personalized treatments of immune-related adverse events. Nat. Rev. Clin. Oncol. 2020, 17, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Routy, B.; Gopalakrishnan, V.; Daillère, R.; Zitvogel, L.; Wargo, J.A.; Kroemer, G. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 2018, 15, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Elkrief, A.; El Raichani, L.; Richard, C.; Messaoudene, M.; Belkaid, W.; Malo, J.; Belanger, K.; Miller, W.; Jamal, R.; Letarte, N.; et al. Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors. Oncoimmunology 2019, 8, e1568812. [Google Scholar] [CrossRef] [PubMed]
- Hakozaki, T.; Richard, C.; Elkrief, A.; Hosomi, Y.; Benlaïfaoui, M.; Mimpen, I.; Terrisse, S.; Derosa, L.; Zitvogel, L.; Routy, B.; et al. The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non-small cell lung cancer. Cancer Immunol. Res. 2020, 8, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.J.; Wearsch, P.A.; Veloo, A.C.M.; Rodriguez-Palacios, A. The genus Alistipes: Gut bacteria with emerging implications to inflammation, cancer, and mental health. Front. Immunol. 2020, 11, 906. [Google Scholar] [CrossRef] [PubMed]
- Shkoporov, A.N.; Chaplin, A.V.; Khokhlova, E.V.; Shcherbakova, V.A.; Motuzova, O.V.; Bozhenko, V.K.; Kafarskaia, L.I.; Efimov, B.A. Alistipes inops sp. nov. and Coprobacter secundus sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2015, 65, 4580–4588. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Ikeyama, N.; Ogata, Y.; Suda, W.; Iino, T.; Hattori, M.; Ohkuma, M. Alistipes communis sp. nov., Alistipes dispar sp. nov. and Alistipes onderdonkii subsp. Vulgaris subsp. nov., isolated from human faeces, and creation of Alistipes onderdonkii subsp. onderdonkii subsp. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Könönen, E.; Rautio, M.; Liu, C.; Bryk, A.; Eerola, E.; Finegold, S.M.Y. Alistipes onderdonkii Sp. nov. and Alistipes shahii sp. nov., of human origin. Int. J. Syst. Evol. Microbiol. 2006, 56, 1985–1990. [Google Scholar] [CrossRef]
- Rautio, M.; Eerola, E.; Väisänen-Tunkelrott, M.-L.; Molitoris, D.; Lawson, P.; Collins, M.D.; Jousimies-Somer, H. Reclassification of Bacteroides Putredinis (Weinberg et al., 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. Syst. Appl. Microbiol. 2003, 26, 182–188. [Google Scholar] [CrossRef]
- Lagier, J.-C.; Armougom, F.; Mishra, A.K.; Nguyen, T.-T.; Raoult, D.; Fournier, P.-E. Non-contiguous finished genome sequence and description of Alistipes timonensis sp. nov. Stand. Genom. Sci. 2012, 6, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagier, J.-C.; Armougom, F.; Million, M.; Hugon, P.; Pagnier, I.; Robert, C.; Bittar, F.; Fournous, G.; Gimenez, G.; Maraninchi, M.; et al. Microbial Culturomics: Paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 2012, 18, 1185–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16s rrna gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Babraham Bioinformatics—FastQC a Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 18 May 2021).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinforma. Oxf. Engl. 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pryszcz, L.P.; Gabaldón, T. Redundans: An assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 2016, 44, e113. [Google Scholar] [CrossRef]
- Challis, R.; Richards, E.; Rajan, J.; Cochrane, G.; Blaxter, M. BlobToolKit—Interactive quality assessment of genome assemblies. G3 Genes Genomes Genet. 2020, 10, 1361–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness. Methods Mol. Biol. Clifton NJ 2019, 1962, 227–245. [Google Scholar] [CrossRef]
- Li, W.; O’Neill, K.R.; Haft, D.H.; DiCuccio, M.; Chetvernin, V.; Badretdin, A.; Coulouris, G.; Chitsaz, F.; Derbyshire, M.K.; Durkin, A.S.; et al. RefSeq: Expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res. 2021, 49, D1020–D1028. [Google Scholar] [CrossRef]
- Galperin, M.Y.; Wolf, Y.I.; Makarova, K.S.; Vera Alvarez, R.; Landsman, D.; Koonin, E.V. COG Database update: Focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 2021, 49, D274–D281. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auch, A.F.; von Jan, M.; Klenk, H.-P.; Göker, M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 2010, 2, 117–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, A.K.; Gimenez, G.; Lagier, J.-C.; Robert, C.; Raoult, D.; Fournier, P.-E. Genome sequence and description of Alistipes senegalensis sp. nov. Stand. Genomic Sci. 2012, 6, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.M.; Konstantinidis, K.T. Bypassing cultivation to identify bacterial species: Culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Mag. 2014, 9, 111–118. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Ebers, J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 2006, 33, 152. [Google Scholar]
- Kim, M.; Oh, H.-S.; Park, S.-C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16s rrna gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, F.O.; Ludwig, W.; Schleifer, K.-H.; Whitman, W.B.; Euzéby, J.; Amann, R.; Rosselló-Móra, R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, A.M.M.; Kicinski, M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Khattak, A.; Carlino, M.S.; et al. Association between immune-related adverse events and recurrence-free survival among patients with stage iii melanoma randomized to receive pembrolizumab or placebo: A secondary analysis of a randomized clinical trial. JAMA Oncol. 2020, 6, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derosa, L.; Routy, B.; Thomas, A.M.; Iebba, V.; Zalcman, G.; Friard, S.; Mazieres, J.; Audigier-Valette, C.; Moro-Sibilot, D.; Goldwasser, F.; et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 2022, 28, 315–324. [Google Scholar] [CrossRef] [PubMed]
Character | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Indole production | + | w | + | w | + | w | + |
Nitrate reduction | − | − | − | − | − | − | − |
Catalase | + | + | − | − | − | + | + |
Aesculin hydrolysis | + | + | − | − | v | + | − |
Gelatin digestion | − | w | + | w | + | − | w |
Enzyme activities | |||||||
Alkaline phosphatase | + | + | + | + | + | w | + |
N-acetyl-β-glucosaminidase | + | + | + | + | + | + | − |
β-Galactosidase | + | + | + | + | + | + | − |
β-Glucosidase | + | w | − | − | − | + | − |
Fermentation of | |||||||
Cellobiose | + | w | w | w | w | + | − |
Glucose | + | w | + | w | w | + | − |
Lactose | + | + | + | + | w | + | − |
Mannitol | − | − | − | w | w | w | − |
Mannose | + | + | + | + | + | + | − |
Raffinose | + | + | w | + | w | + | − |
Rhamnose | + | w | − | w | + | + | − |
Major Fatty acids | iso-C15:0 anteiso-C15:0 iso-C17:0 | iso-C15:0 C15:0 C18:1ω9c | iso-C15:0 C18:1ω9c C16:0 | iso-C15:0 C18:1ω9c C16:0 | iso-C15:0 C18:1ω9c C16:0 | iso-C15:0 C18:1ω9c C16:0 | iso-C15:0 C18:1ω9c Summed feature |
Fatty Acids | Percent |
---|---|
iso-C11:0 | 0.35 |
iso-C13:0 | 0.30 |
iso-C14:0 | 0.82 |
C14:0 | 0.89 |
iso-C15:0 | 26.60 |
anteiso-C15:0 | 19.92 |
C15:0 w5C | 1.30 |
iso-C14:0 3OH | 0.55 |
iso-C16:0 | 4.42 |
C16:1 w9c | 0.31 |
C16:1 w5c | 0.23 |
C16:0 | 8.50 |
iso-C15:0 3OH | 1.76 |
C15:0 2OH | 0.77 |
iso-C17:1 w10c | 0.26 |
iso-C17:0 | 17.21 |
anteiso-C17:0 | 10.80 |
C16:0 3OH | 0.83 |
C18:3w6C | 0.19 |
iso-C18:0 | 0.24 |
C18:1w9C | 0.43 |
C18:0 | 1.42 |
iso-C17:0 3OH | 0.54 |
iso-C19:0 | 0.64 |
anteiso-C19:0 | 0.33 |
Code | Value | % Value | Description |
---|---|---|---|
J | 193 | 7.15 | Translation, ribosomal structure, and biogenesis |
A | 0 | 0 | RNA processing and modification |
K | 134 | 4.96 | Transcription |
L | 124 | 4.59 | Replication, recombination, and repair |
B | 0 | 0 | Chromatin structure and dynamics |
D | 50 | 1.85 | Cell cycle control, cell division, chromosome partitioning |
Y | 0 | 0 | Nuclear structure |
V | 53 | 1.96 | Defense mechanisms |
T | 183 | 6.78 | Signal transduction mechanisms |
M | 263 | 9.74 | Cell wall/membrane/envelope biogenesis |
N | 32 | 1.19 | Cell motility |
Z | 0 | 0 | Cytoskeleton |
W | 0 | 0 | Extracellular structures |
U | 34 | 1.26 | Intracellular trafficking, secretion, and vesicular |
O | 110 | 4.07 | Posttranslational modification, protein turnover, chaperones |
X | 15 | 0.56 | Mobilome: prophages, transposons |
C | 168 | 6.22 | Energy production and conversion |
G | 236 | 8.74 | Carbohydrate transport and metabolism |
E | 139 | 5.15 | Amino acid transport and metabolism |
F | 67 | 2.48 | Nucleotide transport and metabolism |
H | 113 | 4.19 | Coenzyme transport and metabolism |
I | 84 | 3.11 | Lipid transport and metabolism |
P | 174 | 6.44 | Inorganic ion transport and metabolism |
Q | 19 | 0.70 | Secondary metabolites biosynthesis, transport, and carbohydrate |
R | 197 | 7.30 | General function prediction only |
S | 70 | 2.59 | Function unknown |
- | 242 | 8.97 | Not in COGs |
Species | Strain | INSDC a Identifier | Size (Mb) | GC Percent | Gene Content |
---|---|---|---|---|---|
Alistipes montrealensis | kh20 | JAGYXY000000000.1 | 3.48 | 57.20 | 2700 |
Alistipes shahii | WAL 8301 | FP929032.1 | 3.76 | 57.20 | 3152 |
Alistipes finegoldii | DSM 17242 | CP003274.1 | 3.73 | 56.60 | 3236 |
Alistipes dispar | 5CPEGH6 | AP019736.1 | 2.96 | 61.30 | 2475 |
Alistipes onderdonkii | DSM 19147 | ARFY00000000.1 | 3.87 | 57.80 | 3217 |
Alistipes timonensis | DSM 25383 | FNRI00000000.1 | 3.49 | 58.80 | 2764 |
Alistipes putridinis | DSM 17216 | ABFK00000000.2 | 2.55 | 53.30 | 2334 |
A. montrealensis | A. shahii | A. finegoldii | A. dispar | A. onderdonkii | A. timonensis | A. putridinis | |
---|---|---|---|---|---|---|---|
A. montrealensis | − | 33.70 ± 2.50 | 24.60 ± 2.40 | 24.10 ± 2.35 | 23.60 ± 2.40 | 28.50 ± 2.40 | 21.70 ± 2.35 |
A. shahii | 86.35 | − | 30.50 ± 2.45 | 26.20 ± 2.45 | 29.80 ± 2.45 | 32.00 ± 2.50 | 26.00 ± 2.40 |
A. finegoldi | 78.92 | 81.98 | − | 24.00 ± 2.40 | 30.50 ± 2.45 | 24.90 ± 2.40 | 25.10 ± 2.40 |
A. dispar | 79.15 | 80.59 | 79.00 | − | 23.40 ± 2.40 | 24.70 ± 2.40 | 23.30 ± 2.40 |
A. onderdonkii | 78.62 | 82.23 | 83.47 | 78.62 | − | 24.80 ± 2.40 | 24.40 ± 2.40 |
A. timonensis | 83.03 | 84.76 | 79.55 | 83.03 | 79.39 | − | 21.40 ± 2.35 |
A. putrididnis | 74.18 | 75.19 | 75.87 | 75.04 | 75.16 | 74.29 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Routy, B.; Richard, C.; Benlaïfaoui, M.; Lapierre, S.G.; Armstrong, N.; Al-Saleh, A.; Boko, M.; Jacq, M.; Watson, I.R.; Mihalcioiu, C.; et al. Characterization of Alistipes montrealensis sp. nov., Isolated from Human Feces of a Patient with Metastatic Melanoma Treated with Immune Checkpoint Inhibitors. Microbiol. Res. 2022, 13, 140-151. https://doi.org/10.3390/microbiolres13010012
Routy B, Richard C, Benlaïfaoui M, Lapierre SG, Armstrong N, Al-Saleh A, Boko M, Jacq M, Watson IR, Mihalcioiu C, et al. Characterization of Alistipes montrealensis sp. nov., Isolated from Human Feces of a Patient with Metastatic Melanoma Treated with Immune Checkpoint Inhibitors. Microbiology Research. 2022; 13(1):140-151. https://doi.org/10.3390/microbiolres13010012
Chicago/Turabian StyleRouty, Bertrand, Corentin Richard, Myriam Benlaïfaoui, Simon Grandjean Lapierre, Nicholas Armstrong, Afnan Al-Saleh, Mélodie Boko, Maxime Jacq, Ian R. Watson, Catalin Mihalcioiu, and et al. 2022. "Characterization of Alistipes montrealensis sp. nov., Isolated from Human Feces of a Patient with Metastatic Melanoma Treated with Immune Checkpoint Inhibitors" Microbiology Research 13, no. 1: 140-151. https://doi.org/10.3390/microbiolres13010012
APA StyleRouty, B., Richard, C., Benlaïfaoui, M., Lapierre, S. G., Armstrong, N., Al-Saleh, A., Boko, M., Jacq, M., Watson, I. R., Mihalcioiu, C., Elkrief, A., Tidjani Alou, M., Messaoudene, M., & Diop, K. (2022). Characterization of Alistipes montrealensis sp. nov., Isolated from Human Feces of a Patient with Metastatic Melanoma Treated with Immune Checkpoint Inhibitors. Microbiology Research, 13(1), 140-151. https://doi.org/10.3390/microbiolres13010012