Interactive Inhibition of Aflatoxigenic Aspergillus flavus and Ochratoxigenic Aspergillus carbonarius by Aspergillus oryzae under Fluctuating Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Mycological Media
2.3. Inoculum Preparation
2.4. Inoculation and Incubation
2.5. Growth Assessment
2.6. AFB1 and OTA Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Competitive Interaction between Fungi
3.2. Interaction between Toxigenic and Non-Toxigenic Species on Chili-Based Agar
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, J. Mycotoxins, Mycotoxicoses, Mycotoxicology and Mycopathologia. Mycopathologia 1987, 100, 3–5. [Google Scholar] [CrossRef]
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef]
- El Khoury, A.; Atoui, A. Ochratoxin A: General overview and actual molecular status. Toxins 2010, 2, 461–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, F.; Frisvad, J. Penicillium verrucosum in cereals indicates production of ochratoxin A. J. Appl. Microbiol. 2003, 95, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisen, R.; Mayer, Z.; Karolewiez, A.; Färber, P. Development of a real time PCR system for detection of Penicillium nordicum and for monitoring ochratoxin A production in foods by targeting the ochratoxin polyketide synthase gene. Syst. Appl. Microbiol. 2004, 27, 501–507. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Frank, J.M.; Houbraken, J.; Kuijpers, A.F.; Samson, R.A. New ochratoxin A producing species of Aspergillus section Circumdati. Stud. Mycol. 2004, 50, 23–43. [Google Scholar]
- Horie, Y. Productivity of ochratoxin A of Aspergillus carbonarius in Aspergillus section Nigri. Nippon Kingakukai Kaiho 1995, 36, 73–76. [Google Scholar]
- Magnoli, C.; Violante, M.; Combina, M.; Palacio, G.; Dalcero, A. Mycoflora and ochratoxin-producing strains of Aspergillus section Nigri in wine grapes in Argentina. Lett. Appl. Microbiol. 2003, 37, 179–184. [Google Scholar] [CrossRef]
- Wikandari, R.; Mayningsih, I.C.; Sari, M.D.P.; Purwandari, F.A.; Setyaningsih, W.; Rahayu, E.S.; Taherzadeh, M.J. Assessment of Microbiological Quality and Mycotoxin in Dried Chili by Morphological Identification, Molecular Detection, and Chromatography Analysis. Int. J. Environ. Res. Public Health 2020, 17, 1847. [Google Scholar] [CrossRef] [Green Version]
- Jalili, M.; Jinap, S. Natural occurrence of aflatoxins and ochratoxin A in commercial dried chili. Food Control 2012, 24, 160–164. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Paterson, R.R.M.; Bhatti, I.A.; Asi, M.R.; Sheikh, M.A.; Bhatti, H.N. Aflatoxin B1 in chilies from the Punjab region, Pakistan. Mycotoxin Res. 2010, 26, 205–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, M.; Harris, J.; Afreen, S.; Deak, E.; Gade, L.; Balajee, S.A.; Park, B.; Chiller, T.; Luby, S. Aflatoxin contamination in food commodities in Bangladesh. Food Addit. Contam. Part B 2013, 6, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Hammami, W.; Fiori, S.; Al Thani, R.; Kali, N.A.; Balmas, V.; Migheli, Q.; Jaoua, S. Fungal and aflatoxin contamination of marketed spices. Food Control 2014, 37, 177–181. [Google Scholar] [CrossRef]
- Gherbawy, Y.A.; Shebany, Y.M.; Hussein, M.A.; Maghraby, T.A. Molecular detection of mycobiota and aflatoxin contamination of chili. Arch. Biol. Sci. 2015, 67, 223–234. [Google Scholar] [CrossRef]
- Chuaysrinule, C.; Maneeboon, T.; Roopkham, C.; Mahakarnchanakul, W. Occurrence of aflatoxin-and ochratoxin A-producing Aspergillus species in Thai dried chilli. J. Agric. Food Res. 2020, 2, 100054. [Google Scholar] [CrossRef]
- Tominaga, M.; Lee, Y.-H.; Hayashi, R.; Suzuki, Y.; Yamada, O.; Sakamoto, K.; Gotoh, K.; Akita, O. Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strains. Appl. Environ. Microbiol. 2006, 72, 484–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-Z.; Liou, G.-Y.; Yuan, G.-F. Comparison of the aflR gene sequences of strains in Aspergillus section Flavi. Microbiology 2006, 152, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Varga, J.; Frisvad, J.C.; Samson, R. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud. Mycol. 2011, 69, 57–80. [Google Scholar] [CrossRef]
- Santos, L.; Marín, S.; Sanchis, V.; Ramos, A. Capsicum and mycotoxin contamination: State of the art in a global context. Food Sci. Technol. Int. 2008, 14, 5–20. [Google Scholar] [CrossRef]
- Abe, K.; Gomi, K.; Hasegawa, F.; Machida, M. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 2006, 162, 143. [Google Scholar] [CrossRef]
- Machida, M.; Asai, K.; Sano, M.; Tanaka, T.; Kumagai, T.; Terai, G.; Kusumoto, K.-I.; Arima, T.; Akita, O.; Kashiwagi, Y. Genome sequencing and analysis of Aspergillus oryzae. Nature 2005, 438, 1157–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshannaq, A.F.; Gibbons, J.G.; Lee, M.-K.; Han, K.-H.; Hong, S.-B.; Yu, J.-H. Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.R.; Yang, S.M.; Cho, S.M.; Kim, M.; Hong, S.-Y.; Chung, S.H. Aflatoxin B1 detoxification by Aspergillus oryzae from Meju, a traditional Korean fermented soybean starter. J. Microbiol. Biotechnol. 2017, 27, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Sun, X.; Li, Y.; Yang, Z.; Wang, H. Biocontrol of Aflatoxin B1 by Non-Toxigenic Aspergillus Spp. Isolated from The Chinese Soybean Paste. Fresenius Environ. Bull. 2012, 21, 2256–2264. [Google Scholar]
- Köhl, J.; Postma, J.; Nicot, P.; Ruocco, M.; Blum, B. Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol. Control 2011, 57, 1–12. [Google Scholar] [CrossRef]
- Dorner, J.W.; Cole, R.J.; Connick, W.J.; Daigle, D.J.; McGuire, M.R.; Shasha, B.S. Evaluation of biological control formulations to reduce aflatoxin contamination in peanuts. Biol. Control 2003, 26, 318–324. [Google Scholar] [CrossRef]
- Dimakopoulou, M.; Tjamos, S.E.; Antoniou, P.P.; Pietri, A.; Battilani, P.; Avramidis, N.; Markakis, E.A.; Tjamos, E.C. Phyllosphere grapevine yeast Aureobasidium pullulans reduces Aspergillus carbonarius (sour rot) incidence in wine-producing vineyards in Greece. Biol. Control 2008, 46, 158–165. [Google Scholar] [CrossRef]
- Shantha, T. Fungal degradation of Aflatoxin B1. Nat. Toxins 1999, 7, 175–178. [Google Scholar] [CrossRef]
- Deng, J.-J.; Huang, W.-Q.; Li, Z.-W.; Lu, D.-L.; Zhang, Y.; Luo, X.C. Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzym. Microb. Technol. 2018, 112, 35–42. [Google Scholar] [CrossRef]
- Peromingo, B.; Andrade, M.J.; Delgado, J.; Sánchez-Montero, L.; Núñez, F. Biocontrol of aflatoxigenic Aspergillus parasiticus by native Debaryomyces hansenii in dry-cured meat products. Food Microbiol. 2019, 82, 269–276. [Google Scholar] [CrossRef]
- Chatterjee, S.; Kuang, Y.; Splivallo, R.; Chatterjee, P.; Karlovsky, P. Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: Fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiol. 2016, 16, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvetnić, Z.; Pepeljnjak, S. Interaction between certain moulds and aflatoxin B1 producer Aspergillus flavus NRRL 3251. Arh Hig Rada Tokiskol 2007, 58, 429–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losada, L.; Ajayi, O.; Frisvad, J.C.; Yu, J.; Nierman, W.C. Effect of competition on the production and activity of secondary metabolites in Aspergillus species. Med. Mycol. 2009, 47, S88–S96. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.; Bullerman, L.B. Effect of cycling temperatures on the production of Deoxynivalenol and Zearalenone by Fusarium graminearum NRRL 5883. J. Food Prot. 1999, 62, 1451–1455. [Google Scholar] [CrossRef] [PubMed]
- Park, K.Y.; Bullerman, L.B. Effect of cycling temperatures on aflatoxin production by Aspergillus parasiticus and Aspergillus flavus in rice and cheddar cheese. J. Food Sci. 1983, 48, 889–896. [Google Scholar] [CrossRef]
- Lin, Y.C.; Ayres, J.C.; Koehler, P.E. Influence of temperature cycling on the production of Aflatoxins B1 and G1 by Aspergillus parasiticus. Appl. Environ. Microbiol. 1980, 40, 333–336. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Cabrera, H.; Taniwaki, M.H.; Menezes, H.C.; Iamanaka, B.T. The production of ochratoxin A by Aspergillus ochraceus in raw coffee at different equilibrium relative humidity and under alternating temperatures. Food Control 2004, 15, 531–535. [Google Scholar] [CrossRef]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Springer: Boston, MA, 2009; Volume 519. [Google Scholar]
- Marín, S.; Colom, C.; Sanchis, V.; Ramos, A.J. Modelling of growth of aflatoxigenic A. flavus isolates from red chilli powder as a function of water availability. Int. J. Food Microbiol. 2009, 128, 491–496. [Google Scholar] [CrossRef]
- Lahouar, A.; Marin, S.; Crespo-Sempere, A.; Saïd, S.; Sanchis, V. Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds. Rev. Argent. De Microbiol. 2016, 48, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Southeast-Asia-START-Regional-Center. Preparation of Climate Change Scenarios for Climate Change Impact Assessment in Thailand; Available online: http://startcc.iwlearn.org/doc/Doc_eng_15.pdf (accessed on 20 February 2019).
- AOAC. AOAC Official Methods of Analysis. In Natural Toxins-Chapter 49; AOAC Int.: Washington, DC, USA, 2005; pp. 1–85. [Google Scholar]
- AOAC. Method 991.31-1994. Aflatoxins in corn, raw peanuts, and peanut butter immunoaffinity column (AflaTest) method. J. AOAC Int. 2002, 42, 2–18. [Google Scholar]
- Giorni, P.; Battilani, P.; Pietri, A.; Magan, N. Effect of aw and CO2 level on Aspergillus flavus growth and aflatoxin production in high moisture maize post-harvest. Int. J. Food Microbiol. 2008, 122, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Kogkaki, E.A.; Natskoulis, P.I.; Magan, N.; Panagou, E.Z. Effect of interaction between Aspergillus carbonarius and non-ochratoxigenic grape-associated fungal isolates on growth and ochratoxin A production at different water activities and temperatures. Food Microbiol. 2015, 46, 521–527. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, Â.B.; Corrêa, I.P.; Furuie, J.L.; de Farias Pires, T.; do Rocio Dalzoto, P.; Pimentel, I.C. Inhibition of growth and ochratoxin A production in Aspergillus species by fungi isolated from coffee beans. Braz. J. Microbiol. 2019, 50, 1091–1098. [Google Scholar] [CrossRef]
- Skouri-Gargouri, H.; Gargouri, A. First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus. Peptides 2008, 29, 1871–1877. [Google Scholar] [CrossRef] [PubMed]
- Valero, A.; Farré, J.R.; Sanchis, V.; Ramos, A.J.; Marín, S. Effects of fungal interaction on ochratoxin A production by A. carbonarius at different temperatures and aw. Int. J. Food Microbiol. 2006, 110, 160–164. [Google Scholar] [CrossRef]
- Fox, E.M.; Howlett, B.J. Secondary metabolism: Regulation and role in fungal biology. Curr. Opin. Microbiol. 2008, 11, 481–487. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D. Why do fungi produce mycotoxins? In Food Mycology: A Multifaceted Approach to Fungi and Food; Dijksterhuis, J., Samson, R.A., Eds.; CRC Press/Taylor and Francis Group: New York, NY, USA, 2007; Volume 25, pp. 121–133. [Google Scholar]
- Horn, B.W.; Dorner, J.W. Effect of competition and adverse culture conditions on aflatoxin production by Aspergillus flavus through successive generations. Mycologia 2002, 94, 741–751. [Google Scholar] [CrossRef]
- Schmidt-Heydt, M.; Magan, N.; Geisen, R. Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol. Lett. 2008, 284, 142–149. [Google Scholar] [CrossRef] [Green Version]
- OBrian, G.; Georgianna, D.; Wilkinson, J.; Yu, J.; Abbas, H.; Bhatnagar, D.; Cleveland, T.; Nierman, W.; Payne, G. The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia 2007, 99, 232–239. [Google Scholar] [CrossRef]
- Schmidt-Heydt, M.; Abdel-Hadi, A.; Magan, N.; Geisen, R. Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. Int. J. Food Microbiol. 2009, 135, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Passamani, F.R.F.; Hernandes, T.; Lopes, N.A.; Bastos, S.C.; Santiago, W.D.; Cardoso, M.d.G.; Batista, L.R. Effect of temperature, water activity, and pH on growth and production of ochratoxin A by Aspergillus niger and Aspergillus carbonarius from Brazilian grapes. J. Food Prot. 2014, 77, 1947–1952. [Google Scholar] [CrossRef] [PubMed]
- Gomi, K. Aspergillus: Aspergillus oryzae. In Encyclopedia of Food Microbiology: Second Edition; Batt, C.A., Tortorello, M.L., Eds.; Elsevier Inc.: San Diego, CA, USA, 2014; pp. 92–96. [Google Scholar]
- La Penna, M.; Etcheverry, M. Impact on growth and aflatoxin B1 accumulation by Kluyveromyces isolates at different water activity conditions. Mycopathologia 2006, 162, 347–353. [Google Scholar] [CrossRef] [PubMed]
Temperature (°C) | AFB1 (ng/g) | ||
---|---|---|---|
A. flavus | A. flavus + A. oryzae | A. flavus + A. carbonarius | |
20 | 2855.4 ± 9.2 b,A | 227.2.± 20.6 bc,B | 340.7 ± 7.4 b,B |
30 | 5310.8 ± 1414.4 a,A | 317.3 ± 85.4 ab,B | 364.6 ± 13.7 a,B |
35 | 2719.6± 707.2 b,A | 298.2 ± 70.1 b,B | 222.7 ± 5.1 c,B |
40 | 118 ± 14.7 c,B | 174.7 ± 25.9 c,B | 265.1 ± 8.9 b,A |
Temperature (°C) | OTA (ng/g) | ||
A. carbonarius | A. carbonarius+ A. oryzae | A. carbonarius+ A. flavus | |
20 | 21,469.9 ± 80.2 a,A | 11,765.1 ± 98.3 a,C | 16,360.63 ± 67 a,B |
30 | 83,38.5 ± 86.5 bc,A | 2876.5 ± 183.7 b,C | 3901.7 ± 105.7 b,B |
35 | 7233.5 ± 970.6 c,A | 350 ± 0.8 c,C | 727.2 ± 170.3 c,B |
40 | NA | 511.3 ± 66.7 c,B | 998.7 ± 75.4 c,A |
Temperature (°C) | AFB1 (ng/g) | ||
---|---|---|---|
A. flavus | A. flavus + A. oryzae | A. flavus + A. carbonarius | |
20/30 | 1495.9 ± 94.4 ab,A | ND | 194.7 ± 1.53 b,B |
20/35 | 295 ± 30.6 b,A | 416.3 ± 22.5 a,A | 324 ± 12.18 ab,A |
20/40 | 251 ± 17 b,A | 329.6 ± 25.1 ab,A | 350.3 ± 21.5 a,A |
Temperature (°C) | OTA (ng/g) | ||
A. carbonarius | A. carbonarius + A. oryzae | A. carbonarius + A. flavus | |
20/30 | 12,799.3 ± 3000.9 a,A | 8394 ± 354.7 a,C | 11,957.3 ± 300.6 a,B |
20/35 | 7725.5 ± 1233.7 b,A | 3409.4 ± 180.2 b,C | 8042.3 ± 572.1 b,B |
20/40 | 2080.5 ± 239.6 c,B | 1604.2 ± 122.9 c,C | 3693.4 ± 74.4 c,A |
Temperature (°C) | aw | Strains | AFB1 (ng/g) | Conversion Rate (%) * | |
---|---|---|---|---|---|
Day 4 | Day 7 | ||||
20 | 0.92 | A. flavus | ND | ND | |
Dual cultures | ND | ND | - | ||
0.97 | A. flavus | ND | 912.57 ± 4.19 | ||
Dual cultures | ND | ND | −100 | ||
40 | 0.92 | A. flavus | ND | 3503.23 ± 97.94 a | |
Dual cultures | ND | 3174.87 ± 14.04 b | −9.37 | ||
0.97 | A. flavus | ND | 2641.76 ± 170.3 a | ||
Dual cultures | ND | 2286.23 ± 300.6 a | −14.43 | ||
Temperature (°C) | aw | Strains | OTA (ng/g) | Conversion rate (%) * | |
Day 4 | Day 7 | ||||
20 | 0.92 | A. carbonarius | ND | 141,354.6 ± 89.06 a | |
Dual cultures | ND | 80,253.01 ± 52.93 b | −43.23 | ||
0.97 | A. carbonarius | ND | 446,221.61 ± 30.26 a | ||
Dual cultures | ND | 140,929.05 ± 62.78 b | −68.42 | ||
40 | 0.92 | A. carbonarius | NA | NA | |
Dual cultures | NA | NA | - | ||
0.97 | A. carbonarius | NA | NA | ||
Dual cultures | NA | NA | - |
Temperature (°C) | aw | Strains | AFB1 (ng/g) | Conversion Rate (%) * | |
---|---|---|---|---|---|
Day 4 | Day 7 | ||||
20/40 | 0.92 | A. flavus | ND | 4093.15 ± 190 b | |
Dual cultures | ND | 4512.01 ± 21.03 a | +10.23 | ||
0.97 | A. flavus | 3804.52 ± 126.23 | 4837.44 ± 68.02 a | ||
Dual cultures | ND | 37.49 ± 16.90 b | −99.23 | ||
Temperature (°C) | aw | Strains | OTA (ng/g) | Conversion rate (%) * | |
Day 4 | Day 7 | ||||
20/40 | 0.92 | A. carbonarius | NA | NA | |
Dual cultures | NA | NA | - | ||
0.97 | A. carbonarius | ND | 37,748.06 ± 37.65 a | ||
Dual cultures | ND | 21,806.01 ± 16.49 b | −42.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dwipa, R.P.U.; Maneeboon, T.; Chuaysrinule, C.; Mahakarnchanakul, W. Interactive Inhibition of Aflatoxigenic Aspergillus flavus and Ochratoxigenic Aspergillus carbonarius by Aspergillus oryzae under Fluctuating Temperatures. Microbiol. Res. 2022, 13, 114-127. https://doi.org/10.3390/microbiolres13010009
Dwipa RPU, Maneeboon T, Chuaysrinule C, Mahakarnchanakul W. Interactive Inhibition of Aflatoxigenic Aspergillus flavus and Ochratoxigenic Aspergillus carbonarius by Aspergillus oryzae under Fluctuating Temperatures. Microbiology Research. 2022; 13(1):114-127. https://doi.org/10.3390/microbiolres13010009
Chicago/Turabian StyleDwipa, Retty Putri Utami, Thanapoom Maneeboon, Chananya Chuaysrinule, and Warapa Mahakarnchanakul. 2022. "Interactive Inhibition of Aflatoxigenic Aspergillus flavus and Ochratoxigenic Aspergillus carbonarius by Aspergillus oryzae under Fluctuating Temperatures" Microbiology Research 13, no. 1: 114-127. https://doi.org/10.3390/microbiolres13010009
APA StyleDwipa, R. P. U., Maneeboon, T., Chuaysrinule, C., & Mahakarnchanakul, W. (2022). Interactive Inhibition of Aflatoxigenic Aspergillus flavus and Ochratoxigenic Aspergillus carbonarius by Aspergillus oryzae under Fluctuating Temperatures. Microbiology Research, 13(1), 114-127. https://doi.org/10.3390/microbiolres13010009