Isolation of a Multidrug-Resistant vanA-Positive Enterococcus faecium Strain from a Canine Clinical Sample in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of the Isolate
2.2. Antibiotic Susceptibility Testing
2.3. Molecular Screening for Vancomycin-Resistance Genes
3. Results
3.1. Antibiotic Susceptibility Testing
3.2. Multiplex PCR
4. Discussion
4.1. The Importance of Glycopeptide Resistance in a Canine Clinical Isolate
- The first report of a VREf isolate from a companion animal.
- The first report of a VREf isolate causing an infection in any animal.
4.2. Possible Factors Enhancing the Prevalence of VRE in a Companion Animal
4.3. Previous Research and Relevant Data in Greece
4.4. Fosfomycin Resistance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, E.; Van Tyne, D.; Gilmore, M.S. Pathogenicity of Enterococci. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Zhen, X.; Lundborg, C.S.; Sun, X.; Hu, X.; Dong, H. Economic Burden of Antibiotic Resistance in ESKAPE Organisms: A Systematic Review. Antimicrob. Resist. Infect. Control 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Devriese, L.A.; Ieven, M.; Goossens, H.; Vandamme, P.; Pot, B.; Hommez, J.; Haesebrouck, F. Presence of Vancomycin-Resistant Enterococci in Farm and Pet Animals. Antimicrob. Agents Chemother. 1996, 40, 2285–2287. [Google Scholar] [CrossRef] [Green Version]
- Iseppi, R.; Messi, P.; Anacarso, I.; Bondi, M.; Sabia, C.; Condò, C.; de Niederhausern, S. Antimicrobial resistance and virulence traits in Enterococcus strains isolated from dogs and cats. New Microbiol. 2015, 38, 369–378. [Google Scholar] [PubMed]
- Bertelloni, F.; Salvadori, C.; Lotti, G.; Cerri, D.; Ebani, V.V. Antimicrobial Resistance in Enterococcus Strains Isolated from Healthy Domestic Dogs. Acta Microbiol. Immunol. Hung. 2016, 64, 301–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillay, S.; Zishiri, O.T.; Adeleke, M.A. Prevalence of Virulence Genes in Enterococcus Species Isolated from Companion Animals and Livestock. Onderstepoort J. Vet. Res. 2018, 85, e1–e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iseppi, R.; Di Cerbo, A.; Messi, P.; Sabia, C. Antibiotic Resistance and Virulence Traits in Vancomycin-Resistant Enterococci (VRE) and Extended-Spectrum β-Lactamase/AmpC-Producing (ESBL/AmpC) Enterobacteriaceae from Humans and Pets. Antibiotics 2020, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Trościańczyk, A.; Nowakiewicz, A.; Gnat, S.; Łagowski, D.; Osińska, M. Are Dogs and Cats a Reservoir of Resistant and Virulent Enterococcus Faecalis Strains and a Potential Threat to Public Health? J. Appl. Microbiol. 2021, 131, 2061–2071. [Google Scholar] [CrossRef]
- Stępień-Pyśniak, D.; Bertelloni, F.; Dec, M.; Cagnoli, G.; Pietras-Ożga, D.; Urban-Chmiel, R.; Ebani, V.V. Characterization and Comparison of Enterococcus Spp. Isolates from Feces of Healthy Dogs and Urine of Dogs with UTIs. Animals 2021, 11, 2845. [Google Scholar] [CrossRef]
- Simjee, S.; White, D.G.; McDermott, P.F.; Wagner, D.D.; Zervos, M.J.; Donabedian, S.M.; English, L.L.; Hayes, J.R.; Walker, R.D. Characterization of Tn 1546 in Vancomycin-Resistant Enterococcus Faecium Isolated from Canine Urinary Tract Infections: Evidence of Gene Exchange between Human and Animal Enterococci. J. Clin. Microbiol. 2002, 40, 4659–4665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasotto, D.; Dotto, G.; Menandro, M.L.; Mondin, A.; Martini, M. Prevalence and Antimicrobial-Resistance Characterization of Vancomycin Resistant Enterococci (VRE) Strains in Healthy Household Dogs in Italy. Int. J. Infect. Dis. 2016, 53, 50. [Google Scholar] [CrossRef] [Green Version]
- van den Bunt, G.; Top, J.; Hordijk, J.; de Greeff, S.C.; Mughini-Gras, L.; Corander, J.; van Pelt, W.; Bonten, M.J.M.; Fluit, A.C.; Willems, R.J.L. Intestinal Carriage of Ampicillin- and Vancomycin-Resistant Enterococcus Faecium in Humans, Dogs and Cats in the Netherlands. J. Antimicrob. Chemother. 2018, 73, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Ko, H.J.; Yang, M.H.; Park, C.; Park, S.C. Antibiotic Resistance and Species Profile of Enterococcus Species in Dogs with Chronic Otitis Externa. Vet. Sci. 2022, 9, 592. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef]
- Sifaoui, F.; Arthur, M.; Rice, L.; Gutmann, L. Role of Penicillin-Binding Protein 5 in Expression of Ampicillin Resistance and Peptidoglycan Structure in Enterococcus faecium. Antimicrob. Agents Chemother. 2001, 45, 2594–2597. [Google Scholar] [CrossRef] [Green Version]
- Arbeloa, A.; Segal, H.; Hugonnet, J.E.; Josseaume, N.; Dubost, L.; Brouard, J.P.; Gutmann, L.; Mengin-Lecreulx, D.; Arthur, M. Role of class A penicillin-binding proteins in PBP5-mediated beta-lactam resistance in Enterococcus faecalis. J. Bacteriol. 2004, 186, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
- Fontana, R.; Aldegheri, M.; Ligozzi, M.; Lopez, H.; Sucari, A.; Satta, G. Overproduction of a Low-Affinity Penicillin-Binding Protein and High-Level Ampicillin Resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 1994, 38, 1980–1983. [Google Scholar] [CrossRef] [Green Version]
- Rice, L.B.; Bellais, S.; Carias, L.L.; Hutton-Thomas, R.; Bonomo, R.A.; Caspers, P.; Page, M.G.; Gutmann, L. Impact of specific pbp5 mutations on expression of beta-lactam resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 2004, 48, 3028–3032. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance in Enterococci. Expert Rev. Anti Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef]
- Reynolds, P.E. Structure, Biochemistry and Mechanism of Action of Glycopeptide Antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 1989, 8, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Courvalin, P. Vancomycin Resistance in Gram-Positive Cocci. Clin. Infect. Dis. 2006, 42, S25–S34. [Google Scholar] [CrossRef] [PubMed]
- Stogios, P.J.; Savchenko, A. Molecular Mechanisms of Vancomycin Resistance. Protein Sci. 2020, 29, 654–669. [Google Scholar] [CrossRef] [PubMed]
- Vakulenko, S.B.; Donabedian, S.M.; Voskresenskiy, A.M.; Zervos, M.J.; Lerner, S.A.; Chow, J.W. Multiplex PCR for Detection of Aminoglycoside Resistance Genes in Enterococci. Antimicrob. Agents Chemother. 2003, 47, 1423–1426. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.W. Aminoglycoside Resistance in Enterococci. Clin. Infect. Dis. 2000, 31, 586–589. [Google Scholar] [CrossRef] [Green Version]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [Green Version]
- López, M.; Tenorio, C.; Del Campo, R.; Zarazaga, M.; Torres, C. Characterization of the Mechanisms of Fluoroquinolone Resistance in Vancomycin-Resistant Enterococci of Different Origins. J. Chemother. 2011, 23, 87–91. [Google Scholar] [CrossRef]
- Kristich, C.J.; Wells, C.L.; Dunny, G.M. A Eukaryotic-Type Ser/Thr Kinase in Enterococcus Faecalis Mediates Antimicrobial Resistance and Intestinal Persistence. Proc. Natl. Acad. Sci. USA 2007, 104, 3508–3513. [Google Scholar] [CrossRef] [Green Version]
- Portillo, A.; Ruiz-Larrea, F.; Zarazaga, M.; Alonso, A.; Martinez, J.L.; Torres, C. Macrolide Resistance Genes in Enterococcus spp. Antimicrob. Agents Chemother. 2000, 44, 967–971. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibillity Testing, 32nd ed.; Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022; ISBN 978-1-68440-134-5. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 6th ed.; Supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Depardieu, F.; Perichon, B.; Courvalin, P. Detection of the van Alphabet and Identification of Enterococci and Staphylococci at the Species Level by Multiplex PCR. J. Clin. Microbiol. 2004, 42, 5857–5860. [Google Scholar] [CrossRef] [Green Version]
- Tzavaras, I.; Siarkou, V.I.; Zdragas, A.; Kotzamanidis, C.; Vafeas, G.; Bourtzi-Hatzopoulou, E.; Pournaras, S.; Sofianou, D. Diversity of VanA-Type Vancomycin-Resistant Enterococcus Faecium Isolated from Broilers, Poultry Slaughterers and Hospitalized Humans in Greece. J. Antimicrob. Chemother. 2012, 67, 1811–1818. [Google Scholar] [CrossRef] [PubMed]
- Lautenbach, E.; Schuster, M.G.; Bilker, W.B.; Brennan, P.J. The Role of Chloramphenicol in the Treatment of Bloodstream Infection Due to Vancomycin-Resistant Enterococcus. Clin. Infect. Dis. 1998, 27, 1259–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scapellato, P.G.; Ormazabal, C.; Scapellato, J.L.; Bottaro, E.G. Meningitis Due to Vancomycin-Resistant Enterococcus Faecium Successfully Treated with Combined Intravenous and Intraventricular Chloramphenicol. J. Clin. Microbiol. 2005, 43, 3578–3579. [Google Scholar] [CrossRef] [Green Version]
- Linden, P.K. Treatment Options for Vancomycin- Resistant Enterococcal Infections. Drugs 2002, 62, 425–441. [Google Scholar] [CrossRef]
- Lautenbach, E.; Gould, C.V.; LaRosa, L.A.; Marr, A.M.; Nachamkin, I.; Bilker, W.B.; Fishman, N.O. Emergence of Resistance to Chloramphenicol among Vancomycin-Resistant Enterococcal (VRE) Bloodstream Isolates. Int. J. Antimicrob. Agents 2004, 23, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Herrero, I.A.; Fernández-Garayzábal, J.F.; Moreno, M.A.; Domínguez, L. Dogs Should Be Included in Surveillance Programs for Vancomycin-Resistant Enterococci. J. Clin. Microbiol. 2004, 42, 1384–1385. [Google Scholar] [CrossRef] [Green Version]
- De Graef, E.M.; Decostere, A.; Devriese, L.A.; Haesebrouck, F. Antibiotic Resistance among Fecal Indicator Bacteria from Healthy Individually Owned and Kennel Dogs. Microb. Drug Resist. 2004, 10, 65–69. [Google Scholar] [CrossRef]
- Leener, E.D.; Decostere, A.; De Graef, E.M.; Moyaert, H.; Haesebrouck, F. Presence and Mechanism of Antimicrobial Resistance among Enterococci from Cats and Dogs. Microb. Drug Resist. 2005, 11, 395–403. [Google Scholar] [CrossRef]
- Damborg, P.; Top, J.; Hendrickx, A.P.A.; Dawson, S.; Willems, R.J.L.; Guardabassi, L. Dogs Are a Reservoir of Ampicillin-Resistant Enterococcus Faecium Lineages Associated with Human Infections. Appl. Environ. Microbiol. 2009, 75, 2360–2365. [Google Scholar] [CrossRef] [Green Version]
- Van Belkun, A.; van den Braak, N.; Thomassen, R.; Verbrugh, H.; Endtz, H. Vancomycin-resistant enterococci in cats and dogs. Lancet 1996, 348, 1038–1039. [Google Scholar] [CrossRef]
- Manson, J.M.; Keis, S.; Smith, J.M.B.; Cook, G.M. Characterization of a Vancomycin-Resistant Enterococcus Faecalis (VREF) Isolate from a Dog with Mastitis: Further Evidence of a Clonal Lineage of VREF in New Zealand. J. Clin. Microbiol. 2003, 41, 3331–3333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, Y.; Kirby, B.M.; Karczmarczyk, M.; Markey, B.K.; Leonard, F.C.; Fitzgerald, S. High-Level Gentamicin-Resistant and Vancomycin-Resistant Enterococcus Faecium Isolated from a Wound in a Dog. J. Small Anim. Pract. 2009, 50, 194–197. [Google Scholar] [CrossRef]
- Aslantaş, Ö.; Tek, E. Köpek ve Kedilerden Ampisilin ve Vankomisin Dirençli Enterococcus Faecium İzolasyonu. Kafkas Univ. Vet. Fak. Derg. 2018. [Google Scholar] [CrossRef]
- Rodrigues, J.; Poeta, P.; Martins, A.; Costa, D. The Importance of Pets as Reservoirs of Resistant Enterococcus Strains, with Special Reference to Vancomycin. J. Vet. Med. Ser. B 2002, 49, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.; Neto, I.; Correia, J.H.D.; Pomba, C. Antimicrobial Resistance and Evaluation of Susceptibility Testing among Pathogenic Enterococci Isolated from Dogs and Cats. Int. J. Antimicrob. Agents 2007, 30, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.R.; Fedorka-Cray, P.J.; Davis, J.A.; Barrett, J.B.; Frye, J.G. Prevalence, Species Distribution and Antimicrobial Resistance of Enterococci Isolated from Dogs and Cats in the United States: Enterococci from Dogs and Cats in the USA. J. Appl. Microbiol. 2009, 107, 1269–1278. [Google Scholar] [CrossRef]
- Chung, Y.S.; Kwon, K.H.; Shin, S.; Kim, J.H.; Park, Y.H.; Yoon, J.W. Characterization of Veterinary Hospital-Associated Isolates of Enterococcus Species in Korea. J. Microbiol. Biotechnol. 2014, 24, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, Y.; Umino, Y.; Ochi, H.; Harada, K.; Sawada, T. Antimicrobial Susceptibility of Enterococcal Species Isolated from Antibiotic-Treated Dogs and Cats. J. Vet. Med. Sci. 2014, 76, 1399–1402. [Google Scholar] [CrossRef] [Green Version]
- Jung, W.K.; Shin, S.; Park, Y.K.; Noh, S.M.; Shin, S.R.; Yoo, H.S.; Park, S.C.; Park, Y.H.; Park, K.T. Distribution and Antimicrobial Resistance Profiles of Bacterial Species in Stray Dogs, Hospital-Admitted Dogs, and Veterinary Staff in South Korea. Prev. Vet. Med. 2020, 184, 105151. [Google Scholar] [CrossRef]
- Rantala, M.; Lahti, E.; Kuhalampi, J.; Pesonen, S.; Järvinen, A.K.; Saijonmaa-Koulumies, L.; Honkanen-Buzalski, T. Antimicrobial resistance in Staphylococcus spp., Escherichia coli and Enterococcus spp. in dogs given antibiotics for chronic dermatological disorders, compared with non-treated control dogs. Acta Vet. Scand. 2004, 45, 37–45. [Google Scholar] [CrossRef]
- López, M.; Tenorio, C.; Torres, C. Study of Vancomycin Resistance in Faecal Enterococci from Healthy Humans and Dogs in Spain a Decade after the Avoparcin Ban in Europe: VRE From Healthy Dogs and Humans. Zoonoses Public Health 2013, 60, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Funda BağcigïL, A.; İKïZ, S.; Ak, S.; Yakut Özgür, N. Hayvan Dışkılarından Vankomisin Dirençli Enterokokların İzolasyonu, Antimikrobiyal Direnç Profillerinin ve Vankomisin Direnç Genlerinin Saptanması. Kafkas Univ. Vet. Fak. Derg. 2015. [Google Scholar] [CrossRef]
- Bager, F.; Madsen, M.; Christensen, J.; Aarestrup, F.M. Avoparcin Used as a Growth Promoter Is Associated with the Occurrence of Vancomycin-Resistant Enterococcus Faecium on Danish Poultry and Pig Farms. Prev. Vet. Med. 1997, 31, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Tornieporth, N.G.; Roberts, R.B.; John, J.; Hafner, A.; Riley, L.W. Risk Factors Associated with Vancomycin-Resistant Enterococcus Faecium Infection or Colonization in 145 Matched Case Patients and Control Patients. Clin. Infect. Dis. 1996, 23, 767–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Auwera, P.; Pensart, N.; Korten, V.; Murray, B.E.; Leclercq, R. Influence of Oral Glycopeptides on the Fecal Flora of Human Volunteers: Selection of Highly Glycopeptide-Resistant Enterococci. J. Infect. Dis. 1996, 173, 1129–1136. [Google Scholar] [CrossRef]
- Fridkin, S.K.; Edwards, J.R.; Courval, J.M.; Hill, H.; Tenover, F.C.; Lawton, R.; Gaynes, R.P.; McGowan, J.E.; The Intensive Care Antimicrobial Resistance Epidemiology (ICARE) Project; The National Nosocomial Infections Surveillance (NNIS) System Hospitals. The Effect of Vancomycin and Third-Generation Cephalosporins on Prevalence of Vancomycin-Resistant Enterococci in 126 U.S. Adult Intensive Care Units. Ann. Intern. Med. 2001, 135, 175. [Google Scholar] [CrossRef]
- Ghanem, G.; Hachem, R.; Jiang, Y.; Chemaly, R.F.; Raad, I. Outcomes for and Risk Factors Associated With Vancomycin-Resistant Enterococcus Faecalis and Vancomycin-Resistant Enterococcus Faecium Bacteremia in Cancer Patients. Infect. Control Hosp. Epidemiol. 2007, 28, 1054–1059. [Google Scholar] [CrossRef]
- Crank, C.; O’Driscoll, T. Vancomycin-Resistant Enterococcal Infections: Epidemiology, Clinical Manifestations, and Optimal Management. Infect. Drug Resist. 2015, 8, 217–230. [Google Scholar] [CrossRef] [Green Version]
- Aarestrup, F.M. Characterization of Glycopeptide-Resistant Enterococcus Faecium (GRE) from Broilers and Pigs in Denmark: Genetic Evidence That Persistence of GRE in Pig Herds Is Associated with Coselection by Resistance to Macrolides. J. Clin. Microbiol. 2000, 38, 2774–2777. [Google Scholar] [CrossRef] [Green Version]
- Borgen, K.; Sørum, M.; Wasteson, Y.; Kruse, H.; Oppegaard, H. Genetic Linkage Between Erm (B) and VanA in Enterococcus Hirae of Poultry Origin. Microb. Drug Resist. 2002, 8, 363–368. [Google Scholar] [CrossRef]
- Bingen, E.H.; Denamur, E.; Lambert-Zechovsky, N.Y.; Elion, J. Evidence for the Genetic Unrelatedness of Nosocomial Vancomycin-Resistant Enterococcus Faecium Strains in a Pediatric Hospital. J. Clin. Microbiol. 1991, 29, 1888–1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, L.B.; Ahrens, P.; Dons, L.; Jones, R.N.; Hammerum, A.M.; Aarestrup, F.M. Molecular Analysis of Tn 1546 in Enterococcus Faecium Isolated from Animals and Humans. J. Clin. Microbiol. 1998, 36, 437–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühn, I.; Iversen, A.; Finn, M.; Greko, C.; Burman, L.G.; Blanch, A.R.; Vilanova, X.; Manero, A.; Taylor, H.; Caplin, J.; et al. Occurrence and Relatedness of Vancomycin-Resistant Enterococci in Animals, Humans, and the Environment in Different European Regions. Appl. Environ. Microbiol. 2005, 71, 5383–5390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikalsen, T.; Pedersen, T.; Willems, R.; Coque, T.M.; Werner, G.; Sadowy, E.; van Schaik, W.; Jensen, L.B.; Sundsfjord, A.; Hegstad, K. Investigating the Mobilome in Clinically Important Lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genom. 2015, 16, 282. [Google Scholar] [CrossRef] [Green Version]
- Tedim, A.P.; Lanza, V.F.; Manrique, M.; Pareja, E.; Ruiz-Garbajosa, P.; Cantón, R.; Baquero, F.; Coque, T.M.; Tobes, R. Complete Genome Sequences of Isolates of Enterococcus faecium Sequence Type 117, a Globally Disseminated Multidrug-Resistant Clone. Genome Announc. 2017, 5, e01553-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef] [Green Version]
- Murray, B. Diversity among Multidrug-Resistant Enterococci. Emerg. Infect. Dis. 1998, 4, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Chavers, L.S.; Moser, S.A.; Benjamin, W.H.; Banks, S.E.; Steinhauer, J.R.; Smith, A.M.; Johnson, C.N.; Funkhouser, E.; Chavers, L.P.; Stamm, A.M.; et al. Vancomycin-Resistant Enterococci: 15 Years and Counting. J. Hosp. Infect. 2003, 53, 159–171. [Google Scholar] [CrossRef]
- Barsanti, J.A.; Finco, D.R. Canine Prostatic Diseases. Vet. Clin. N. Am. Small Anim. Pract. 1986, 16, 587–599. [Google Scholar] [CrossRef]
- Smith, J. Canine Prostatic Disease: A Review of Anatomy, Pathology, Diagnosis, and Treatment. Theriogenology 2008, 70, 375–383. [Google Scholar] [CrossRef]
- Souli, M.; Sakka, V.; Galani, I.; Antoniadou, A.; Galani, L.; Siafakas, N.; Zerva, L.; Fytrou, H.; Tsiodras, S.; Giamarellou, H. Colonisation with Vancomycin- and Linezolid-Resistant Enterococcus Faecium in a University Hospital: Molecular Epidemiology and Risk Factor Analysis. Int. J. Antimicrob. Agents 2009, 33, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Protonotariou, E.; Dimitroulia, E.; Pournaras, S.; Pitiriga, V.; Sofianou, D.; Tsakris, A. Trends in Antimicrobial Resistance of Clinical Isolates of Enterococcus Faecalis and Enterococcus Faecium in Greece between 2002 and 2007. J. Hosp. Infect. 2010, 75, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou-Olivgeris, M.; Drougka, E.; Fligou, F.; Kolonitsiou, F.; Liakopoulos, A.; Dodou, V.; Anastassiou, E.D.; Petinaki, E.; Marangos, M.; Filos, K.S.; et al. Risk Factors for Enterococcal Infection and Colonization by Vancomycin-Resistant Enterococci in Critically Ill Patients. Infection 2014, 42, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Vasilakopoulou, A.; Karakosta, P.; Vourli, S.; Tarpatzi, A.; Varda, P.; Kostoula, M.; Antoniadou, A.; Pournaras, S. Gastrointestinal Carriage of Vancomycin-Resistant Enterococci and Carbapenem-Resistant Gram-Negative Bacteria in an Endemic Setting: Prevalence, Risk Factors, and Outcomes. Front. Public Health 2020, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Sakka, V.; Tsiodras, S.; Galani, L.; Antoniadou, A.; Souli, M.; Galani, I.; Pantelaki, M.; Siafakas, N.; Zerva, L.; Giamarellou, H. Risk-Factors and Predictors of Mortality in Patients Colonised with Vancomycin-Resistant Enterococci. Clin. Microbiol. Infect. 2008, 14, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Gousia, P.; Economou, V.; Sakkas, H.; Leveidiotou, S.; Papadopoulou, C. Antimicrobial Resistance of Major Foodborne Pathogens from Major Meat Products. Foodborne Pathog. Dis. 2011, 8, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Kotzamanidis, C.; Zdragas, A.; Kourelis, A.; Moraitou, E.; Papa, A.; Yiantzi, V.; Pantelidou, C.; Yiangou, M. Characterization of VanA -Type Enterococcus Faecium Isolates from Urban and Hospital Wastewater and Pigs. J. Appl. Microbiol. 2009, 107, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Allerberger, F. In-Vitro Activity of Fosfomycin against Vancomycin-Resistant Enterococci. J. Antimicrob. Chemother. 1999, 43, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Perri, M.B.; Hershberger, E.; Ionescu, M.; Lauter, C.; Zervos, M.J. In Vitro Susceptibility of Vancomycin-Resistant Enterococci (VRE) to Fosfomycin. Diagn. Microbiol. Infect. Dis. 2002, 42, 269–271. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Chua, J.D.; Tuohy, M.J.; Wilson, D.A.; Procop, G.W.; Longworth, D.L.; Isada, C.M.; Hall, G.S. Antimicrobial Susceptibility of Vancomycin-Resistant Enterococcus Faecium: Potential Utility of Fosfomycin. Scand. J. Infect. Dis. 2003, 35, 12–14. [Google Scholar] [CrossRef]
- Hall Snyder, A.D.; Werth, B.J.; Nonejuie, P.; McRoberts, J.P.; Pogliano, J.; Sakoulas, G.; Yim, J.; Singh, N.; Rybak, M.J. Fosfomycin Enhances the Activity of Daptomycin against Vancomycin-Resistant Enterococci in an In Vitro Pharmacokinetic-Pharmacodynamic Model. Antimicrob. Agents Chemother. 2016, 60, 5716–5723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Yang, G.; Li, Y.; Mao, J.; Wang, S.; Zhang, N.; Liu, H.; Huang, X. Factorial Design and Post-Antibiotic Sub-MIC Effects of Linezolid Combined with Fosfomycin against Vancomycin-Resistant Enterococci. Ann. Transl. Med. 2022, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Qu, T.-T.; Yang, Q.; Shen, P.; Wei, Z.-Q.; Yu, Y.-S. Novel Vancomycin-Resistance Transposon, Plasmid Replicon Types, and Virulence Factors of Vancomycin-Resistant Enterococci in Zhejiang, China. Microb. Drug Resist. 2012, 18, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, C.; Lin, D.; Guo, Q.; Hu, F.; Zhu, D.; Li, G.; Wang, M. The Fosfomycin Resistance Gene FosB3 Is Located on a Transferable, Extrachromosomal Circular Intermediate in Clinical Enterococcus Faecium Isolates. PLoS ONE 2013, 8, e78106. [Google Scholar] [CrossRef] [PubMed]
- Qu, T.; Shi, K.; Ji, J.; Yang, Q.; Du, X.; Wei, Z.; Yu, Y. Fosfomycin Resistance among Vancomycin-Resistant Enterococci Owing to Transfer of a Plasmid Harbouring the FosB Gene. Int. J. Antimicrob. Agents 2014, 43, 361–365. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, P.; Qu, T.; Chen, Y.; Hua, X.; Shi, K.; Yu, Y. Identification of Novel Conjugative Plasmids with Multiple Copies of FosB That Confer High-Level Fosfomycin Resistance to Vancomycin-Resistant Enterococci. Front. Microbiol. 2017, 8, 1541. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Tomich, A.D.; McElheny, C.L.; Cooper, V.S.; Tait-Kamradt, A.; Wang, M.; Hu, F.; Rice, L.B.; Sluis-Cremer, N.; Doi, Y. High-Level Fosfomycin Resistance in Vancomycin-Resistant Enterococcus faecium. Emerg. Infect. Dis. 2017, 23, 1902–1904. [Google Scholar] [CrossRef]
Antibiotic Class | Main Mechanisms of Resistance 1 | References |
---|---|---|
Β-lactams | • Production of PBPs 2 that demonstrate a lower binding affinity to agents of this class, such as Ampicillin and Cephalosporins. • Overproduction or mutations of PBPs. | [15,16,17,18,19,20] |
Glycopeptides | Amino-acid substitutions in specific precursors of peptidoglycan, decreasing the binding affinity of glycopeptides to them by 7- to 1000-fold. A variety of respective gene clusters has been identified, such as vanA, vanB, vanC, vanD, vanE, vanG, vanL, vanM and vanN. | [20,21,22,23] |
Aminoglycosides | Enzymatic inactivation of Gentamicin, Streptomycin, or both of them, mediated by acquired ARGs, confers high-level aminoglycoside resistance (HLAR) to Enterococci, while they are intrinsically resistant against the other agents of this class, escaping their bactericidal action by variable procedures. | [20,24,25] |
Tetracyclines | • Ribosomal protection encoded by genes tet(M), tet(O) and tet(S) results in resistance against all the available agents of this class in veterinary medicine (Tetracycline, Doxycycline and Minocycline). • Efflux proteins encoded by specific genes, such as tet(K) and tet (L) confer resistance against Tetracycline. | [26] |
Quinolones | Mutations of the target genes of the antibiotics, gyrA and parC, confer high-level acquired resistance, while Enterococci express low levels of resistance to Quinolones intrinsically. | [20,27] |
Rifampin | Mutations of the rpoB gene and consequently substitutions in the β-subunit of the RNA polymerase, which is the target of this agent. | [28] |
Macrolides | Production of a methyltransferase that alternates the 23S rRNA subunit, inhibiting the binding of the antibiotic, and is mediated by erm genes (and specifically ermB). | [29] |
Antibacterial Agent | Disk Content (μg) | Zone Diameter Breakpoints (mm) | MIC Breakpoints (μg/mL) |
---|---|---|---|
Ampicillin | 10 | S: ≥17, R: ≤16 | S: ≤8, R ≥ 16 |
Amoxicillin + Clavulanate | 20 + 10 | NA1 | NT |
Ampicillin + Sulbactam | 10 + 10 | NA1 | NT |
Imipenem | 10 | NA1 | NT |
Gentamicin 1 | 120 | S: ≥10, I:7–9, R: ≤6 | 500 2 |
Streptomycin 1 | 300 | S: ≥10, I:7–9, R: ≤6 | 1000 2 |
Ciprofloxacin | 5 | S: ≥21 I:16–20, R: ≤15 | S: ≤1, I:2, R ≥ 4 |
Tetracycline | 30 | S: ≥19 I:15–18, R: ≤14 | NT |
Doxycycline | 30 | S: ≥16 I:13–15, R: ≤12 | NT |
Minocycline | 30 | S: ≥19 I:15–18, R: ≤14 | NT |
Florfenicol | 30 | NA2 | NT |
Chloramphenicol | 30 | S: ≥18 I:13–17, R: ≤12 | NT |
Fosfomycin | 200 | S: ≥16 I:13–15, R: ≤12 3 | NT |
Nitrofurantoin | 300 | S: ≥17 I:15–16, R: ≤14 | NT |
Rifampin | 5 | S: ≥20 I:17–19, R: ≤16 | NT |
Erythromycin | 15 | S: ≥23 I:14–22, R: ≤13 | NT |
Vancomycin | 30 | S: ≥17 I:15–16, R: ≤14 | S: ≤4, I: 8–16, R ≥ 32 |
Teicoplanin | 30 | S: ≥14 I:11–13, R: ≤10 | S: ≤8, I:16, R ≥ 32 |
Daptomycin | - | NT | SDD: ≤4, R ≥ 8 |
Quinupristin/Dalfopristin | - | NT | S: ≤1, I:2, R ≥ 4 |
Linezolid | 30 | S: ≥23 I:21–22, R: ≤20 | S: ≤2, I:4, R ≥ 8 |
Primer | Sequence (5′→3′) | Size of PCR Product (bp) |
---|---|---|
vanA(+) | GGGAAAACGACAATTGC | 732 |
vanA(−) | GTACAATGCGGCCGTTA | |
vanB(+) | ACGGAATGGGAAGCCGA | 647 |
vanB(−) | TGCACCCGATTTCGTTC | |
vanC1/2(+) | ATGGATTGGTAYTKGTAT | 815/827 |
vanC1/2(−) | TAGCGGGAGTGMCYMGTAA | |
vanD(+) | TGTGGGATGCGATATTCAA | 500 |
vanD(−) | TGCAGCCAAGTATCCGGTAA | |
vanE(+) | TGTGGTATCGGAGCTGCAG | 430 |
vanE(−) | ATAGTTTAGCTGGTAAC | |
vanG(+) | CGGCATCCGCTGTTTTTGA | 941 |
vanG(−) | GAACGATAGACCAATGCCTT | |
ddl E. faecalis(+) | CACCTGAAGAAACAGGC | 475 |
ddl E. faecalis(−) | ATGGCTACTTCAATTTCACG | |
ddl E. faecium(+) | GAGTAAATCACTGAACGA | 1091 |
ddl E. faecium(−) | CGCTGATGGTATCGATTCAT |
Antibacterial Agent | Result of AST |
---|---|
Ampicillin | R 1,2 |
Amoxicillin + Clavulanate | R 1 |
Ampicillin + Sulbactam | R 1 |
Imipenem | R 1 |
Gentamicin (HL) | R 1,2 |
Streptomycin (HL) | S 1,2 |
Ciprofloxacin | R 1,2 |
Doxycycline | R 1 |
Minocycline | R 1 |
Tetracycline | R 1 |
Florfenicol | S 1 |
Chloramphenicol | S 1 |
Fosfomycin | R 1 |
Nitrofurantoin | R 1 |
Rifampin | R 1 |
Erythromycin | R 1 |
Vancomycin | R 1,2 |
Teicoplanin | R 1,2 |
Quinupristin/Dalfopristin | S 2 |
Daptomycin | SDD 2 |
Linezolid | S 1,2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lysitsas, M.; Triantafillou, E.; Tzavaras, I.; Karamichali, P.; Agathaggelidis, K.; Tsokana, C.N.; Dushku, E.; Katsiaflaka, A.; Billinis, C.; Valiakos, G. Isolation of a Multidrug-Resistant vanA-Positive Enterococcus faecium Strain from a Canine Clinical Sample in Greece. Microbiol. Res. 2023, 14, 603-613. https://doi.org/10.3390/microbiolres14020042
Lysitsas M, Triantafillou E, Tzavaras I, Karamichali P, Agathaggelidis K, Tsokana CN, Dushku E, Katsiaflaka A, Billinis C, Valiakos G. Isolation of a Multidrug-Resistant vanA-Positive Enterococcus faecium Strain from a Canine Clinical Sample in Greece. Microbiology Research. 2023; 14(2):603-613. https://doi.org/10.3390/microbiolres14020042
Chicago/Turabian StyleLysitsas, Marios, Eleftherios Triantafillou, Ioannis Tzavaras, Panagiota Karamichali, Kiriakos Agathaggelidis, Constantina N. Tsokana, Esmeralda Dushku, Anna Katsiaflaka, Charalambos Billinis, and George Valiakos. 2023. "Isolation of a Multidrug-Resistant vanA-Positive Enterococcus faecium Strain from a Canine Clinical Sample in Greece" Microbiology Research 14, no. 2: 603-613. https://doi.org/10.3390/microbiolres14020042
APA StyleLysitsas, M., Triantafillou, E., Tzavaras, I., Karamichali, P., Agathaggelidis, K., Tsokana, C. N., Dushku, E., Katsiaflaka, A., Billinis, C., & Valiakos, G. (2023). Isolation of a Multidrug-Resistant vanA-Positive Enterococcus faecium Strain from a Canine Clinical Sample in Greece. Microbiology Research, 14(2), 603-613. https://doi.org/10.3390/microbiolres14020042