Relevance of the Microbiota on Ocular Diseases: A Bibliometric and Citation Network Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
- -
- The total number of publications;
- -
- The names of the authors and their affiliations, along with the total number of articles, and the counted citations of every author;
- -
- A comprehensive list of the prolific nations and collaborations;
- -
- The overall most frequently cited articles, including the titles, authors, journal details, year of publication, total citations since publication, and specifically, annual citations as well;
- -
- Titles, synopses, and keywords.
2.2. Analysis of Data
2.2.1. Bibliometric Analysis
2.2.2. Network Analysis
3. Results
3.1. Description of the Publications
3.2. Language and Countries
3.3. Research Areas
3.4. Authors and Institutions
3.5. Journals
3.6. Keywords
3.7. Most Cited Publications
3.8. Clustering
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.J.; Yi, S.; Wei, L. Ocular Microbiota and Intraocular Inflammation. Front. Immunol. 2020, 11, 609765. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.R.; Pop, M.; DeBoy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006, 312, 1355–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; et al. The NIH Human Microbiome Project. Genome Res. 2009, 19, 2317–2323. [Google Scholar] [CrossRef] [Green Version]
- Integrative, H.M.P.; Proctor, L.M.; Creasy, H.H.; Fettweis, J.M.; Lloyd-Price, J.; Mahurkar, A.; Zhou, W.; Buck, G.A.; Snyder, M.P.; Strauss, J.F., III; et al. The Integrative Human Microbiome Project. Nat. Cell Biol. 2019, 569, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Kahrstrom, C.T.; Pariente, N.; Weiss, U. Intestinal microbiota in health and disease. Nature 2016, 535, 47. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Mazmanian, S.K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 2010, 330, 1768–1773. [Google Scholar] [CrossRef] [Green Version]
- Berer, K.; Mues, M.; Koutrolos, M.; Al Rasbi, Z.; Boziki, M.; Johner, C.; Wekerle, H.; Krishnamoorthy, G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011, 479, 538–541. [Google Scholar] [CrossRef] [PubMed]
- McDermott, A.M. Antimicrobial compounds in tears. Exp. Eye Res. 2013, 117, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Fleischmann, R.D.; Adams, M.D.; White, O.; Clayton, A.R.; Kirkness, E.F.; Kerlavage, A.R.; Bult, C.J.; Tomb, J.F.; Dougherty, B.A.; Merrick, J.M.; et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269, 496–512. [Google Scholar] [CrossRef] [Green Version]
- Relman, D.A. Microbial Genomics and Infectious Diseases. N. Engl. J. Med. 2011, 365, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Gentile, C.L.; Weir, T.L. The gut microbiota at the intersection of diet and human health. Science 2018, 362, 776–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segre, J.A. Microbial growth dynamics and human disease. Science 2015, 349, 1058–1059. [Google Scholar] [CrossRef]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hori, Y.; Maeda, N.; Sakamoto, M.; Koh, S.; Inoue, T.; Tano, Y. Bacteriologic profile of the conjunctiva in the patients with dry eye. Am. J. Ophthalmol. 2008, 146, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Rubio, M.E.; Rebolledo-Lara, L.; Martinez-Garcia, M.; Alarcon-Tomas, M.; Cortes-Valdes, C. The conjunctival bacterial pattern of diabetics undergoing cataract surgery. Eye 2010, 24, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Schabereiter-Gurtner, C.; Maca, S.; Rölleke, S.; Nigl, K.; Lukas, J.; Hirschl, A.; Lubitz, W.; Barisani-Asenbauer, T. 16S rDNA-based identification of bacteria from conjunctival swabs by PCR and DGGE fingerprinting. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1164–1171. [Google Scholar]
- Ozkan, J.; Nielsen, S.; Diez-Vives, C.; Coroneo, M.; Thomas, T.; Willcox, M. Temporal Stability and Composition of the Ocular Surface Microbiome. Sci. Rep. 2017, 7, 9880. [Google Scholar] [CrossRef] [Green Version]
- Ueta, M. Innate immunity of the ocular surface and ocular surface inflammatory disorders. Cornea 2008, 27, S31–S40. [Google Scholar] [CrossRef]
- Lu, L.J.; Liu, J. Human Microbiota and Ophthalmic Disease. Yale J. Biol. Med. 2016, 89, 325–330. [Google Scholar]
- Miller, D.; Iovieno, A. The role of microbial flora on the ocular surface. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 466–470. [Google Scholar]
- Wu, T.; Mitchell, B.; Carothers, T.; Coats, D.; Brady-McCreery, K.; Paysse, E.; Wilhelmus, K. Molecular analysis of the pediatric ocular surface for fungi. Curr. Eye Res. 2003, 26, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Oh, D.H.; Jung, J.Y.; Kim, J.C.; Jeon, C.O. Comparative ocular microbial communities in humans with and without blepharitis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5585–5593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kugadas, A.; Christiansen, S.H.; Sankaranarayanan, S.; Surana, N.K.; Gauguet, S.; Kunz, R.; Fichorova, R.; Vorup-Jensen, T.; Gadjeva, M. Impact of Microbiota on Resistance to Ocular Pseudomonas aeruginosa-Induced Keratitis. PLoS Pathog. 2016, 12, e1005855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, J.E.; Moore, J.E.; Jiru, X.; Moore, J.E.; Goodall, E.A.; Dooley, J.S.; Hayes, V.E.; Dartt, D.A.; Downes, C.S.; Moore, T.C. Ocular pathogen or commensal: A PCR-based study of surface bacterial flora in normal and dry eyes. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5616–5623. [Google Scholar] [CrossRef]
- Zhou, Y.; Holland, M.J.; Makalo, P.; Joof, H.; Roberts, C.H.; Mabey, D.C.; Bailey, R.L.; Burton, M.J.; Weinstock, G.M.; Burr, S.E. The conjunctival microbiome in health and trachomatous disease: A case control study. Genome Med. 2014, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhao, F.; Hutchinson, D.S.; Sun, W.; Ajami, N.J.; Lai, S.; Wong, M.C.; Petrosino, J.F.; Fang, J.; Jiang, J.; et al. Conjunctival Microbiome Changes AssociatedWith Soft Contact Lens and Orthokeratology Lens Wearing. Investig. Ophthalmol. Vis. Sci. 2017, 58, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Price, K.; Albert, L.; Dodick, J.; Park, L.; Dominguez-Bello, M.G. Changes in the Eye Microbiota Associated with Contact Lens Wearing. mBio 2016, 7, e00198. [Google Scholar] [CrossRef] [Green Version]
- Kugadas, A.; Wright, Q.; Geddes-McAlister, J.; Gadjeva, M. Role of Microbiota in Strengthening Ocular Mucosal Barrier Function through Secretory IgA. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4593–4600. [Google Scholar] [CrossRef]
- Leydesdorff, L. Can Scientific Journals be Classified in terms of Aggregated Journal-Journal Citation Relations using the Journal Citation Reports? J. Am. Soc. Inf. Sci. Technol. 2006, 57, 601–613. [Google Scholar] [CrossRef]
- González, C.M. Análisis de citación y de redes sociales para el estudio del uso de revistas en centros de investigación: An approach to the development of collections. Ciênc. Inf. 2009, 38, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Informetr. 2014, 8, 802–823. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 3, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Horai, R.; Zárate-Bladés, C.R.; Dillenburg-Pilla, P.; Chen, J.; Kielczewski, J.L.; Silver, P.B.; Jittayasothorn, Y.; Chan, C.C.; Yamane, H.; Honda, K.; et al. Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site. Immunity 2015, 43, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, L.; Montiani-Ferreira, F.; Tramontin, M.; Leigue Dos Santos, L.; Machado, M.; Ribas Lange, R.; Helena Abil Russ, H. The chinchilla eye: Morphologic observations, echobiometric findings and reference values for selected ophthalmic diagnostic tests. Vet. Ophthalmol. 2010, 13, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Chisari, G.; Chisari, E.M.; Francaviglia, A.; Chisari, C.G. The mixture of bifidobacterium associated with fructo-oligosaccharides reduces the damage of the ocular surface. Clin. Ter. 2017, 168, e181–e185. [Google Scholar] [CrossRef]
- Skolarus, T.A.; Lehmann, T.; Tabak, R.G.; Harris, J.; Lecy, J.; Sales, A.E. Assessing citation networks for dissemination and implementation research frameworks. Implement. Sci. 2017, 12, 97. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.K.; Beatty, K.E.; Lecy, J.D.; Cyr, J.M.; Shapiro, R.M., II. Mapping the multidisciplinary field of public health services and systems research. Am. J. Prev. Med. 2011, 41, 105–111. [Google Scholar] [CrossRef]
- Zhu, X.; Hu, J.; Deng, S.; Tan, Y.; Qiu, C.; Zhang, M.; Ni, X.; Lu, H.; Wang, Z.; Li, L.; et al. Bibliometric and Visual Analysis of Research on the Links Between the Gut Microbiota and Depression from 1999 to 2019. Front. Psychiatry 2021, 11, 587670. [Google Scholar] [CrossRef]
- Dong, Q.; Brulc, J.M.; Iovieno, A.; Bates, B.; Garoutte, A.; Miller, D.; Revanna, K.V.; Gao, X.; Antonopoulos, D.A.; Slepak, V.Z.; et al. Diversity of bacteria at healthy human conjunctiva. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5408–5413. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, M.; Azcarate-Peril, M.A.; Barnard, A.; Benoit, V.; Grimaldi, R.; Guyonnet, D.; Holscher, H.D.; Hunter, K.; Manurung, S.; Obis, D.; et al. Shaping the Future of Probiotics and Prebiotics. Trends Microbiol. 2021, 29, 667–685. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.L.; Xia, K.; Azcarate-Peril, M.A.; Goldman, B.D.; Ahn, M.; Styner, M.A.; Thompson, A.L.; Geng, X.; Gilmore, J.H.; Knickmeyer, R.C. Infant Gut Microbiome Associated with Cognitive Development. Biol. Psychiatry 2018, 83, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Williamson, I.A.; Arnold, J.W.; Samsa, L.A.; Gaynor, L.; DiSalvo, M.; Cocchiaro, J.L.; Carroll, I.; Azcarate-Peril, M.A.; Rawls, J.F.; Allbritton, N.L.; et al. A High-Throughput Organoid Microinjection Platform to Study Gastrointestinal Microbiota and Luminal Physiology. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 301–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabanillas-Lazo, M.; Quispe-Vicuña, C.; Barja-Ore, J.; Fernandez-Giusti, A.; Munive-Degregori, A.; Retamozo-Siancas, Y.; Guerrero, M.E.; Mayta-Tovalino, F. A 10-Year Bibliometric Analysis of Global Research on Gut Microbiota and Parkinson’s Disease: Characteristics, Impact, and Trends. Biomed. Res. Int. 2022, 2022, 4144781. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Long, T.; You, J.; Li, P.; Xu, Q. Bibliometric Visualization Analysis of Microbiome-Gut-Brain Axis from 2004 to 2020. Med. Sci. Monit. 2022, 28, e936037. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Wu, J.; Peng, X.; Li, Y.; Tang, L.; Xu, X.; Deng, D.; Zhou, X. Visualized analysis of trends and hotspots in global oral microbiome research: A bibliometric study. Med. Comm. 2020, 3, 351–361. [Google Scholar] [CrossRef]
- Congressional Research Service. U.S. Research and Development Funding and Performance: Fact Sheet. Available online: https://sgp.fas.org/crs/misc/R44307.pdf (accessed on 23 May 2023).
- Wang, H.X.; Wang, Y.P. Gut Microbiota-brain Axis. Chin. Med. J. 2016, 129, 2373–2380. [Google Scholar] [CrossRef]
- Wang, S.Q.; Gao, Y.Q.; Zhang, C.; Xie, Y.J.; Wang, J.X.; Xu, F.Y. A Bibliometric Analysis Using CiteSpace of Publications from 1999 to 2018 on Patient Rehabilitation After Total Knee Arthroplasty. Med. Sci. Monit. 2020, 26, e920795. [Google Scholar] [CrossRef]
- Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 2014, 13, 668–677. [Google Scholar] [CrossRef]
- Caspi, R.R. A look at autoimmunity and inflammation in the eye. J. Clin. Investig. 2010, 120, 3073–3083. [Google Scholar] [CrossRef] [Green Version]
- Kalyana Chakravarthy, S.; Jayasudha, R.; Sai Prashanthi, G.; Ali, M.H.; Sharma, S.; Tyagi, M.; Shivaji, S. Dysbiosis in the Gut Bacterial Microbiome of Patients with Uveitis, an Inflammatory Disease of the Eye. Indian J. Microbiol. 2018, 58, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Zinkernagel, M.S.; Zysset-Burri, D.C.; Keller, I.; Berger, L.E.; Leichtle, A.B.; Largiadèr, C.R.; Fiedler, G.M.; Wolf, S. Association of the Intestinal Microbiome with the Development of Neovascular Age-Related Macular Degeneration. Sci. Rep. 2017, 7, 40826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P. The role of the intestinal microbiome in ocular inflammatory disease. Curr. Opin. Ophthalmol. 2018, 29, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Lin, P. Importance of the intestinal microbiota in ocular inflammatory diseases: A review. Clin. Exp. Ophthalmol. 2019, 47, 418–422. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, U.; Xie, B.; Movahedan, A.; D’Souza, M.; Barba, H.; Deng, N.; Leone, V.A.; Chang, E.; Sulakhe, D.; Skondra, D. High Throughput RNA Sequencing of Mice Retina Reveals Metabolic Pathways Involved in the Gut-Retina Axis. bioRxiv 2020. [Google Scholar] [CrossRef]
- Xue, W.; Li, J.J.; Zou, Y.; Zou, B.; Wei, L. Microbiota and Ocular Diseases. Front. Cell Infect. Microbiol. 2021, 11, 759333. [Google Scholar] [CrossRef]
- Baim, A.D.; Movahedan, A.; Farooq, A.V.; Skondra, D. The microbiome and ophthalmic disease. Exp. Biol. Med. 2019, 244, 419–429. [Google Scholar] [CrossRef]
- Wiggs, J.L.; Pasquale, L.R. Genetics of glaucoma. Hum. Mol. Genet. 2017, 26, R21–R27. [Google Scholar] [CrossRef] [Green Version]
- Challa, P.; Schmidt, S.; Liu, Y.; Qin, X.; Vann, R.R.; Gonzalez, P.; Allingham, R.R.; Hauser, M.A. Analysis of LOXL1 polymorphisms in a United States population with pseudoexfoliation glaucoma. Mol. Vis. 2008, 14, 146–149. [Google Scholar]
- Organisciak, D.; Wong, P.; Rapp, C.; Darrow, R.; Ziesel, A.; Rangarajan, R.; Lang, J. Light-induced retinal degeneration is prevented by zinc, a component in the age-related eye disease study formulation. Photochem. Photobiol. 2012, 88, 1396–1407. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A. Harnessing the microbiome in glaucoma and uveitis. Med. Hypotheses 2015, 85, 699–700. [Google Scholar] [CrossRef] [PubMed]
- Saccà, S.C.; Vagge, A.; Pulliero, A.; Izzotti, A. Helicobacter pylori infection and eye diseases: A systematic review. Medicine 2014, 93, e216. [Google Scholar] [CrossRef] [PubMed]
- Zullo, A.; Ridola, L.; Hassan, C.; Bruzzese, V.; Papini, F.; Vaira, D. Glaucoma and Helicobacter pylori: Eyes wide shut? Dig. Liver Dis. 2012, 44, 627–628. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Liu, H.; Liu, X.; Ding, C. The Relationship Between Helicobacter pylori Infection and Open-Angle Glaucoma: A Meta-Analysis. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5238–5245. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; Kim, S.H.; Park, K.H.; Han, S.Y.; Shim, H.S. Investigation of the association between Helicobacter pylori infection and normal tension glaucoma. Investig. Ophthalmol. Vis. Sci. 2011, 52, 665–668. [Google Scholar] [CrossRef] [Green Version]
- Kountouras, J.; Mylopoulos, N.; Konstas, A.G.; Zavos, C.; Chatzopoulos, D.; Boukla, A. Increased levels of Helicobacter pylori IgG antibodies in aqueous humor of patients with primary open-angle and exfoliation glaucoma. Graefes. Arch. Clin. Exp. Ophthalmol. 2003, 241, 884–890. [Google Scholar] [CrossRef]
- Zavos, C.; Kountouras, J.; Sakkias, G.; Venizelos, I.; Deretzi, G.; Arapoglou, S. Histological presence of Helicobacter pylori bacteria in the trabeculum and iris of patients with primary open-angle glaucoma. Ophthalmic. Res. 2012, 47, 150–156. [Google Scholar] [CrossRef]
- Kulacoǧlu, D.N.; Özbek, A.; Uslu, H.; Sahin, F.; Güllülü, G.; Koçer, I.; Karabela, Y. Comparative lid flora in anterior blepharitis. Turk. J. Med. Sci. 2001, 31, 359–363. [Google Scholar]
- Pinna, A.; Sechi, L.A.; Zanetti, S.; Carta, F. Detection of virulence factors in a corneal isolate of Klebsiella pneumoniae. Ophthalmology 2005, 112, 883–887. [Google Scholar] [CrossRef]
- Jiang, X.; Deng, A.; Yang, J.; Bai, H.; Yang, Z.; Wu, J.; Lv, H.; Li, X.; Wen, T. Pathogens in the Meibomian gland and conjunctival sac: Microbiome of normal subjects and patients with Meibomian gland dysfunction. Infect. Drug. Resist. 2018, 11, 1729–1740. [Google Scholar] [CrossRef] [Green Version]
Category | Frequency | Centrality | Degree | Half-Life |
---|---|---|---|---|
Microbiology | 96 | 0.00 | 7 | 4.5 |
Ophthalmology | 89 | 0.00 | 2 | 2.5 |
Immunology | 57 | 0.00 | 8 | 5.5 |
Medicine General Internal | 45 | 0.00 | 2 | 1.5 |
Veterinary Sciences | 45 | 0.00 | 6 | 5.5 |
Nutrition Dietetics | 40 | 0.00 | 1 | 6.5 |
Food Science Technology | 38 | 0.00 | 4 | 9.5 |
Gastroenterology Hepatology | 36 | 0.00 | 1 | 6.5 |
Multidisciplinary Sciences | 34 | 0.00 | 1 | 0.5 |
Biochemistry Molecular Biology | 31 | 0.00 | 8 | −0.5 |
Biotechnology Applied Microbiology | 27 | 0.00 | 6 | 4.5 |
Category | Frequency | Centrality | Degree | Half-Life |
---|---|---|---|---|
League of European Research Universities LERU | 48 | 0.00 | 25 | 8.5 |
Harvard University | 17 | 0.00 | 15 | 1.5 |
INRAE | 15 | 0.00 | 31 | 4.5 |
State University System of Florida | 14 | 0.00 | 7 | 1.5 |
Udice French Research Universities | 14 | 0.00 | 13 | 8.5 |
University of New South Wales Sydney | 14 | 0.00 | 8 | 15.5 |
National Institutes of Health NIH USA | 13 | 0.00 | 19 | 6.5 |
University of Florida | 12 | 0.00 | 2 | 7.5 |
Baylor College of Medicine | 11 | 0.00 | 4 | 3.5 |
Sun Yat-sen University | 11 | 0.00 | 8 | 4.5 |
Journal | Total Publications | Impact Factor (2021) | Quartile Score | SJR (2021) | Citations/Docs (2 Years) | Total Citations (2021) | H Index | Country |
---|---|---|---|---|---|---|---|---|
Frontiers in microbiology | 19 | 6.064 | Q1 | 1.314 | 5.585 | 58,609 | 166 | Switzerland |
Frontiers in immunology | 14 | 8.787 | Q1 | 2.331 | 7.792 | 82,388 | 155 | Switzerland |
Investigative ophthalmology visual science | 14 | 4.925 | Q1 | 1.399 | 4.054 | 8056 | 229 | United States |
Plos one | 14 | 3.752 | Q2 | 0.852 | 3.041 | 185,483 | 332 | United States |
Nutrients | 13 | 6.706 | Q1 | 1.024 | 2.984 | 1671 | 143 | Switzerland |
Veterinary ophthalmology | 13 | 1.444 | Q3 | 0.509 | 1.506 | 481 | 54 | United Kingdom |
Scientific reports | 12 | 4.996 | Q2 | 1.005 | 4.543 | 282,400 | 242 | United Kingdom |
Experimental eye research | 10 | 3.77 | Q2 | 0.858 | 3.486 | 3359 | 133 | United States |
Frontiers in cellular and infection microbiology | 8 | 6.073 | Q1 | 1.389 | 5.792 | 10,246 | 87 | Switzerland |
International Journal of molecular sciences | 9 | 6.208 | Q1 | 1.176 | 6.009 | 129,212 | 195 | Switzerland |
Keyword | Frequency | Degree | Total Link Strength | Year First Time |
---|---|---|---|---|
Gut microbiota | 143 | 85 | 933 | 2011 |
Microbiota | 85 | 44 | 782 | 2003 |
Diversity | 62 | 37 | 345 | 2011 |
Disease | 60 | 73 | 336 | 1995 |
Health | 43 | 27 | 270 | 2015 |
Intestinal microbiota | 40 | 62 | 218 | 2012 |
Bacteria | 39 | 30 | 302 | 1995 |
Inflammation | 37 | 39 | 363 | 2011 |
Identification | 36 | 33 | 166 | 2000 |
Flora | 29 | 58 | 160 | 1996 |
Bacterial-flora | 28 | 50 | 183 | 2009 |
Double-blind | 27 | 24 | 147 | 2009 |
Risk-factors | 27 | 31 | 138 | 2011 |
Fecal microbiota | 25 | 50 | 166 | 2009 |
Metabolism | 25 | 24 | 124 | 2009 |
Association | 24 | 38 | 142 | 2011 |
Expression | 24 | 20 | 133 | 2015 |
Management | 24 | 22 | 108 | 2012 |
Oxidative stress | 24 | 20 | 126 | 2013 |
Prevalence | 22 | 20 | 119 | 2015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Tena, M.A.; Galvez, B.G.; Martinez-Perez, C.; Alvarez-Peregrina, C. Relevance of the Microbiota on Ocular Diseases: A Bibliometric and Citation Network Analysis. Microbiol. Res. 2023, 14, 741-754. https://doi.org/10.3390/microbiolres14020053
Sanchez-Tena MA, Galvez BG, Martinez-Perez C, Alvarez-Peregrina C. Relevance of the Microbiota on Ocular Diseases: A Bibliometric and Citation Network Analysis. Microbiology Research. 2023; 14(2):741-754. https://doi.org/10.3390/microbiolres14020053
Chicago/Turabian StyleSanchez-Tena, Miguel Angel, Beatriz G. Galvez, Clara Martinez-Perez, and Cristina Alvarez-Peregrina. 2023. "Relevance of the Microbiota on Ocular Diseases: A Bibliometric and Citation Network Analysis" Microbiology Research 14, no. 2: 741-754. https://doi.org/10.3390/microbiolres14020053
APA StyleSanchez-Tena, M. A., Galvez, B. G., Martinez-Perez, C., & Alvarez-Peregrina, C. (2023). Relevance of the Microbiota on Ocular Diseases: A Bibliometric and Citation Network Analysis. Microbiology Research, 14(2), 741-754. https://doi.org/10.3390/microbiolres14020053