Potassium-Incorporated Titanium Oxide Nanoparticles Modulate Human Dendritic Cell Immune Response to Mycobacterium leprae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanostructured KTiOxs Nanoparticles
2.2. M. leprae
2.3. Cell Assay
2.4. Multiplex ELISA
3. Results
3.1. Synthesized the Nanostructured Ti Nanoparticles after KOH Treatment
3.2. KTiOx Nanoparticles Increase DC Phagocytic Activity without Inflammation
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Hansen’s Disease (Leprosy). 2023. Available online: https://www.cdc.gov/leprosy/health-care-workers/clinical-diseases.html (accessed on 30 April 2023).
- Truman, R.W.; Singh, P.; Sharma, R.; Busso, P.; Rougemont, J.; Paniz-Mondolfi, A.; Kapopoulou, A.; Brisse, S.; Scollard, D.M.; Gillis, T.P.; et al. Probable zoonotic leprosy in the southern United States. N. Engl. J. Med. 2011, 364, 1626–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misch, E.A.; Berrington, W.R.; Vary, J.C., Jr.; Hawn, T.R. Leprosy and the human genome. Microbiol. Mol. Biol. Rev. 2010, 74, 589–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Sousa, J.R.; Sotto, M.N.; Quaresma, J.A.S. Leprosy As a Complex Infection: Breakdown of the Th1 and Th2 Immune Paradigm in the Immunopathogenesis of the Disease. Front. Immunol. 2017, 8, 1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krahenbuhl, J.L.; Sampaio, C.E. Report of the workshop on recent advances in the immunology and pathogensis of leprosy. Int. J. Lepr. Other Mycobact. Dis. 2002, 70, 334–336. [Google Scholar]
- Pinheiro, R.O.; Schmitz, V.; Silva, B.J.D.A.; Dias, A.A.; De Souza, B.J.; de Mattos Barbosa, M.G.; de Almeida Esquenazi, D.; Pessolani, M.C.V.; Sarno, E.N. Innate Immune Responses in Leprosy. Front. Immunol. 2018, 9, 518. [Google Scholar] [CrossRef]
- Zhu, R.; Zhu, Y.; Zhang, M.; Xiao, Y.; Du, X.; Liu, H.; Wang, S. The induction of maturation on dendritic cells by TiO2 and Fe3O4@TiO2 nanoparticles via NF-κB signaling pathway. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 39, 305–314. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Y.; Xiong, M.; Hu, G.; Zhan, J.; Li, T.; Wang, L.; Wang, Y. Antimicrobial Titanium Surface via Click-Immobilization of Peptide and Its in Vitro/Vivo Activity. ACS Biomater. Sci. Eng. 2019, 5, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Chen, R.; Willcox, M.D.; Ho, K.K.K.; Smyth, D.; Kumar, N. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models. Biomaterials 2016, 85, 142–151. [Google Scholar] [CrossRef]
- Belen, F.; Gravina, A.N.; Pistonesi, M.F.; Ruso, J.M.; García, N.A.; Prado, F.D.; Messina, P.V. NIR-Reflective and Hydrophobic Bio-Inspired Nano-Holed Configurations on Titanium Alloy. ACS Appl. Mater. Interfaces 2022, 14, 5843–5855. [Google Scholar] [CrossRef]
- Hong, L.; Yuan, L.; Xu, X.; Ma, Y.; Meng, L.; Wang, J.; Zhao, N.; Wang, X.; Ma, J. Biocompatible Nanotube-Strontium/polydopamine-arginine-glycine-aspartic acid coating on Ti6Al4V enhances osteogenic properties for biomedical applications. Microsc. Res. Tech. 2022, 85, 1518–1526. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, C.H.; Kim, D.Y.; Locquet, J.P.; Seo, J.W. Preparation and Photocatalytic Activity of Potassium-Incorporated Titanium Oxide Nanostructures Produced by the Wet Corrosion Process Using Various Titanium Alloys. Nanomaterials 2015, 5, 1397–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Zhang, J.; Jang, L.W.; Zhang, Z.; Guo, Y.; Salameh, S.; Kim, S.; Son, D.I.; Rangasamy, V.S.; Thayumanasundaram, S.; et al. Characterization and Photocatalytic Performance of Potassium-Doped Titanium Oxide Nanostructures Prepared via Wet Corrosion of Titanium Microspheres. J. Nanosci. Nanotechnol. 2019, 19, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Madigan, C.A.; Cambier, C.J.; Kelly-Scumpia, K.M.; Scumpia, P.O.; Cheng, T.Y.; Zailaa, J.; Bloom, B.R.; Moody, D.B.; Smale, S.T.; Sagasti, A.; et al. A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy. Cell 2017, 170, 973–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simoes Quaresma, J.A.; de Oliveira, M.F.A.; Guimaraes, A.C.R.; de Brito, E.B.; de Brito, R.B.; Pagliari, C.; de Brito, A.C.; Xavier, M.B.; Duarte, M.I.S. CD1a and factor XIIIa immunohistochemistry in leprosy: A possible role of dendritic cells in the pathogenesis of Mycobacterium leprae infection. Am. J. Dermatopathol. 2009, 31, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Naqvi, R.A.; Bhat, A.A.; Rani, R.; Ali, R.; Agnihotri, A.; Khanna, N.; Rao, D.N. IL-10 production from dendritic cells is associated with DC SIGN in human leprosy. Immunobiology 2013, 218, 1488–1496. [Google Scholar]
- Basavaraj, K.H. Nanotechnology in medicine and relevance to dermatology: Present concepts. Indian J. Dermatol. 2012, 57, 169–174. [Google Scholar]
- Karahan, O.; Tufani, A.; Unal, S.; Misirlioglu, I.B.; Menceloglu, Y.Z.; Sendur, K. Synthesis and Morphological Control of VO2 Nanostructures via a One-Step Hydrothermal Method. Nanomaterials 2021, 11, 752. [Google Scholar] [CrossRef]
- Ghislat, G.; Cheema, A.S.; Baudoin, E.; Verthuy, C.; Ballester, P.J.; Crozat, K.; Attaf, N.; Dong, C.; Milpied, P.; Malissen, B.; et al. NF-κB-dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Sci. Immunol. 2021, 6, eabg3570. [Google Scholar]
- Gabriele, L.; Fragale, A.; Borghi, P.; Sestili, P.; Stellacci, E.; Venditti, M.; Schiavoni, G.; Sanchez, M.; Belardelli, F.; Battistini, A. IRF-1 deficiency skews the differentiation of dendritic cells toward plasmacytoid and tolerogenic features. J. Leukoc. Biol. 2006, 80, 1500–1511. [Google Scholar]
- NIH. IFNA2 Interferon Alpha 2. 2022. Available online: https://www.ncbi.nlm.nih.gov/gene/3440 (accessed on 30 April 2023).
- Desvignes, L.P.; Ernst, J.D. Taking sides: Interferons in leprosy. Cell Host Microbe 2013, 13, 377–378. [Google Scholar] [CrossRef] [Green Version]
- Braga, A.F.; Moretto, D.F.; Gigliotti, P.; Peruchi, M.; Vilani-Moreno, F.R.; Campanelli, A.P.; Latini, A.C.P.; Iyer, A.; Das, P.K.; Souza, V.N.B.D. Activation and cytokine profile of monocyte derived dendritic cells in leprosy: In vitro stimulation by sonicated Mycobacterium leprae induces decreased level of IL-12p70 in lepromatous leprosy. Mem. Inst. Oswaldo Cruz. 2015, 110, 655–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Cancer Institute. Alpha-Type-1 Polarized Dendritic Cells. NCI Drug Dictionary. Available online: https://www.cancer.gov/publications/dictionaries/cancer-drug/def/alpha-type-1-polarized-dendritic-cells (accessed on 30 April 2023).
- Bhat, R.M.; Prakash, C. Leprosy: An overview of pathophysiology. Interdiscip. Perspect Infect. Dis. 2012, 2012, 181089. [Google Scholar] [CrossRef] [Green Version]
- Oktariana, D.; Saleh, I.; Hafy, Z.; Liberty, I.A.; Salim, E.M.; Legiran, L. The Role of Interleukin-10 in Leprosy: A Review. Indian J. Lepr. 2022, 94, 321–334. [Google Scholar]
- Oliveira, J.A.P.; Gandini, M.; Sales, J.S.; Fujimori, S.K.; Barbosa, M.G.; Frutuoso, V.S.; Moraes, M.O.; Sarno, E.N.; Pessolani, M.C.; Pinheiro, R.O. Mycobacterium leprae induces a tolerogenic profile in monocyte-derived dendritic cells via TLR2 induction of IDO. J. Leukoc. Biol. 2021, 110, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.A.; Siddiqui, M.R.; Mendillo, M.; Krahenbuhl, J.; Kaplan, G. Mycobacterium leprae inhibits dendritic cell activation and maturation. J. Immunol. 2007, 178, 338–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teles, R.M.; Krutzik, S.R.; Ochoa, M.T.; Oliveira, R.B.; Sarno, E.N.; Modlin, R.L. Interleukin-4 regulates the expression of CD209 and subsequent uptake of Mycobacterium leprae by Schwann cells in human leprosy. Infect. Immun. 2010, 78, 4634–4643. [Google Scholar] [CrossRef] [Green Version]
- Nedwin, G.E.; Naylor, S.L.; Sakaguchi, A.Y.; Smith, D.; Jarrett-Nedwin, J.; Pennica, D.; Goeddel, D.V.; Gray, P.W. Human lymphotoxin and tumor necrosis factor genes: Structure, homology and chromosomal localization. Nucleic Acids Res. 1985, 13, 6361–6373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagge, D.A.; Saunders, B.M.; Ebenezer, G.J.; Ray, N.A.; Marks, V.T.; Britton, W.J.; Krahenbuhl, J.L.; Adams, L.B. Lymphotoxin-α and TNF have essential but independent roles in the evolution of the granulomatous response in experimental leprosy. Am. J. Pathol. 2009, 174, 1379–1389. [Google Scholar] [CrossRef] [Green Version]
- Adams, L.B. Susceptibility and resistance in leprosy: Studies in the mouse model. Immunol. Rev. 2021, 301, 157–174. [Google Scholar]
- Sapkota, B.R.; Macdonald, M.; Berrington, W.R.; Misch, E.A.; Ranjit, C.; Siddiqui, M.R.; Kaplan, G.; Hawn, T.R. Association of TNF, MBL, and VDR polymorphisms with leprosy phenotypes. Hum. Immunol. 2010, 71, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Le Gall, C.M.; Engleman, E.G. Dendritic cells in cancer immunotherapy. Nat. Mater. 2018, 17, 474–475. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.; de Mingo Pulido, A.; Ruffell, B. Dendritic Cells and Their Role in Immunotherapy. Front. Immunol. 2020, 11, 924. [Google Scholar] [PubMed]
- Warheit, D.B.; Donner, E.M. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues. Food Chem. Toxicol. 2015, 85, 138–147. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warren, S.; Lee, S.Y.; Barragan, J.; Kositangool, P.; Yoshikubo, H.; Cervantes, J. Potassium-Incorporated Titanium Oxide Nanoparticles Modulate Human Dendritic Cell Immune Response to Mycobacterium leprae. Microbiol. Res. 2023, 14, 787-797. https://doi.org/10.3390/microbiolres14020055
Warren S, Lee SY, Barragan J, Kositangool P, Yoshikubo H, Cervantes J. Potassium-Incorporated Titanium Oxide Nanoparticles Modulate Human Dendritic Cell Immune Response to Mycobacterium leprae. Microbiology Research. 2023; 14(2):787-797. https://doi.org/10.3390/microbiolres14020055
Chicago/Turabian StyleWarren, Sam, So Yoon Lee, Jose Barragan, Piya Kositangool, Hatsuko Yoshikubo, and Jorge Cervantes. 2023. "Potassium-Incorporated Titanium Oxide Nanoparticles Modulate Human Dendritic Cell Immune Response to Mycobacterium leprae" Microbiology Research 14, no. 2: 787-797. https://doi.org/10.3390/microbiolres14020055
APA StyleWarren, S., Lee, S. Y., Barragan, J., Kositangool, P., Yoshikubo, H., & Cervantes, J. (2023). Potassium-Incorporated Titanium Oxide Nanoparticles Modulate Human Dendritic Cell Immune Response to Mycobacterium leprae. Microbiology Research, 14(2), 787-797. https://doi.org/10.3390/microbiolres14020055