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Abstract: Lactic acid bacteria (LAB) can produce peptides known as bacteriocins with antagonistic
activity against foodborne pathogens. The potential of LAB isolated from the surface of jalapeno
peppers to produce bacteriocins with antagonistic activity against Listeria monocytogenes, Staphylococ-
cus aureus, Escherichia coli O157:H7, and Salmonella Typhimurium was evaluated. Previously isolated
LAB strains were reactivated, and their cell-free supernatants (CFSs) were evaluated. Out of 390 re-
activated strains, 60 produced bacteriocin-like inhibitory substances (BLIS) since their antagonistic
activity was lost after proteases addition. Subsequently, 16 BLIS showed heat resistance (HR-BLIS),
retaining their bioactivity after heat treatment (121 ◦C for 15 min). By 16S rRNA gene sequencing
and antibiotic susceptibility tests, LAB strains producing HR-BLIS were identified as Enterococcus
lactis. Four HR-BLIS exhibited a minimum inhibitory concentration (MIC) of 80 mg/mL against L.
monocytogenes. MIC and minimum bactericidal concentration (MBC) of HR-BLIS-67 for S. aureus
(MIC = 80 mg/mL; MBC = 320 mg/mL), S. Typhimurium (MIC = 150 mg/mL; MBC = 250 mg/mL),
and E. coli O157:H7 (MIC = 250 mg/mL; MBC = 400 mg/mL) were determined. LAB isolated from
the surface of jalapeno pepper produced HR-BLIS (possibly enterocin) that exhibited broad-spectrum
antagonistic activity against foodborne pathogens; therefore, they are a promising source of natural
antimicrobials to ensure food safety.

Keywords: enterocin; biopreservative; L. monocytogenes; S. aureus; E. coli O157:H7; Salmonella

1. Introduction

Lactic acid bacteria (LAB) are a group of Gram-positive microorganisms widely dis-
tributed in nature, so they can be isolated from different food sources, including fruits and
vegetables like cantaloupe, pickles, tomato, and peppers [1–3]. Native to Mexico, jalapeno
peppers (Capsicum annuum) are grown throughout much of the country and account for 31%
of all pepper production in Sonora, having an important impact on local economy. Within
its microbiome, LAB are present, which may play a protective role against the spoilage of
this type of pepper [4]. Among the most representative genera are Lactobacillus, Streptococ-
cus, Pediococcus, and Enterococcus. In addition, LAB have been used in the food industry
as natural biopreservatives due to the production of inhibition agents with antimicrobial
activity, known as bacteriocins [5].
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Bacteriocins are bioactive peptides with the ability to inhibit the growth of pathogenic
and spoilage microorganisms, with a bactericidal and/or bacteriostatic effect [6]. Some
bacteriocins are heat resistant and effective across a broad pH range, particularly in acidic
media [7]; these characteristics make them ideal for use as biopreservatives in foods. Nisin
and pediocin are the most studied and commercially available bacteriocins that have been
approved for use as food additives by the food and drug administration. Nisin is produced
by Lactococcus lactis, and pediocin PA-1/AcH from Pediococcus acidilactici. Both possess
antagonistic activity against Gram-positive bacteria; however, they are not effective against
Gram-negative bacteria when used alone, limiting their applications [8,9].

There are various criteria to consider when classifying bacteriocins, such as their
genetic and molecular weight, as well as their physical, chemical, and phenotypic prop-
erties [10]. Bacteriocins produced by the genus Enterococci are named enterocins [11].
Enterocins act by inhibition of the synthesis of the cell membrane components or by pore
formation leading to cell lysis [12]. In general, bacteriocins are more effective against Gram-
positive bacteria than Gram-negative bacteria. However, new LAB-derived bacteriocins,
including those from vegetable sources, have demonstrated antimicrobial activity against
several pathogens of both types of bacteria [1–3,13,14]. Although these studies confirm the
antimicrobial effects of LAB-bacteriocins from vegetables, there are vegetable sources that
are yet to be studied, such as jalapeno peppers, that may also have the potential to contain
bacteriocin-LAB producers with antagonistic effects that could unveil natural alternatives
for food preservation.

Among the main pathogenic bacteria that compromise food safety are L. monocytogenes,
S. aureus, S. Typhimurium, and E. coli O157:H7 [15–18]. Outbreaks of infections caused by
these pathogens [19] have been reported to cost hundreds of billions of dollars per year in
productivity losses and medical expenses related to contaminated food consumption [20].
L. monocytogenes stands out for its ability to persist in ready-to-eat products after surviv-
ing multiple hurdles like heat treatment, low pH, refrigeration conditions, and high salt
concentrations [21]. Therefore, it is an enormous challenge for the food industry to control
and ensure the safety of their products against all pathogens, especially L. monocytogenes.
Hence, the search for antimicrobial alternatives, preferably of natural origin with broad-
spectrum antimicrobial bioactivity is very important. For these reasons, the objective of
this investigation was to identify LAB isolated from the surface of jalapeno peppers with
the ability to produce bacteriocins with antagonistic effect against foodborne pathogens.

2. Materials and Methods
2.1. Bacteria Strains: Conditions and Activation

A total of 390 LAB strains previously isolated from jalapeno pepper collected from
commercial fields in Sonora, Mexico, belonging to the strain collection of the Molecular
Plant Physiology Laboratory of the Research Center for Food and Development (CIAD)
were used during this experiment. LAB strains were cryopreserved at −80 ◦C and were
reactivated by inoculation in Man, Rogosa, and Sharpe (MRS) broth (DIFCO, Detroit, MI,
USA) pH 7.0 ± 0.2 at 37 ◦C for 18 h. Two transfers were made under the same conditions as
the previous inoculum and used in further experiments. All LAB strains were numerically
labelled consecutively from 1 to 390.

Cryopreserved pathogenic bacteria (Table 1) at −80 ◦C in Brain-Heart Infusion (BHI)
Broth (DIFCO, USA) with 15% glycerol were reactivated by transferring 0.1 mL of the
inoculum to BHI broth and incubated at 37 ◦C for 20 h. Cultures were maintained in BHI
broth at 8 ◦C throughout the study with monthly transfers. One day before the experiment,
the inoculum of each strain was prepared by transferring 0.1 mL of the stock culture to
35 mL of BHI broth in 50 mL conical centrifuge tubes and incubated at 37 ◦C for 18 h
with constant stirring. Overnight cultures were centrifuged (10,000× g, 10 min, 4 ◦C), and
the resulting pellet of each strain was washed with 20 mM sodium phosphate buffer pH
6.5 ± 0.2, adjusted to an optical density at 600 nm of 0.1 and used during experiments.
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Table 1. Pathogenic strains used with their designation.

Strains Designation

Listeria monocytogenes ATCC 7644
Staphylococcus aureus ATCC 6538

Escherichia coli O157:H7 K3999 (FDA/CFSAN)
Salmonella Typhimurium ATCC 14028

2.2. Screening for LAB from Jalapeno Pepper with Antagonistic Activity against L. monocytogenes

The antagonistic activity of the reactivated LAB isolates from jalapeno peppers was
tested against L. monocytogenes using the spot-on-lawn method described by Hilal Cadi
and Citak (2005) [22]. A volume of 20 µL of each LAB was spotted on the surface of
MRS agar plates and allowed to dry. Next, the microbial inoculum (O.D. 0.1) was mixed
in BHI (DIFCO, NJ, USA) soft agar medium and overlayed onto the MRS plates which
contained the LAB strains. After solidification, the plates were incubated at 37 ◦C for 24 h.
Positive results were those LAB strains which presented a clear inhibition zone around the
LAB culture.

2.3. Preparation and Antagonistic Activity Evaluation of Cell-Free Supernatants (CFSs)

Cell-free supernatants of selected LAB were obtained from fresh overnight (18 h
growth) cultures, centrifuged (10,000× g, 10 min, 4 ◦C), frozen at −80 ◦C, and freeze-dried
(Labconco Freezone 4.5, Kansas City, MO, USA) in order to concentrate the bioactive
compounds in the supernatants. Freeze-dried CFSs were resuspended (1:10 w:v) in 20 mM
sodium phosphate buffer pH 7.0 ± 0.2, sterilized by microfiltration (Durapore®, 0.22 µm
size; Millipore Co., St. Louis, MO, USA), and used for subsequent analyses. The antagonistic
activity against L. monocytogenes, S. aureus, S. Typhimurium, and E. coli O157:H7 was tested
by the spot-on-lawn test. After incubation at 37 ◦C for 24 h, clear growth zones around the
CFS drop were visually detected.

2.4. Identification of the Antagonistic Compound in CFSs and Heat Stability Test

Using the method described by Cruz-Guerrero et al. (2014) [23], the chemical nature of
antimicrobial compounds within each CFS was identified. Briefly, this technique consisted
of first adding NaOH (0.1 M) to adjust pH to 7 to neutralize the effect of CFSs’ organic
acids (lactic acid); then adding 1 mg/mL of catalase (90 min at 25 ◦C and 10 min at 65 ◦C)
to prevent the bactericide effect of H2O2; and finally, to confirm the production of protein
compounds, a pool of proteases (protease, proteinase K, and trypsin at 1 mg/mL) was
added, incubated for 2 h at 37 ◦C, and inactivated at 65 ◦C for 10 min, followed by the
antagonistic test against L. monocytogenes between each step. For further discrimination, the
thermal stability evaluation was performed on those CFSs containing antibacterial protein
compounds by submitting them to different thermal treatments (80 or 100 ◦C for 10 min or
121 ◦C for 15 min), followed by the inhibition test against L. monocytogenes.

2.5. LAB 16S rRNA Sequence Analysis and Identification

For molecular identification, genomic DNA from selected LAB, based on their ability to
produce heat-resistant CFS (HR-CFS) were extracted by alkaline lysis according to the Molec-
ular Cloning Laboratory Manual 2012 [24] and used as template for standard PCR reactions
using GoTaq® Flexi DNA Polymerase (Promega, Madison, WI, USA). Universal primers 27F
(5′-AGAGTTTGATCMTGGCTCAG-3′) and 1301R (5′-TACTAGCGATTCCGACTTC-3′) were
used. The PCR conditions were as follows: initial denaturation at 95 ◦C for 10 min; 30 denatu-
ration cycles at 95 ◦C for 1 min each; primer alignment at 55 ◦C for 1 min and primer extension
at 72 ◦C for 2 min; and a final extension step at 72 ◦C for 10 min. Next, for the sequence analy-
sis of the gene 16S rRNA, the PCR products were purified with GFX columns (Amersham
Bio-sciences, Piscataway, NJ, USA) and Sanger sequenced at Macrogen (Seoul, Korea) using
the 518F universal primer (5′-CCAGCAGCCGCGGTAATACG-3′). Sequences were analyzed
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against the GenBank database with the Blast tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi;
accessed on 10 October 2023), and the DNA sequences of the top hit matches were used as
reference organisms for phylogenetic analysis. DNA sequence alignments were performed
with the Clustal W function, and a phylogenetic tree was constructed with MEGA-X software
v. 10.2.6. using the maximum-likelihood method and the general time-reversible model with
gamma distribution to estimate the evolutionary distances (1000 bootstrap replicates).

Furthermore, to discriminate between LAB strains, antibiotics susceptibility of identi-
fied isolates was carried out by advanced colorimetric tests using the VITEK® 2 Compact
equipment. The equipment applied a total of 43 biochemical tests, including 17 enzymatic
tests for up to 8 h [25].

2.6. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)

Antimicrobial activity of freeze-dried HR-CFSs was evaluated following the method
described by Morales-Figueroa et al. (2022) [26] using the broth microdilution technique in
a 96-well microplate (COSTAR). Each well was inoculated with 5 µL of adjusted microbial
inoculum (O.D. 0.1. approximately 1 × 108 CFU/mL) and mixed with 295 µL of diluted
filter-sterilized freeze-dried HR-CFSs (10–400 mg/mL). Furthermore, three wells with only
BHI broth and the other three with pathogen + BHI were used as negative and positive
controls, respectively. Microplates were incubated for 24 h at 37 ◦C and the next day, 20 µL
from each well were plated into TSA and incubated under the same conditions. MIC
was established as the lowest concentration of each resuspended HR-CFS where growth
inhibition was unveiled; MBC, as the lowest concentration required to inactivate 99.9%
of the pathogen where no visible growth was detected in TSA plates. Experiments were
executed in triplicates, and the results were expressed as mg/mL. HR-CFSs with the lowest
MICs for L. monocytogenes were selected for further experiments.

2.7. Growth Inhibition Assay against L. monocytogenes

The effect of different concentrations (40, 80, 160, and 320 mg/mL) of selected HR-CFSs
against L. monocytogenes growth was carried out using a 96-well microplate. Bacteria (5 µL;
O.D. 0.1) were treated with different concentrations of HR-CFSs in BHI broth, achieving
a final volume of 300 µL per well. The microplate was placed into a FLUOstar Omega
microplate reader (BMG LabTech, Ortenberg, Germany) for 18 h at 37 ◦C. Optical density
(600 nm) was recorded every 30 min. Positive and negative controls were prepared using
BHI broth with and without L. monocytogenes, respectively. Subsequently, the most effective
HR-CFS, with the longest lag phase and lowest growth rate of L. monocytogenes at the lowest
concentration, was selected and its MIC and MBC against S. aureus, S. Typhimurium, and
E. coli O157:H7 were established following the procedure described in the previous section.

2.8. Statistical Analysis

To estimate lag time (h) and maximal growth rate (µmax; OD/h), optical density
values of selected HR-CFSs against L. monocytogenes growth were plotted against time.
Growth curves were fitted using DMFit add-in version 3.5 (Baranyi and Roberts, 1994) in
Excel (Microsoft Office excel 2019). The most appropriate model was selected considering
the determination coefficient or R2.

3. Results
3.1. Jalapeno Pepper’s LAB Antagonistic Activity against L. monocytogenes

Out of 390 LAB isolates from jalapeno pepper collected from Sonora, Mexico, a total
of 72 isolates showed antimicrobial activity against L. monocytogenes, evidenced by their
clear inhibition zones after the spot-on-lawn assay (Figure 1). The CFSs of these bioactive
LAB isolates were freeze-dried for further in vitro inhibition assays.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 1. Representative plate showing the inhibition zones of LAB strains 87, 109, 122C, 131, 138,
and 144.

3.2. In Vitro Assays of CFSs against Pathogens

Freeze-dried CFSs obtained from the 72 LAB isolates with antagonistic effect against L.
monocytogenes were tested against different Gram-positive and Gram-negative pathogens.
After adjusting the pH to 7 and adding catalase to the media, with the purpose of searching
for the nature of the antagonistic compound, a total of 60 CFSs retained their antimicro-
bial activity against L. monocytogenes and S. aureus with clear inhibition zones, while no
antimicrobial activity was detected for S. Typhimurium or E. coli O157:H7 at the evalu-
ated concentration (100 mg/mL). The inhibitory effect of these 60 bioactive CFSs can be
attributed to bacteriocin-like inhibitory substances (BLIS), since its antagonistic activity
was completely inactivated after treating bioactive CFSs with different proteolytic enzymes
(protease, trypsin, and proteinase K). These 60 BLIS were subjected to a thermal evaluation
in order to select those able to resist heat, and 16 BLIS retained their antagonistic activity
against the Gram-positive bacteria after being treated at sterilization conditions of 121 ◦C
for 15 min.

The MIC values of the 16 heat-resistant BLIS (HR-BLIS) against L. monocytogenes ranged
between 80 and >100 mg/mL. Samples from LAB strains 67, 144, 172, and 205 showed
the lowest MIC values of 80 mg/mL. The ability of different concentrations of these four
samples to inhibit the growth of L. monocytogenes is depicted in Figure 2. Control samples
without HR-BLIS showed a normal growth curve for L. monocytogenes with characteristic
lag, exponential, and stationary phases. Then, by treating L. monocytogenes with HR-BLIS at
80, 160, or 320 mg/mL, their inhibitory and bactericide effects can be noticed by prolonging
the lag phase, preventing the beginning of the exponential phase for over 18 h. Figure 2 also
depicts that the growth of L monocytogenes was affected depending on the source of the HR-
BLIS, when samples were added at only 40 mg/mL (0.5 MIC). Therefore, growth parameters
were determined in order to establish which HR-BLIS was the most effective (Table 2). In
general, the estimated maximum growth rate of L. monocytogenes decreased by 83, 78, 61,
and 70% when HR-BLIS from LAB strains 67, 144, 172, and 205, respectively, were added at
40 mg/mL. HR-BLIS of strain 67 (HR-BLIS-67) achieved the highest estimated lag phase
time of 13 h, in comparison to the other evaluated HR-BLIS, and it was selected for further
inhibition assays (MIC and MBC) against other pathogens (S. aureus, S. Typhimurium, and
E. coli O157:H7).



Microbiol. Res. 2024, 15 894

Microbiol. Res. 2024, 15, FOR PEER REVIEW  6 
 

 

the source of the HR-BLIS, when samples were added at only 40 mg/mL (0.5 MIC). There-
fore, growth parameters were determined in order to establish which HR-BLIS was the 
most effective (Table 2). In general, the estimated maximum growth rate of L. monocyto-
genes decreased by 83, 78, 61, and 70% when HR-BLIS from LAB strains 67, 144, 172, and 
205, respectively, were added at 40 mg/mL. HR-BLIS of strain 67 (HR-BLIS-67) achieved 
the highest estimated lag phase time of 13 h, in comparison to the other evaluated HR-
BLIS, and it was selected for further inhibition assays (MIC and MBC) against other path-
ogens (S. aureus, S. Typhimurium, and E. coli O157:H7). 

 
Figure 2. Growth curves of L. monocytogenes with different amounts (40–320 mg/mL) of heat-re-
sistant bacteriocin-like inhibitory substances. Strains (A) 67, (B) 172, (C) 144, and (D) 205, isolated 
from the surface of jalapeno peppers. Data are expressed as means ± SE (n = 3). 

Table 2. Kinetic parameters of L. monocytogenes with 40 mg/mL of heat-resistant bacteriocin-like in-
hibitory substances from Enterococcus spp. 

Enterococcus Growth rate (OD/h) Lag (h) R2 
67 0.1256 12.99 0.99 
144 0.1616 6.26 0.99 
172 0.2891 12.17 0.99 
205 0.2212 6.59 0.99 

L. monocytogenes 0.7355 5.15 0.99 

MIC and MBC of HR-BLIS-67 for L. monocytogenes, S. aureus, S. Typhimurium, and E. 
coli O157:H7 are shown in Table 3. Gram-positive bacteria (L. monocytogenes and S. aureus) 
had an MIC of 80 mg/mL and an MBC of 320 mg/mL to exert a bactericide effect. However, 
for Gram-negative bacteria (S. Typhimurium and E. coli O157:H7), the MIC required for 
an inhibitory effect was 150 and 250 mg/mL, and to achieve the MBC, it was 250 and 400 
mg/mL for S. Typhimurium and E. coli O157:H7, respectively. 

  

Figure 2. Growth curves of L. monocytogenes with different amounts (40–320 mg/mL) of heat-resistant
bacteriocin-like inhibitory substances. Strains (A) 67, (B) 172, (C) 144, and (D) 205, isolated from the
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Table 2. Kinetic parameters of L. monocytogenes with 40 mg/mL of heat-resistant bacteriocin-like
inhibitory substances from Enterococcus spp.

Enterococcus Growth Rate (OD/h) Lag (h) R2

67 0.1256 12.99 0.99
144 0.1616 6.26 0.99
172 0.2891 12.17 0.99
205 0.2212 6.59 0.99

L. monocytogenes 0.7355 5.15 0.99

MIC and MBC of HR-BLIS-67 for L. monocytogenes, S. aureus, S. Typhimurium, and E.
coli O157:H7 are shown in Table 3. Gram-positive bacteria (L. monocytogenes and S. aureus)
had an MIC of 80 mg/mL and an MBC of 320 mg/mL to exert a bactericide effect. However,
for Gram-negative bacteria (S. Typhimurium and E. coli O157:H7), the MIC required for
an inhibitory effect was 150 and 250 mg/mL, and to achieve the MBC, it was 250 and
400 mg/mL for S. Typhimurium and E. coli O157:H7, respectively.

Table 3. Minimum inhibitory concentration (MIC) and bactericide concentration (MBC) of heat-
resistant bacteriocin-like inhibitory substances from strain 67.

Pathogen MIC
(mg/mL)

MBC
(mg/mL)

L. monocytogenes 80 320
S. aureus 80 320

S. Typhimurium 150 250
E. coli O157:H7 250 400
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3.3. LAB 16S rRNA Sequencing and Identification

The alignment of genomic sequences allowed the classification of 16 HR-BLIS-producer
LAB as members of the genus Enterococcus spp., with high similarity scores to E. lactis, E.
faecium, E. durans, and E. faecalis according to the BLAST algorithm. Further, the phylo-
genetic analysis showed that three isolates (67, 87, and 172) were more related (53%) to
the Enterococcus lactis IS05 strain. However, for the remaining LAB isolates (12, 13, 64, 78,
109, 122, 131, 138, 144, 155, 205, 220, and 166), this molecular approach was not enough to
discern between E. lactis and E. faecium (Figure 3), which are closely related species with
a high 16S rRNA gene sequence identity. Therefore, after analyzing the antibiograms of
these LAB strains, samples were categorized into five groups according to their antibiotic
susceptibility profiles (Table 4). Samples 64, 12, 144, and 109 have unique profiles, while
samples 13, 67, 78, 87, 122, 131, 138, 155, 166, 172, 205, and 220 all share the same profile.
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three nodes, and the branch lengths and scale bar represent the number of substitutions per site.
• LAB isolates from Sonora, Mexico.

Table 4. Antibiotic susceptibility profiles of Enterococcus spp. isolated from the surface of jalapeno peppers.

Enterococcus
Antibiotic

AMP GEN STR CIP LEX ERI LZD VAN DOX TCY TIG NIT

12 S S S S S I S S I I S I
13 S S S S S I S S S S S I
64 S S S S S I S S S S S S
67 S S S S S I S S S S S I
78 S S S S S I S S S S S I
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Table 4. Cont.

Enterococcus
Antibiotic

AMP GEN STR CIP LEX ERI LZD VAN DOX TCY TIG NIT

87 S S S S S I S S S S S I
109 S S S S S I R R R I S I
122 S S S S S I S S S S S I
131 S S S S S I S S S S S I
138 S S S S S I S S S S S I
144 S R S S S I R S R I S I
155 S S S S S I S S S S S I
166 S S S S S I S S S S S I
172 S S S S S I S S S S S I
205 S S S S S I S S S S S I
220 S S S S S I S S S S S I

S: Sensitive, I: Intermedium, R: Resistant. AMP: Ampicillin, GEN: Gentamicin, STR: Streptomycin, CIP:
Ciprofloxacin, LEX: Levofloxacin, ERI: Erythromycin, LZD: Linezolid, VAN: Vancomycin, DOX: Doxycycline,
TCY: Tetracycline, TIG: Tigecycline, NIT: Nitrofurantoin.

4. Discussion

The analysis performed to identify LAB in jalapeno pepper suggested different En-
terococcus spp., specifically E. lactis and E. faecium, as the LAB responsible for producing
the antimicrobial compounds (Figure 3). The lack of distinction between these two species
might be caused by the similarity in their nucleotide sequences in the analyzed gene (16S
rRNA). Currently, there is controversy between the classification of E. faecium and E. lactis
species and how to distinguish between these two bacteria. Li and Gu (2021) [27] confirmed
that E. faecium and E. lactis were different species. Conversely, other reports found that
some E. faecium strains belong, in fact, to E. lactis species [28,29]. Nevertheless, in an earlier
study by Morandi et al., [30] Enterococcus lactis was introduced in 2012 after sequencing
specific genes and applying biochemical and antibiotic tests. They showed that E. lactis,
unlike E. faecium, was susceptible to vancomycin, an important antibiotic effective against
a broad spectrum of multi-drug-resistant pathogens. Susceptibility to this antibiotic is an
important feature for LAB strains with the potential to be used as biopreservatives. Table 4
shows that, with the exception of strain 109, 15 of the 16 bioactive strains isolated from
jalapeno peppers were susceptible to vancomycin; therefore, they could be classified as E.
lactis strains. These strains may play a protective role against human foodborne pathogens
by competition for space and nutrients and preventing pathogen adhesion due to the
production of stable inhibitory compounds, such as bacteriocins [31].

Since the antagonistic effect shown by the CFSs from E. lactis isolated from jalapeño
pepper was lost after adding proteases to the media, their CFSs’ bioactivity can be attributed
to bacteriocin-like inhibitory substances (BLIS), possibly enterocins [32]. Various studies
have shown the ability of Enterococcus strains to produce different kinds of enterocins,
including enterocins A, B, and/or P with antagonistic activity against pathogenic bacteria
and fungi [33,34]. BLIS from Enterococcus spp., including those isolated from vegetables
sources, possess a higher in vitro spectrum activity against pathogenic bacteria (including
Gram-negative bacteria) in comparison to BLIS reported from other LAB from other food
sources, such as dairy and meat products [35,36].

Thermostability is an important and desirable property for new food biopreservatives
intended to be used in the food industry, especially if they are going to be used as part of
a hurdle system where a thermal processing is commonly required. A total of 16 CFSs of
Enterococcus lactis from jalapeno peppers were identified as HR-BLIS (121 ◦C for 15 min)
since they were able to maintain their ability to inhibit the growth of pathogenic bacteria.
This thermoresistant property has also been reported for a few other enterocins (As-48 and
Gr17, LD3, and mudticin) produced by E. faecalis, E. hirae, and E. mundtii [37,38] and some
E. faecium subspecies isolated from different vegetable sources, such as Chinese pickles [39]
and black olives [40].
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It is worth pointing out that an MIC of 80 mg/mL of HR-BLIS from selected Ente-
rococcus isolated from jalapeno peppers for L. monocytogenes is significantly lower than
previously reported MICs for nisin of 740 or 14,800 mg/mL against L. monocytogenes ATCC
7644 and ATCC 7644K, respectively [41]. The bactericide effect shown by HR-BLIS against
Gram-positive bacteria has also been reported for other enterocins [37,42,43]. Enterocins’
function by destabilizing the bacterial cell wall or the cytoplasmatic membrane, causing
leakage of intracellular content or by inhibiting gene expression, leading to cell death [44].

The addition of different concentrations of HR-BLIS (equal and above the MIC) into the
growth media of L. monocytogenes confirmed their inhibitory effects (Figure 2). Furthermore,
evaluating the addition of only 0.5 MIC (40 mg/mL) helped to identify HR-BLIS-67 as the
most effective sample since it was more efficient in increasing the lag phase and decreasing
the growth of L. monocytogenes in comparison with the other HR-BLIS evaluated. The
antagonistic activity of HR-BLIS-67 against Gram-positive bacteria (L. monocytogenes and S.
aureus) was expected, since bacteriocins are reported to be more effective against this type
of bacteria [45].

Conversely, bactericide and inhibitory effects against Gram-negative bacteria (S. Ty-
phimurium and E. coli O157:H7) (Table 3) have only been reported for a few other bacteri-
ocins from LAB isolated from vegetable sources. However, MICs of 150 and 250 mg/mL
of HR-BLIS-67 for Salmonella and E. coli O157:H7, respectively, are considerably higher
when compared to those reported for CFS from Pediococcus pentosaceus (CM175) isolated
from cantaloupe [1], crude bacteriocin from Lactobacillus plantarum from molasses [13],
or L. pentosus DZ35 from pickles [14] where they use concentrations as low as µg/mL to
inhibit the growth of Gram-negative bacteria (S. Typhimurium, S. Saintpaul, and/or E. coli
O157:H7). Differences found between HR-BLIS-67 and these previous reports regarding
their ability to inhibit Gram-negative bacteria may be due to differences of several envi-
ronmental factors, which may impact their native microbiome [4]. As a response to harsh
environmental factors, LAB can generate different antagonistic compounds, including BLIS,
which can be more bioactive when compared with the BLIS obtained in the present study
from E. lactis. These bioactivity differences enhance the necessity to continue the screening,
isolation, and BLIS characterization of LAB from different food sources and to study their
antagonistic capabilities against foodborne pathogens.

5. Conclusions

Enterococcus lactis strain 67 isolated from the surface of jalapeno peppers from Sonora,
Mexico possess the ability to produce HR-BLIS (possibly enterocin) that exhibit broad-
spectrum antagonistic activity against L. monocytogenes, S. aureus, S. Typhimurium, and E.
coli O157:H7. Therefore HR-BLIS-67, is a promising natural antimicrobial alternative for
the control of foodborne pathogens and promote food safety. Further analysis to purify
and characterize HR-BLIS-67 should be performed to elucidate its stability and mechanism
of action, as well as to perform in situ assays to confirm that its bioactivity is maintained
once used in a food matrix, such as meat.
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