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Abstract: Mechanisms of action attributed to feed additives are of continuous research interest,
increasing our knowledge about the side effects (direct or indirect) of their application. The primary
role of organically modified clinoptilolite is to bind multiple polar and non-polar mycotoxins con-
taminating the feed and remove them during the digestion process and through feces, therefore
preventing adsorption and consequences of mycotoxicosis on fish health. However, it is not fully
understood if this binding action can influence bacterial communities in the fish digestive tract and
possibly other organs, as well as the aquatic environment. Therefore, in this study, Nile tilapias
(Oreochromis niloticus) (average weight: 30 ± 2 g; n = 48) were simultaneously exposed to low-level
mycotoxins (AFB1 40 µg/kg, FB 600 µg/kg, ZEN 50 µg/kg, and DON 150 µg/kg) added to diet,
with and without supplementation of commercially available organically modified clinoptilolite
feed additive (MinazelPlus®, 2 g/kg). After 42 days of continuous exposure, gill tissue, feces, and
water were collected, and DNA was extracted from the samples. Results of RT-PCR analysis have
revealed significant changes in microbiomes in fish from different groups, most prominently in
mycotoxin-exposed fish. No significant changes were detected in water samples between the control
and MinazelPlus® groups, confirming the safety of MinazelPlus® for aquatic microbial communities.
MinazelPlus® addition to the mycotoxin spiked diet, stabilized fish natural microbiota, and prevented
the disbalance of microbial homeostasis observed in fish exposed to dietary mycotoxins.
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1. Introduction

Microbial communities associated with fishes are highly variable and diverse and
can be influenced by the surrounding environment, diet, or age, affecting the host in
multiple ways. Microbiomes influence digestion, nutrient assimilation, the immune system,
metabolite production, and the overall health of the host [1]. Bacteria are the most abundant
and key components of the microbial communities found on the external (skin, gills) and
internal surfaces (digestive system). Microbiome composition is variable, depending on the
type of tissue as well as localization. For example, the gastro-intestinal (GI) tract microbiome
is dominated by anaerobes or facultative aerobes (strict aerobes have also been detected,
although in much smaller quantities) [2]. The bacterial composition of the GI tract consists
of about 90% organisms that belong to Proteobacteria (especially Enterobacteriaceae family),
Firmicutes, and Bacteroidetes, and the remaining 10% belong to less numerous phyla such
as Fusobacteria, Actinobacteria, Tenericutes, and Verrucomicroba [2–4]. The presence of

Microbiol. Res. 2024, 15, 2232–2246. https://doi.org/10.3390/microbiolres15040149 https://www.mdpi.com/journal/microbiolres

https://doi.org/10.3390/microbiolres15040149
https://doi.org/10.3390/microbiolres15040149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microbiolres
https://www.mdpi.com
https://orcid.org/0000-0001-5880-6400
https://orcid.org/0000-0003-1145-8263
https://orcid.org/0000-0002-2980-821X
https://doi.org/10.3390/microbiolres15040149
https://www.mdpi.com/journal/microbiolres
https://www.mdpi.com/article/10.3390/microbiolres15040149?type=check_update&version=1


Microbiol. Res. 2024, 15 2233

mucus can significantly affect the microbial composition of the gills and skin because of
the presence of immunoglobulins and antimicrobial peptides (AMPs) with antibacterial or
bacteriostatic effects [5,6]. Fish gills mucus cover contains bacterial populations in the range
of 102 to 104 CFU cm2 (reported for Atlantic salmon) [6]. Toxins, antimicrobial substances,
and diet are contributing factors that may change digestive tract microbiota in aquatic
animals and cause microbial dysbiosis, therefore impacting the immune system of fish and
increasing the risk of diseases [7–10].

Mycotoxins are widespread feed-related fungal contaminant toxins in aquaculture,
attributed to plant-based components of fish diets such as soybeans, wheat, grains, and
corn. These secondary metabolites are produced under stress conditions by several mold
species: Aspergillus flavus (Alphatoxin B1), Gibberella zeae (Zearalenone, ZEN), Fusarium
verticillioides (Fumonisin B1) and Penicillium chrysogenum (Penicillin) [11–14]. Mycotoxins
pose serious problems in aquaculture production worldwide [15] and present significant
risks to human and animal health, causing or contributing to chronic and acute illnesses.
Mycotoxins are regarded as a global health concern and included in the broad framework
of the One-Health concept [16,17], following “an integrated, unifying approach that aims
to sustainably balance and optimize the health of people, animals, and ecosystems” (after:
Joint Tripartite FAO, OIE, WHO commission and UNEP Statement, December 2021).

Exposure of fish to feed contaminated with mycotoxins is associated with liver and
kidney pathologies, carcinogenic effects, gastro-intestinal disturbances, reproductive dis-
orders, microbial dysbiosis, and immune system suppression [11,14,15,18,19]. Exposure
to mycotoxins can, therefore, increase the risk of diseases and infections with pathogens
such as Aeromonas hydrophila—which is one of the most common pathogens in aquaculture
worldwide [20,21]. Frequent bacterial infection outbreaks may lead to overuse or misuse of
antimicrobial substances, further influencing the emergence of resistance in bacteria and the
increased presence of antimicrobial resistance genes (ARG) in water environments [22,23].
Therefore, mitigation measures and good manufacturing practices are necessary to reduce
mycotoxin-related health problems.

Prevention of mycotoxins entering the food chain via animal feedstuff is carried out
with different approaches, including monitoring and detection of residues and the addition
of adsorbents. Clinoptilolite is a naturally occurring mineral, first described in the scientific
literature in the early 1960s. Clinoptilolite is characterized by its exceptional ion-exchange
properties, which make it a potent adsorbent. Its unique physicochemical properties
include a complex structure comprised of the three-dimensional scaffoldlike framework
of tetrahedrons built from Si(O4)-4 and Al2O3, where Al ion is in the center, and the
presence of additional exchangeable cations of Na, K, and Ca that allow the clinoptilolites
to exchange the ions with the chemicals present in the environment [24–27]. At a higher
level, clinoptilolites are characterized by the lamellar rigid structure, further enhancing
their ion-exchange properties. Such physicochemical properties are highly effective in
the adsorption of various chemicals, simultaneously supporting the safety of use that
has been determined in 2006 as “generally recognized as safe” by the US Food and Drug
Administration, followed by the same designation in the EU in 2013 [28].

Clinoptilolite can be further modified to magnify some of its adsorptive properties
and improve its selectivity, and one example of such modifications is a patented organically
modified clinoptilolite-based product called MinazelPlus®. Three-step tribochemical sur-
face modification and addition of the long-chain organic cations to the clinoptilolite surface
resulted in the development of a two-fold layer of organic ligands to which non-polar
mycotoxins are being adsorbed. MinazelPlus® modifications allow it to not only adsorb the
mycotoxins but, at the same time, provide it with higher stability (strong binding) in the
entire gastro-intestinal (GI) tract of the animals, even with large sectional differences in pH
and other GI environments [24,25,29]. Modified and unmodified clinoptilolite effects on
fish health and other production parameters were the subject of intensive studies in recent
years. In studies performed on rainbow trout (Oncorhynchus mykiss) by Ergün et al. [30],
supplementation of feed with a certain amount of zeolite has decreased levels of ammonia
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excretion from farmed fish. In studies performed by Zahran et al. [31], MinazelPlus®

supplementation to aflatoxins contaminated diet has mitigated adverse aflatoxin effects on
fish health, including antioxidant and immune responses in fish [31]. Those observations
correspond with studies performed on sea bream (Sparus aurata), where the addition of
MinazelPlus® has significantly improved the production parameters of the fish [32].

Recent studies demonstrated that clinoptilolite can affect the composition of the micro-
biome of the gut and adsorb some of the metabolites associated with it [33,34]. Clinoptilo-
lites are known to interact with pathogenic bacteria metabolites, such as biogenic amines
and ammonia, and can influence levels of Enterobacteriaceae abundance in microbial
communities [33,35]. Therefore, it is of interest to determine if MinazelPlus®, with its
modifications, can potentially have an even stronger influence on the state of the gut
microbiota.

The aim of the present study was to analyze the effect of commercially available organ-
ically modified clinoptilolite (MinazelPlus®) on selected bacteria in intestines (including
feces) and gills of Nile tilapia (Oreochromis niloticus) exposed to low doses of multiple
mycotoxins in food for an extended period (42 days). The selection was based on the most
abundant phyla as reported in the literature, including the Clostridiaceae family, which
contains important pathogenic bacteria [2–4,36–38].

2. Materials and Methods
2.1. Animals and Feed Preparation

Nile tilapia (Oreochromis niloticus) of 30 ± 2 g individual weight were distributed
randomly in 12 aquaria (50 L) equipped with continuous single pass flow system sourced
from conditioned water. Three aquaria were randomly assigned per each experimental
group. The fish were randomly divided into the following 4 groups (n = 12/group):

C–control group (no mycotoxin, no MinazelPlus®, basal diet).
T–a mixture of mycotoxins was added to the basal diet (Aflatoxin B1/AFB1, 40 µg/kg;

Fumonisin/FUM, 600 µg/kg; Zearalenone/ZEN, 50 µg/kg; and Deoxynivalenol/DON,
150 µg/kg).

M–basal diet with mycotoxin mixture as in diet T with the addition of MinazelPlus®

(2 g/kg).
Z–basal diet with the addition of MinazelPlus® (2 g/kg).
Commercially available organically modified clinoptilolite (MinazelPlus®; Patent Co.,

Mišićevo, Serbia) was added to the basal diet according to the safety and efficacy study
protocols. The determination of the mycotoxin concentrations used in the experiment was
based on the analysis of mycotoxins presence in animal feeds from Southeast Asia, as
reported by Gruber-Dorninger et al. [39]. The feed was analyzed by Patent Co. for myco-
toxin concentration to confirm that the required amount of mycotoxin concentration was
achieved (Table 1, Supplementary File Figure S1) [24,25]. Water quality was monitored daily
(NO2, temperature, pH) and weekly (NO3, KH—Carbonate Hardness, DO—Dissolved
oxygen) to ensure constant environmental conditions (Table 2). Observation of general
fish behavior before and during feeding was performed twice daily as part of the general
laboratory animal routine check that was recorded in the animal facility logbook. Over
42 days, no differences were observed in the case of growth performance or behavior of
fish. All animals were kept in condition’s accordance with the European Union Directives
regarding the requirements for the use of acceptable technologies in breeding and animal
welfare conditions. The research has received approval from the Ethical Committee for
Animal Experiments of the Regierung von Oberbayern, Maximilianstr. 39, 80534 München
(ROB–55.2-2532.Vet_02-20-142).
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Table 1. Results of the feed analysis, representing diets that were utilized in the experiment.
Diet 1—Control group ©, Diet 2—MinazelPlus® group (Z), Diet 3—Mycotoxins group (T), Diet
4—MinazelPlus® + Mycotoxins (M).

Sample
Number

Sample
Name

Results(µg/kg) or ppb Relative to Feed with Moisture Content of 12%

Aflatoxin
Ochratoxin A Zearalenone Deoxynivalenol

Fumonisin
HAT-2 T-2

B1 B2 G1 G2 B1 B2

S22-01-012 DIET 1 (C) <0.4 <0.4 <0.4 <0.4 <1.6 <16 <64 <40 <40 <9.6 <9.6

S22-01-013 DIET 2
(Z) <0.4 <0.4 <0.4 <0.4 <1.6 <16 <64 <40 <40 <9.6 <9.6

S22-01-014 DIET 3
(T) 31.67 Feb 45 <0.4 <0.4 <1.6 53.48 145 405 124 <9.6 <9.6

S22-01-015 DIET 4
(M) 35.85 Feb 41 <0.4 <0.4 <1.6 51.39 148 421 137 <9.6 <9.6

Table 2. Waters parameters from the 14th to the 57th day. C—control group; T—a mixture of
mycotoxins was added to the basal diet; M—basal diet was mixed with Minazel Plus® 2 g/kg and
mycotoxin mixture; Z—basal diet was mixed with Minazel Plus®.

Water Parameters
C T M Z

Average SD Average SD Average SD Average SD

DO (mg/L) 8.14 0.01 7.74 0.01 7.85 0.50 7.86 0.11

Temperature (◦C) 27.16 0.50 27.16 0.50 27.16 0.51 27.17 0.50

NO2 (mg/L) 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01

NO3 (mg/L) 1.00 0.00 0.90 0.30 0.80 0.00 1.00 0.00

KH (◦dH) 14.36 2.31 14.20 1.99 14.30 1.43 13.88 1.96

2.2. Experimental Design and Sampling

All fish were kept in individual tanks and fed a basal diet for 14 days in order to
acclimatize, then fed with respective experimental and control diets for 42 days. After
42 days of exposure, fish were sampled (n = 10 per group), and intestines (including feces),
gills, and aquarium water (n = 6/per group) were collected under aseptic conditions and
placed in sterile containers. The samples were kept at −80 ◦C until analysis.

2.3. DNA Extraction

Extraction of DNA from water, intestines (including feces), and gills was performed
using the Genomic Bacteria AX Mini kit (A&A Biotechnology, Gdansk, Poland). Then,
the quality of the performed DNA isolations was checked using the Thermo Scientific
NanoDrop 2000 Spectrophotometer device (Thermo Fisher, Waltham, MA, USA) and
concentration on Qubit 4 Fluorometer (Thermo Fisher, Waltham, MA, USA). The average
DNA content of the samples was 40 µg/µL (in 50 µL). The contamination at 260/230
(contamination related to, among others, reagents used for isolation): 2.0–2.2, and for
260/280 (contamination with substances such as enzymes and inhibitors): 1.8–2.0 (correct
levels, according to the instruction manual of the device).

2.4. RT-PCR

Analysis of RT—PCR was performed with the use of an apparatus Agilent MX 3000
(Agilent Technologies, Inc., Santa Clara, CA, USA) with the SsoAdvanced™ Universal
SYBR® Green Supermix kit (Bio-Rad Laboratories, Inc., Irvine, CA, USA) at a volume of
10 µL in 3 technical repetitions (Table 3). A no template control (NTC–without DNA sample,
only primers and water with PCR mix) test was additionally performed for each amplicon.
The real-time PCR analysis strategy was based on the amplification of specific amplicons
for the tested cluster (Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria) and
family Clostridiaceae against the reference amplicon for all bacteria (16S rDNA) (Table 4).
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In addition, the obtained results were compared to the sample constituting the calibrator
with the lowest level of the studied cluster and the lowest level of the reference amplicon
in order to determine the relative level of DNA in terms of the tested amplicons [40].

Table 3. Proportion of qPCR mix.

Component Volume Per 10 µL Reaction

SsoAdvanced™ Universal SYBR® Green Supermix 5 µL

Forward and reverse primers 1 µL (0.8 µM)

DNA template 2 µL (0.04–0.015 × 10−4)

Nuclease–free water 2 µL

A standard curve was performed for the genes tested to determine the efficiency of
each gene. A sample dilution of 10−4 from the 10−2 to 10−7 series of dilutions was selected
for analysis. A linear line of the fluorescent signals converted to the cycle threshold (Ct)
values was plotted, and the slope of the linear equation was applied to calculate the primer
efficiency according to the equation Efficiency (%) = (10 [−1/slope] −1) × 100. It was 89.4%
for the Firmicutes phylum, 100.9% for Bacteroidetes, 91.6% for Actinobacteria, 94.1% for
Proteobacteria, 95.4% for Clostridiaceae 98.4% and for the Universal Eubacterial Gene 94.4%.

The amplification was performed according to a protocol of 40 cycles: polymerase
activation and DNA denaturation at 95 ◦C (3 min), denaturation at 95 ◦C (15 s), annealing
at 60.5 ◦C (15 s), extension and plate reading at 72 ◦C (40 s). The analysis of the melting
curves for the samples was performed at temperatures ranging from 65 ◦C (5 s) to 95 ◦C
(0.5 ◦C increments in 2 s). The obtained Ct values were used for relative quantification of
the DNA expression level according to the 2-∆∆Ct method (assigned as DNA level) [41].

Table 4. Primers used for analysis.

Name Primer Sequence (5′ → 3′) Forward (F)/Reverse (R) Reference

Universal Eubacterial gene
530F (GTCCCAGCMGCNGCGG) F

[42]
1100R (GGGTTNCGNTCGTTG) R

Firmicutes
928F (TGAAACTYAAAGGAATTGACG) F

[43]
1040R (ACCATGCACCACCTGTC) R

Bacteroidetes
798cfbF (CRAACAGGATTAGATACCCT) F

[43]
cfb967R (GGTAAGGGTTCCTCGCGTAT) R

Actinobacteria
Eub338F (ACGGGCGGTGTGTACA) F

[44]
Act1159R (TCCGAGTTRACCCCGGC) R

Proteobacteria
27F (GAGTTTGATCMTGGCTCAG) F

[45]
1529R (CAKAAAGGAGGTGATCC) R

Clostridiaceae
Clos-58-f (AAAGGAAGATTAATACCGCATAA) F

[46]
Clos780-r (ATCTTGCGACCGTACTCCCC) R

2.5. Statistical Analysis

The data were analyzed using R statistics software (v. 4.2.3, freely available) with
packages “dyplr”, “ggpubr”, “FSA”, “vegan” and “devtools”. The Shapiro–Wilk test was
performed–the data distribution was not normal for tested bacteria. As a result, the analyses
were performed using PCA and the Kruskal–Wallis test (p < 0.05), where the factors were
diet type. Results of the Kruskal–Wallis test and the post hoc Dunn’s multiple comparisons
test showed the significance of differences between groups. Plots were created in R using
ggplot2.
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3. Results
3.1. Gills

In the case of gills, significant differences between the studied groups (p < 0.01)
(Figure 1) were observed. Significant differences were shown in the level of bacteria
(Figure 2) from the Actinobacteriota phylum between group C and Z (p = 0.0014), M
and Z (p = 0.00014), and M and T (p = 0.00144). The highest levels of bacteria occurred
in groups T and Z. Analysis of the Bacteroidota phylum showed differences between
group C and Z (p = 0.037), where the level was lowest in group C. The Firmicutes phylum
showed significant differences between groups C and M (p = 0.024), where the level of
bacteria in group C was the lowest. In contrast, the greatest variation was observed in
the Proteobacteria phylum. Highly significant differences were shown for this cluster
between groups C and M (p = 0.0079), C and T (p = 0.0016), M and Z (p = 0.0018), and T
and Z (p = 0.000408). The lowest level was shown in the T group and the highest in the
Z group. However, for the Clostrodiaceae family analyzed, highly significant differences
were shown between groups C and M (p = 0.00421) and M and Z (p = 0.00392), while
significant differences were shown between groups M and T—p = 0.025. The highest level
of Clostridiaceae bacteria occurred in group Z, while the lowest level was in group M.
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3.2. Intestines

The analysis of intestines (including stool) samples showed significant differences
between the analyzed groups (p < 0.01), which is also illustrated in Figure 3. In the case
of the Firmicutes phylum (Figure 4), there were significant differences between group C
and T (p = 0.003), where the level in group C was the highest compared to the other groups
(5.84 DNA level). On the other hand, analysis of the level of the Actinobacteria phylum
(Figure 4) showed significant differences between all the groups studied. Highly significant
differences were shown between groups C and M (p = 0.0016), M and T (p = 0.0049), and C
and Z (p = 0.0068). In turn, differences were found between groups T and Z at p = 0.0222.
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The highest levels of bacteria were found in group M (22.5 DNA level), while the lowest
was in group C (16.8 DNA level). Significant differences were also shown between groups
M and T in the level of the Clostridiaceae family, with group M having the highest level.
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3.3. Water

In the case of water samples, differences in the level of bacteria (Figure 5) from the Acti-
nobacteriota phylum were shown between groups M and Z (p = 0.0112), where the highest
level of that bacteria occurred in group Z. On the other hand, analysis of the Firmicutes
phylum showed highly significant differences between groups C and M (p = 0.0075), where
the level of this cluster was highest in group C. Analysis of the Proteobacteria phylum
showed the greatest variation. Highly significant differences were shown between groups
C and M (p = 0.0018) and C and T (p = 0.0005). Significant differences were shown between
groups T and Z (p = 0.0285), and the highest level of this phylum occurred in group C and
the lowest in T. Analysis of the level of the Clostridiaceae family showed highly significant
differences between group C and M (p = 0.00564), where group C had the highest level of
this family, while group T had the lowest.
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Figure 5. Differences between selected bacteria in water samples: C—control group (basal diet);
T—mycotoxins mixture was added to the basal diet; M—Minazel Plus® and mycotoxin mixture
was combined with basal diet; Z—Minazel Plus® was mixed added to the basal diet. p < 0.05—*;
p < 0.01—**.

4. Discussion

Mycotoxins are secondary metabolites produced by filamentous fungi and prevention
of their toxic effects is critical to food and feed safety. They negatively affect the health of
the host by various mechanisms, including interference with proteins and peptides that
have important functions in the immune system and metabolism, causing malfunction
in the intestinal epithelium and leading to poor intestinal health and integrity [42]. Such
changes also affect the composition of the microbial community, which can result in an
increased risk of infection by pathogenic bacteria [47–49].

In this study, most of the changes in selected bacteria’s DNA levels were observed in
gills (Figure 2). Gills have direct contact with the water environment, which constitutes one
of the most prolific habitats of microorganisms on Earth. It is the main way of their spread
in nature, as well as the most microbiologically loaded animal environment [50,51]. Gill
epithelium releases mucus with defensive substances, such as immunoglobulins and an-
timicrobial peptides (e.g., β-defensin), to reduce the colonization potential of pathogenic or
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opportunistic bacteria, simultaneously supporting the abundance of neutral and beneficial
bacterial microbiome composition [5,6]. Similar results to gills can also be observed in water
and intestine samples. This could be due to the influence of mycotoxins on bacteria present
in the water environment [52,53]. Additionally, a comparison between intestine samples,
gill, and water has shown that the intestine microbial community is less vulnerable to
environmental changes and toxins [50,51,54].

One of the ways to remove the mycotoxin from the feed or the environment is to use
adsorption with organically modified clinoptilolite. This mineral belongs to the heulandite
(HEU) group, which possesses a two-dimensional structure and manifests ion-exchange
properties in water. It is used in various fields, medicine, industry, and the environment,
mostly for the sequestration of toxic pollutants from industrial effluent and wastes. Addi-
tionally, it is used to absorb and remove harmful or toxic substances like mycotoxins from
human and animal digestive tracts [55,56]. In animals, it may, therefore, have a stabilizing
effect on the intestinal barrier due to properties that have the effect of attracting and buffer-
ing excess protons that cause acidification. It also has an inhibitory effect on the growth of
pathogenic bacteria that pose a danger to both humans and farm animals, and in the case
of aquatic animals, it could positively influence environmental surroundings [57,58].

In vivo studies have shown that synthetic or modified clinoptilolite can prevent
pathogenic bacteria colonization (e.g., E. coli or Salmonella typhimurium), as well as se-
lectively bind toxins (but not essential micro and macro elements, vitamins, and amino
acids), further improving animal growth performance [35,57,59]. Minazel Plus® is pro-
duced by a patent-protected industrial process that embeds negatively charged organic
long chains in inorganic cations from the surface of clinoptilolite (E568), allowing it to
maintain a balance of positive and negative charges on the clinoptilolite surface, leading
to the formation of organic-inorganic complexes on the surface of the mineral. As a re-
sult, this organic modification of clinoptilolite allows for a broader mycotoxin adsorption
characteristic with improved selectivity and adsorption stability [32,60].

In our studies we have observed significant differences between group M (mycotoxin
+ Minazel Plus®) and T (mycotoxin). In the case of intestines, the differences were observed
in Actinobacteriota phyla and the Clostridiaceae family, and in the case of gills, differences
were observed in the level of Actinobacteriota phyla only. However, differences in water
samples between M and T groups were not observed. Additionally, gill samples presented
differences between the M group and C (control) samples, strongly suggesting that mod-
ified clinoptilolites have the potential to influence the composition of microbiota as also
supported by other studies [32,57,59]. We further observed differences in intestine samples
between groups M and C at the Actinobacteriota phylum level. Similar changes were seen
in gills with Actinobacteriota and Bacteroidota phyla. There were no significant differences
in phyla composition in the water environment between those groups. These findings
suggest that there is a potentially selective effect of organically modified clinoptilolites on
the microbial community [47,57,59]. However, further research is needed to determine the
exact effect of the Minazel Plus® on the composition of microbiomes in different exposure
routes and durations [61,62]. From a different perspective, and related to the use of antibi-
otics in aquaculture, it is important to investigate possibilities for using alternative products
to support the homeostasis of the microbial community of the body without adversely
affecting the aquatic environment [63–65].

5. Conclusions

In summary, the study indicates the potential for organically modified clinoptilolites
to be used in the prevention of mycotoxin effects on microbiomes, as well as a tool to ma-
nipulate the fish microbiomes. The study showed that both mycotoxins and the addition of
MinazelPlus® changed the composition of bacteria in intestines and gills. Observed differ-
ences in microbial communities suggest the potential of organically modified clinoptilolites
to reduce mycotoxin levels and prevent mycotoxin-related microbial dysbiosis.
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group, Diet 3—Mycotoxins group, Diet 4—MinazelPlus® + Mycotoxins.
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