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Abstract: Arbuscular mycorrhizal fungi (AMF) and vermicompost can be efficient in enhancing
the accumulation of metabolites, whereas there are no reports about their effects on antioxidant
bioactive molecules and Sun Protection Factor (SPF) in Anadenanthera colubrina, a species used in
cosmetic formulations. We hypothesized that the combination of AMF inoculation and vermicompost
supplementation would synergistically optimize the production of these compounds and improve
the antioxidant capacity and SPF of the plant leaves. A completely randomized experiment was set
up in a factorial design with three mycorrhizal inoculation treatments (control, Acaulospora longula,
and Gigaspora albida) and two substrate proportions (soil alone and soil with 10% vermicompost).
After 126 days, the leaves were harvested to evaluate the content of primary metabolites, phenolics,
antioxidant capacity, and SPF. Vermicompost did not synergize with AMF to enhance biomolecule
synthesis in A. colubrina; instead, it neutralized the mycorrhizal effects. However, plants grown in soil
supplemented with vermicompost showed an increase in metabolite and SPF accumulation compared
to those grown solely in soil. Seedlings colonized by G. albida and grown in soil also exhibited
enhanced anabolism. Therefore, this is the first report in the literature regarding the mitigating
effect of vermicompost application on the SPF of mycorrhizal plants. Future studies should consider
analyzing these factors in field conditions to attest the need of these agricultural tools.
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1. Introduction

Anadenanthera colubrina (Vell.) Brenan., known as cebil, is a legume found in the
Brazilian Caatinga and Cerrado [1], which has antioxidant, anti-inflammatory [2], antimi-
crobial [3], immunomodulatory [4], and photoprotective properties [5], due to the health-
promoting bioactive compounds present in the bark, leaves, and fruit, such as phenolic
acids, flavonoids, and triterpenes [6]. In Brazil, this species is used in the formulation of
cosmetics and antiseptics, such as those produced by Sanativo®.

This leguminous plant, used in several industrial sectors [7], has improved the accu-
mulation of secondary metabolites when arbuscular mycorrhizal fungi (AMF) are applied
during seedling production [5]. This benefit is attributed to Acaulospora and Gigaspora
representatives due to the modulation of microbial respiration and soil pH, as these fungi
reduce the soil acidity and enhance CO2 evolution [8]. In addition, the incorporation of
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superphosphate in A. colubrina cultivation also potentializes the synthesis of antioxidant
compounds [9]. These findings highlight the potential of AMF and specific fertilizers in
boosting the production of valuable compounds in A. colubrina, which can be beneficial for
various industrial applications.

In the context of agricultural crops, soil fertilization is a common practice aimed at
ensuring long-term soil health and nutrient availability for plants [10]. Thus, it is crucial
to identify sustainable agricultural tools that can synergistically enhance the anabolism of
crops like A. colubrina when used in conjunction with AMF. A practice that may be applied
is the use of organic fertilizers, like vermicompost [11], a substrate that benefits the soil’s
characteristics [12], promoting AMF activity [13,14].

It is expected that the vermicompost may act synergistically with the mycorrhizal sym-
biosis to increase the accumulation of plant metabolites [15], given its physical and chemical
characteristics that favor soilborne microorganisms [16]. However, the response can vary
from positive to neutral to even a reduction in metabolite biosynthesis in AMF-associated
plants grown in organic substrates, depending on the dose and growth conditions [17,18].
Therefore, it is essential to define the role of vermicompost in the production of bioactive
molecules in mycorrhizal A. colubrina, something that has not yet been established. Under-
standing this dynamic is vital for developing sustainable agricultural practices that can
optimize the production of valuable bioactive compounds in crops.

Therefore, the hypothesis tested was that AMF inoculation and vermicompost supple-
mentation act synergistically to boost the primary metabolites and phenolics production,
the in vitro antioxidant capacity, and the Sun Protection Factor (SPF) in leaves of A. colubrina
seedlings. The aim was to investigate if the combined application of mycorrhizal isolates
and vermicompost can enhance the production of antioxidant compounds in A. colubrina
leaves, aiming to identify the superior agricultural strategy for establishing a sustainable
protocol to produce high-quality seedlings for the cosmetic and antiseptic industries.

2. Materials and Methods

The research was conducted over 126 days at the University of Pernambuco (UPE),
Brazil, with the biochemical, phytochemical, and SPF assays carried out at the Labora-
tory of Analysis, Research, and Studies in Mycorrhizae (LAPEM/UPE) (8◦2′47.143′′ S;
34◦53′15.086′′ W).

2.1. Experimental Design

An experiment was established in a greenhouse, with completely randomized design,
in a 3 × 2 factorial arrangement, with three mycorrhizal inoculation treatments (control
without AMF, plants inoculated with Acaulospora longula Spain & N.C. Schenck, and plants
inoculated with Gigaspora albida N.C. Schenck & G.S. Sm.) and two proportions of vermi-
compost supply (with and without 10% vermicompost), with four replicates each, totaling
24 experimental units.

2.2. Inoculum Multiplication

The initial isolates of A. longula and G. albida were sourced from the Mycology Depart-
ment of the Federal University of Pernambuco, Brazil, and were propagated for 90 days
in a greenhouse using disinfected soil plus 10% organic compost with Panicum miliaceum
L. as the host. After this period, the aerial parts were discarded, while the underground
parts were dried and roots were fragmented (±1 cm) and homogenized, resulting in the
soil inoculum, which was collected and stored (4 ◦C) until the time of inoculation [19].
These inocula had an infectivity of around 60%, according to the methodology described
by INVAM [20]. These isolates were chosen for their efficiency in improving the secondary
metabolism of A. colubrina in previous studies [5,19].
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2.3. Inoculation and Cultivation of A. colubrina Seedlings

Anadenanthera colubrina seeds were disinfected with NaClO (25 mL/L) and germinated
in chemically disinfected soil. Once the definitive leaves emerged, the seedlings were
transplanted into pots with a soil capacity of approximately 2 kg. These pots contained
either 10% vermicompost (9:1, v/v) or not, in which they received soil inoculum (containing
200 glomerospores of A. longula and G. albida), except for control plants. This proportion of
vermicompost was chosen based on previous studies that evaluated the phytochemistry
of mycorrhizal plants in vermicompost-based substrate with AMF [18,21]. The seedlings
were kept in a greenhouse, watered daily to maintain 70% of the total pore volume (TPV)
of the substrate filled with water [22] (TPV = 100 (1-DS/DP) (DS: soil density; DP: particle
density), under environmental conditions of average temperature (25 ◦C) and relative
humidity (77.5%).

The soil used for germination and cultivation was chemically characterized by the
Brazilian Agricultural Research Corporation (EMBRAPA) (Table 1). Both the fungi and
the plant species were officially registered in the National System for the Management
of Genetic Heritage and Associated Traditional Knowledge (SisGen) under the num-
ber AA6688A.

Table 1. Fertility of substrates used to cultivate Anadenanthera colubrina (Vell.) Brenan seedlings.

Substrates pH * P ** Ca Mg Al K O.M.

(cmolc dm−3) g kg−1

Soil 4.9 4.0 1.8 1.2 0.70 0.28 3.41
Soil + 10%

VC 5.8 20.0 2.0 1.4 0.85 0.54 7.55

VC: Vermicompost; * 1:2.5, v/v (H2O); ** (mg dm−3); O.M.: Organic matter.

2.4. Extract Preparation

Following a 126-day period in a greenhouse, the leaves were collected, thermally
stabilized at 45 ◦C for 72 h, and then sectioned. Aliquots of 500 mg of the plant material
were then transferred to amber flasks, and 20 mL of ethanol (950 mL L−1) (Neon®, São
Paulo, Brazil) were added. After 12 days of maceration (20 ◦C), the extracts were filtered
twice and stored in a freezer at −18 ◦C, ready for use in biochemical, phytochemical, and
antioxidant activity, and SPF assays. All data regarding metabolite production is expressed
as content (mg plant−1) considering the values obtained from dry matter accumulation.

2.5. Biochemical Analyses
2.5.1. Total Soluble Carbohydrates

To quantify the total soluble carbohydrates, 50 µL of the plant extract was com-
bined with 95 µL of distilled water, 50 µL of phenol (800 mg L−1) (Sigma-Aldrich®,
São Paulo, Brazil), and 2 mL of H2SO4 (Isofar Ltd., Rio de Janeiro, Brazil). The mix-
ture was then vortexed (Biomixer Ltd., São Paulo, Brazil) and allowed to stand for
10 min before spectrophotometer reading (Thermo Fisher Scientific, Waltham, MA,
USA) (490 nm), using glucose (Vetec®, Rio de Janeiro, Brazil) as the standard curve [23]
(Absorbance = 0.0006 × Concentration + 0.0605; R2 = 0.98630).

2.5.2. Total Proteins

The total proteins accumulated in A. colubrina leaves were analyzed by mixing 50 µL of
extract and 2500 µL of Bradford reagent (composed of Coomassie Blue G-250 dye, distilled
water, and phosphoric acid) (Sigma-Aldrich®, São Paulo, Brazil; Dinâmica®, São Paulo,
Brazil). The samples were shaken in a vortex (Biomixer Ltd., São Paulo, Brazil) and, after
5 min, the samples were read in a spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA) at 595 nm. Bovine serum albumin (Sigma-Aldrich®, Saint Louis, MO, USA) was
used as a standard curve [24] (Absorbance = 0.0007 × Concentration + 0.0036; R2 = 0.9972).
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2.6. Phytochemical Analyses
2.6.1. Total Flavonones and Dihydroflavonols

To verify the potential of vermicompost and AMF in increasing the synthesis of
antioxidant bioactive molecules, total flavonones and dihydroflavonols were measured
using a method that involved reacting 100 µL of the extract with 200 µL of 2,4-dinitro-
phenylhydrazine (10 g L−1) (Dinâmica®, São Paulo, Brazil). The mixture was trans-
ferred to microtubes (2 mL) and placed in a water bath (50 ◦C) for 50 min. After cool-
ing to room temperature, an aliquot of 100 µL from this solution was transferred to
amber flasks containing 1000 µL of KOH (100 mg L−1) (Fmaia®, São Paulo, Brazil),
and 4900 µL of methanol (Dinâmica®, São Paulo, Brazil) were added. The samples
were vortexed (Biomixer Ltd., São Paulo, Brazil) and then read in a spectrophotome-
ter (Thermo Fisher Scientific, Waltham, MA, USA) at 486 nm, with methanol serving as
the blank [25,26]. Naringenin was used as the standard curve (Sigma-Aldrich®, São Paulo,
Brazil) (Absorbance = 0.1023 × Concentration + 0.0543; R2 = 0.9986).

2.6.2. Total Phenolic Compounds

Total phenolic compounds were quantified by adding 200 µL of plant extract and 1 mL
of Folin-Ciocalteu reagent (100 mL L−1) (Merck®, Darmstadt, Germany), with the addition
of 800 µL of sodium carbonate (75 g L−1) (Vetec Ltd., Duque de Caxias, Brazil) in amber
flasks. The solution was vortex-stirred (Biomixer Ltd., São Paulo, Brazil) and left to stand
for 30 min before being read spectrophotometrically (Thermo Fisher Scientific, Waltham,
MA, USA) at 765 nm [27]. Gallic acid (Dinamica®, São Paulo, Brazil) was used to establish
the standard curve (Absorbance = 0.0092 × Concentration − 0.0621; R2 = 0.9976).

2.7. Antioxidant Activity Assay

To verify the antioxidant potential of the A. colubrina phytomass, the ability to reduce
the phosphomolybdenum complex was assessed by adding 200 µL of the extract diluted
(1:5) in ethanol (950 mL L−1) (Neon®, São Paulo, Brazil) to 2000 µL of the work solution,
consisting of 588 µL of H2SO4 (Isofar Ltd., Rio de Janeiro, Brazil), 0.036 g of sodium phos-
phate (Dinâmica®, São Paulo, Brazil), and 0.046 g of ammonium molybdate (Dinâmica®,
São Paulo, Brazil). The final solution was then placed in a water bath (95 ◦C) for 90 min
and, after cooling to room temperature, the samples were read spectrophotometrically
(695 nm). The results of this analysis were expressed as a percentage compared to that
obtained for the positive control, tocopherol (0.0025 g/10 mL) (Sigma-Aldrich®, São Paulo,
Brazil) [28,29].

2.8. Sun Protection Factor Assay

The SPF was evaluated using the extract diluted in ethanol (950 mL L−1) (Neon®, São
Paulo, Brazil) (0.10 mg/mL), followed by vortex agitation for 10 s (Biomixer Ltd., São Paulo,
Brazil). Then, 900 µL were transferred to a quartz cuvette (Thermo Fisher Scientific, Waltham,
MA, USA) and scanned from 290 nm to 320 nm (at 5-nm intervals). Based on the absorbances
obtained, the SPF was calculated using the equation SPF = CF × ABS × EE × I × AA, where
CF = correction factor; ABS = absorbance (290–320 nm); EE = erythemogenic effect; I = solar
intensity; and AA = absorbance obtained in the reading [30–32]. Benzophenone (2-hydroxy-
4-methoxybenzophenone, 100 mg L−1) (Sigma-Aldrich®, Saint Louis, MO, USA), an active
and synthetic ingredient in sunscreens, and quercetin (100 mg L−1) (Sigma-Aldrich®, Saint
Louis, MO, USA), a flavonoid with recognized photoprotective activity, were used as
positive controls.

2.9. Statistical Analysis

The data were evaluated using a two-way ANOVA, with the means compared using
the Tukey test (p ≤ 0.05), using ASSISTAT version 7.7 beta (2016). Clustering algorithm
analyses (K-means) and hierarchical dendrogram construction were carried out using
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Python language and Google Collaborative Platforms. The figures in the results were
generated using GraphPad Prism 10.3.1—free demo.

3. Results and Discussion

Contrary to initial expectations, the results indicated that both AMF inoculation and
organic fertilization with vermicompost independently enhanced compound production in
A. colubrina. However, no synergism was observed when these agricultural technologies
were applied together, as vermicompost mitigated the symbiotic efficiency reported in soil
without fertilizer (Figures 1 and 2).
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Figure 1. Content (mg plant-1) of total soluble carbohydrates (A), total proteins (B), total flavonones
and dihydroflavonols (C), total phenolic compounds (D), antioxidant activity (phosphomolybdenum
complex reduction) (E), and Sun Protection Factor (SPF) (F) in leaves of Anadenanthera colubrina (Vell.)
Brenan seedlings inoculated or not with Acaulospora longula Spain & N.C. Schenck and Gigaspora
albida N.C. Schenck & G.S. Sm. and cultivated in soil supplied or not with 10% vermicompost, after
126 days in a greenhouse. Positive controls SPF: benzophenone = 17.15; quercetin = 1.28. Means
followed by the same letter do not differ by Tukey’s test (5%), lower case for mycorrhizal inoculation
treatments, and upper case for substrate proportion. Reduction potential of the phosphomolybdenum
complex in comparison to vitamin E (0.0025 g/10 mL). CV: coefficient of variation. Bars = standard
deviation of the means.
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(Vell.) Brenan seedlings inoculated or not with arbuscular mycorrhizal fungi (AMF), grown in soil
(A) and soil with 10% vermicompost (B). 0–3 = control without AMF; 4–7 = plants inoculated with
Acaulospora longula Spain & N.C. Schenck; 8–11 = plants inoculated with Gigaspora albida N.C. Schenck
& G.S. Sm.

In this context, the presence of AMF, especially G. albida, was indispensable for increas-
ing the content of primary and secondary metabolites and their antioxidant capacity in A.
colubrina seedlings grown in soil, with an increase in inoculated plants being, on average,
around 21,000% higher than in non-mycorrhizal A. colubrina grown without vermicompost
supply (Figure 1). Therefore, seedlings associated with G. albida produced more total
proteins, total soluble carbohydrates, total phenolic compounds, total flavonones, and
dihydroflavonols, exhibiting outstanding antioxidant potential and SPF, with increases
ranging from 2000 to 60,000%, compared to control seedlings (Figure 1). It is worth noting
that A. colubrina seedlings colonized by A. longula also had their anabolism enhanced,
although to a lesser extent (Figure 1).

The symbiotic benefit highlighted in seedlings forming mycorrhiza with G. albida
(Figure 1) can be explained by the presence of tubular vacuoles in the mycelium, which are
capable of efficiently transporting P, a feature well-documented in Gigaspora species [33].
This condition may have promoted the improved production of carbohydrates and pro-
teins (Figure 2), which are essential for the anabolism of antioxidant phenolics, a process
dependent on several ATP molecules [34]. Similar results were observed by Silva et al. [35],
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in Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz var. ferrea, considering that the enhanced
synthesis of proteins and flavonoids occurred when this leguminous tree was associated
with G. albida.

On the other hand, the presence of vermicompost mitigated the mycorrhization ben-
efits reported in plants grown in soil (Figure 1). In general, when the seedlings were
kept in an organic-based substrate, there was an optimized accumulation of primary and
secondary metabolites (Figure 1). Thus, the production of both soluble carbohydrates and
proteins in plants grown in soil with vermicompost increased at least 320 times compared
to plants cultivated in unfertilized control (Figure 1). Similarly, fertilization also increased
the biosynthesis of phenolics, flavonones, and dihydroflavonols by more than 13,000%
compared to seedlings grown in soil without vermicompost (Figure 1). This contrasts with
the findings of Yusof et al. [36], who observed a decrease in the antioxidant activity of
Clinacanthus nutans (Burm.f) Lindau with vermicompost, and Souffront et al. [37], who
found that vermicompost did not influence phenolic compound production.

The increased production of antioxidant molecules found in the leaves of seedlings
grown in soil fertilized with vermicompost (Figure 1) may be related to the elevated
nutrient availability, considering the chemical properties of the fertilized soil (Table 1),
as better plant nutrition can influence mycorrhizal dependency [38]. In previous studies,
under conditions of inorganic fertilization, the greater availability of P can make the use
of AMF to promote certain biomolecules such as flavonoids, soluble carbohydrates, and
total proteins [19] to increase the production of antioxidant compounds unessential [9].
This behavior has also been observed with organic sources in seedling cultivation, though
not for plant SPF. Therefore, future studies should focus on understanding the level of
mycorrhizal dependence of this legume, which appears to be facultative [39,40].

Even though the characteristics of vermicompost may favor the mycorrhizal activity
itself, such as spore production [41], colonization [38], and deposition of glomalin-related
soil proteins [42], due to the presence of humic acid and mineralizing soil microorganisms,
no synergism was observed in this research. Despite the occurrence of Acaulospora and
Gigaspora isolates with similar or higher organic matter content [43,44], AMF species can be
negatively influenced by the soil organic matter content [45], and this may be one of the
reasons that mycorrhizal A. colubrina seedlings did not surpass metabolite accumulation
and SPF when cultivated in soil supplemented with vermicompost.

Comparable to bioactive compound accumulation, the antioxidant capacity of the
extracts was increased by approximately 3000% in plants grown in soil plus vermicompost
compared to those kept just in soil, irrespective of mycorrhization status (Figure 1). This
pattern was consistent with the findings of Falcão et al. [9], in which seedlings grown in
soil supplemented with phosphorus (50 mg dm−3) showed an antioxidant potential twice
as high as plants inoculated with AMF and grown in soil with lower P levels.

Even with a less expressive antioxidant activity value compared to the plants grown
in fertilized soil, it is worth noting that the mycorrhizal seedlings also had an antioxidant
capacity on average 2000% greater than the control plants without any fertilizer supply
(Figure 1). This demonstrates the potential of mycorrhizal legumes to integrate cosmetic
formulations with antioxidant action, considering that the values obtained are higher than
those of other Fabaceae, such as Hymenaea martiana Hayne [32] and Centrosema coriaceum
Benth [46]. This highlights the benefits of sustainable cultivation strategies, such as the use
of AMF or vermicompost, in producing antioxidant-rich phytomass.

Similarly, mycorrhization led to an increase in SPF content by over 17,000% compared
with non-mycorrhizal seedlings grown in soil (Figure 1). As verified by Falcão et al. [5], the
benefits of mycorrhization on photoprotective activity are associated with the biosynthesis
of antioxidant metabolites (Figure 3).
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On the other hand, in an organic-based substrate, the foliar SPF of A. colubrina seedlings
was not enhanced by AMF (Figure 2). This result showed a reduction in the beneficial
effect of the fungus on the SPF of A. colubrina seedlings in response to higher levels of
available P (Figure 4). This aligns with the findings of Falcão et al. [9], in which inorganic
soil fertilization could achieve SPF promotion without the need of AMF. On the other hand,
negative effects of vermicompost in plant SPF have been described [21].

In short, to offer a cultivation protocol for this legume tree, the vermicompost appli-
cation appears more attractive due to its positive effects on both the plant and soil in the
short term [47,48], coupled with its well-established commercialization. In this case, the
approximate cost for this approach is 0.20 cents per cultivation pot. Comparatively, the
producer can opt for mycorrhizal technology as an equally sustainable but less efficient
and more cost-effective option, with the production of G. albida inoculum costing around
0.08 cents per plant [49]. However, it is important to test whether this biotechnology can
offer superior long-term benefits over vermicompost.
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in vitro Sun Protection Factor (SPF) of Anadenanthera colubrina (Vell.) Brenan, inoculated or not
with arbuscular mycorrhizal fungi (K-means = 3), grown in soil (A) or soil with 10% vermicompost
(B) (K-means = 2).

Therefore, the hypothesis of the study was not supported, as no synergistic effect
was observed between vermicompost and AMF in increasing the primary and secondary
anabolism of A. colubrina seedlings. Moreover, both agrotechnologies can be used separately
for the sustainable cultivation of A. colubrina seedlings, providing phytomass enriched
with higher levels of antioxidant metabolites and SPF. This is particularly relevant for
the formulation of cosmetics with anti-aging, photoprotective, and anti-inflammatory
activities [50], especially since this species is already used in several cosmetic products in
Brazil [51].

Further studies with alternative fertilizers are essential to verify the role of organic
fertilization on the metabolism of A. colubrina seedlings. Also, it is essential to test if the
same pattern of this research is achieved in field conditions. Furthermore, it is also crucial
to explore the potential of other AMF that were effective in improving growth in Anadenan-
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thera [52], both as individual strains and in a consortium, to enhance the production of
antioxidant and photoprotective bioactive compounds in this Fabaceae phytomass.

4. Conclusions

Three main conclusions/considerations were obtained in this research. The first one
relies on the application of AMF without organic fertilization. In this case, inoculation with
G. albida is recommended to improve the biosynthesis of phenolic compounds and plant
SPF that outstands the accumulation of non-inoculated plants and A. longula inoculated
seedlings cultivated in soil. Secondly, the soil supplementation with vermicompost can
often surpass the metabolite content and SPF seen in mycorrhizal plants, providing an
accessible alternative for supplying A. colubrina phytomass to the cosmetic industries.
Thirdly, no synergistic effect is observed when AMF and vermicompost are combined in A.
colubrina cultivation, since the vermicompost mitigates AMF benefits and makes the use of
these biostimulants unnecessary in this scenario. Thus, both mycorrhizal technology and
vermicompost increase the production of antioxidant compounds and SPF in A. colubrina
leaves, indicating their potential as valuable options for the production chain of cosmetics
and antiseptics based on A. colubrina phytomass. For future studies, it is important to
evaluate the effect of other AMF combined with various organic matrices in A. colubrina
cultivation, while also investigating their role under field conditions.
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