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Abstract: Candida auris is a globally emerging pathogenic fungus described in Japan in 2009.
This fungus has been identified mainly in nosocomial environments, associated with a high
frequency of multidrug-resistant strains, and mortality rates reach 60%. C. auris is divided
into 6 biogeographic clades, and there is a correlation between the clades and resistance
against antifungals. In the current report, 8 strains of C. auris isolated in the Montefiore
Medical Center, Bronx were analyzed to assess their clade (via ClaID) and common molec-
ular determinants of antifungal resistance. We assessed antifungal resistance as well as the
efficacy of a novel nitric oxide-donating microparticle as an alternative approach against C.
auris in vitro through microplate susceptibility tests. Virulence was also determined in a
Galleria mellonella model. Our results indicate that 7 out of 8 strains, belonging to clade 1,
were resistant to fluconazole, while clade 2 was susceptible. Additionally, the clade 2 strain
was more susceptible to treatment with the microparticle, while also being more virulent in
an invertebrate model of infection. Our findings were then correlated to visualize parallels
between clade identification and resistance/virulence patterns.

Keywords: Candida auris; resistance; antifungals; clades; microparticles

1. Introduction
Candida auris is a multidrug-resistant pathogenic fungus first described in 2009 [1].

C. auris has emerged globally with four major geographic-specific clades—clade 1 (South
Asian), clade 2 (East Asian), clade 3 (South African), and clade 4 (South American) [2], and
recently, the fifth (Iran) [3] and sixth (Singapore) [4] clades were described. Notably, these
clades also present different resistance profiles [5–10]. Misidentification of this pathogen
due to its phenotypic similarities to C. haemulonii has led to its relatively late description
and unclear distribution data [11–13]. For 2022, the CDC reports 2377 C. auris cases in the
United States, but these numbers are potentially underreported, since the reporting of C.
auris is not compulsory [14]. Although New York state reported only 326 cases in 2022, the
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state is a hot spot for C. auris, as it has reported 1325 out of 5654 (~23%) total cases in the
U.S. since 2013, when the CDC started tracking the disease [14].

C. auris has a wide range of disease manifestations, often identified as a severe blood-
stream infection [13,15,16], but also causing disease in other sites such as the urinary
tract [17–19] and the ear canal [1,20]. C. auris disease occurs primarily in immunocompro-
mised individuals, with mortality rates up to 60% [16,21,22]. The pathogen is transmitted
through direct contact with an infected person or environmental sources, being able to
survive on surfaces and contaminating them for prolonged periods of time [23,24]. In
the U.S., recent outbreaks appear to be transmitted nosocomially, beginning in healthcare
facilities [21,25,26]. Unfortunately, the high resistance profile of C. auris against conventional
antifungal therapies [1,27] and many common hospital sanitizing agents [28] makes it difficult
to control the pathogen’s spread, resulting in subsequent infections and disease development.

Conventional treatment approaches for fungal infections are usually limited to
polyenes, azoles, and echinocandins, but the ever-increasing reports of antifungal re-
sistance and pharmacological limitations of these drugs prompt research for alternative
therapeutic options [29–31]. Recently, novel formulations of nitric oxide (NO)-releasing
microparticles have been investigated with successful antifungal activity in vitro not only
against C. auris [11] and C. albicans [32,33] but also against species of Trichophyton [34,35],
demonstrating the potential of this kind of formulation for antifungal treatment.

With this in mind, we performed the clade identification of eight clinical strains
collected at the Montefiore Medical Center (MMC; Bronx, NY, USA) and analyzed the
genome sequence of ERG3, ERG11, and TAC1b, genes that are commonly linked to triazole
resistance. We also characterized their antifungal susceptibility profiles and assessed the
antifungal activity of a novel NO-releasing microparticle (SNO-MP) against the C. auris
strains. Additionally, we assessed virulence profiles in an in vivo infection model using
Galleria mellonella. These findings will help enhance our understanding of this emerging
pathogen as we explore the development of more effective treatments and infection control
measures, which will ultimately reduce the impact of C. auris.

2. Materials and Methods
2.1. Candida Auris Strains

A total of eight C. auris strains from patients with fungemia were collected over a
5-year period at the MMC and analyzed in this study (MMC1-MMC8). The samples
were gathered with consent from all eight patients under the guidelines approved by the
institutional review board (IRB Number: 2016–7455 approved on 2 July 2017) of the Albert
Einstein College of Medicine and MMC. C. auris CDC type strains AR0381 and AR0387
were also used as controls. All strains were maintained at −80 ◦C. Prior to use, they were
first plated onto Sabouraud (SAB)-agar media (Becton Dickinson and Co, Franklin Lakes,
NJ, USA), and then colonies were picked and grown in liquid SAB for 24 h at 30 ◦C in an
orbital shaker at 150 rpm.

2.2. DNA Extraction and Clade Classification

Genomic DNA was extracted using a phenol-chloroform isoamyl alcohol (PCI—25:24:1
v/v) method with minor modifications [36]. The MMC1-MMC8 and CDC type isolates
AR0381 and AR0387 [37] were grown in yeast-peptone-dextrose (YPD—Becton Dickinson
and Co, Franklin Lakes, NJ, USA) media. For each isolate, yeast cell pellets were suspended
in lysis buffer, and cells were lysed by vigorous shaking with zirconia/silica beads. First
ammonium-acetate, and then PCI were added to each tube. After centrifugation, the
upper aqueous phase from each sample was collected and added to isopropanol at a 1:1
ratio. Samples were incubated at −20 ◦C for 45 min. The tubes were centrifuged, and the
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supernatants were removed. The pellets were washed with 70% EtOH and dried at room
temperature. RNase-supplemented nuclease-free water was used to suspend samples, and
DNA integrity was verified by gel electrophoresis.

A recently described PCR-based clade-identification system (ClaID) was used to
classify the clinical isolates [38]. For each isolate, the extracted genomic DNA was mixed
with DreamTaq buffer (20 mM MgCl2), DreamTaq DNA Polymerase (Thermo Scientific,
Waltham, MA, USA), dNTPs mix (Roche, Basel, Switzerland), and the clade-specific forward
and reverse primer pairs (Integrated DNA Technologies, Coralville, IA, USA), and nuclease-
free water. PCR reactions were set up as established by Narayanan et al. [38], and the
resulting amplicons were analyzed by electrophoresis on a 2% agarose gel. Verified isolates
were also used as a control; therefore, PCR bands from the unclassified isolates were
compared to the results of the known isolates from the CDC.

2.3. Sequence Analysis

Isolated genomic DNA was further used for targeted genome sequencing. Phusion
Green master mix (Thermo Scientific, Waltham, MA, USA) was used to amplify ERG3,
ERG11 and TAC1b with primer pairs listed in Supplementary Table S1. Automated reaction
cleanup with (Beckman Genomics, Brea, CA, USA) and PCR purification with Ampure
(Beckman Genomics, Brea, CA, USA) were performed before Sanger sequencing each
amplicons using sequencing primers. Sequence fragments were aligned and compared to
type isolates from their corresponding clades (clade I: B8441; clade II: B11220).

2.4. Antifungal Microplate Susceptibility Test

The susceptibility test was performed according to the CLSI M27 4th Ed protocol [39].
Briefly, stock solutions of amphotericin B (AmB), caspofungin (Cas), and fluconazole (FCZ)
were serially diluted in round-bottom 96-well plates (in RPMI 1640 buffered with MOPS—
RPMI/MOPS) to curves starting at 32 µg/mL, 16 µg/mL, and 256 µg/mL, respectively.
DMSO at 1% was used as a solvent control. C. auris suspensions in RPMI/MOPS (Corning,
NY, USA) were adjusted to 2.5 × 103 cells/mL and added to the plate containing the
antifungals. Following an incubation at 37 ◦C for 24 h, the plates were visually analyzed
to determine the minimal inhibitory concentration (MIC). Resistance was established
according to the tentative antifungal cutoff values provided by CDC [37]. Three experiments
were performed with three replicates per condition.

2.5. SNO-MP Synthesis and Nitrosation

Nitric oxide-releasing macroparticles, SNO-MPs, were synthesized as previously de-
scribed [40,41]. The first step is synthesis of thiolated microparticles (Thiol-MP): briefly,
this process consists of (i) acid-catalyzed hydrolysis of two silicate precursors, tetraethy-
lorthosilicate (TEOS) and mercaptopropyltrimethoxysilicate (MPTS); (ii) co-condensation
of hydrolyzed TEOS and MPTS to form a highly porous thiolated sol–gel monolith; (iii) a
series of proprietary steps to remove any unreacted monomer and nano-sized particulate
matter; and (iv) a drying step to evaporate residual water and ethanol. The second step is
the nitrosation of Thiol-MP to form S-nitrosothiol-MP (SNO-MP): Thiol-MP is suspended
in methanol, and HCl is added and mixed, followed by the addition of sodium nitrite.
Residual HCl is then neutralized with NaOH. SNO-MPs were spun down and suspended
in cold RPMI/MOPS.

2.6. SNO-MP Microplate Susceptibility Test

Working solutions of activated SNO-MP were serially diluted in round-bottom 96-well
plates (using RPMI/MOPS) starting at 40 mg/mL, and C. auris suspensions were prepared
as described above. The plates were incubated at 37 ◦C for 48 h. To address fungal viability,
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a solution of XTT and menadione was added to the plates and incubated at 37 ◦C for
2 h. Color development was monitored by absorbance reading at 490 nm and MICs were
labeled as the lowest concentration that dampened metabolic activity by at least 80% in
comparison to the control group. The experiments were performed with two replicates per
concentration in each experiment, for a total of three independent experiments.

2.7. Hemolysis by SNO-MP

Hemolytic activity was assessed using 5% sheep blood agar medium (Colorado Serum
Company, Denver, CO, USA), and enzymatic activity was evaluated on 90 mm Petri dishes
using the Pz value (Pz = A/B), where A is the diameter of the colony and B is the sum of
the colony’s and the halo’s diameters. The test was performed using mSNO nanoparticles
at concentrations of 40, 20, and 10 mg/mL. Candida albicans (ATCC SC5314) suspension of
1 × 106 yeasts/mL served as the positive control. Inoculations of 5 µL were performed in
triplicate and incubated at 37 ◦C for 48 h. Hemolytic activity was categorized as follows:
Pz = 1 (negative), 0.70–0.99 (low), 0.40–0.69 (moderate), and <0.39 (high).

2.8. Galleria Mellonella Infection

A G. mellonella infection model was used to investigate the virulence of the selected C.
auris strains in vivo. Ten larvae (0.3 g each) were used per experimental condition. Larvae
were inoculated with 10 µL of fungal suspensions totaling 5 × 105 yeasts/larva into the
hemocoel through the last proleg using a 31 G insulin syringe. Prior to inoculation, yeasts
were washed 3x with PBS, counted, and immediately used to infect the larvae. PBS buffer
was used as a negative control of infection. All larvae were placed in sterile Petri dishes
and kept in the dark at 37 ◦C. Larval mortality was monitored daily for 10 days. Death was
assessed by the lack of movement in response to stimulation. Data were analyzed with
GraphPad Prism 8 software (GraphPad, San Diego, CA, USA), and statistical analysis was
performed using Mantel–Cox log-rank tests for Kaplan–Meier survival curve. A total of
three independent experiments were performed.

3. Results
3.1. Clade Classification

The clades of the clinical isolates were classified based on a previously described ClaID
system [38]. MMC1 and MMC3–8 all belonged to clade 1, along with the CDC’s already
characterized AR0387. Only MMC2 diverged from the isolate set; similarly to the control
isolate AR0381, it belonged to clade 2 (East Asia) (Figure 1).
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3.2. Antifungal Susceptibility

The antifungal microplate susceptibility test showed that the tested C. auris strains
were all resistant to fluconazole with MICs > 256 µg/mL except for MMC2, which had an
MIC of 4 µg/mL (Table 1). MMC1–8 were susceptible to caspofungin (0.25 µg/mL). The
MIC for amphotericin B was 1 µg/mL for all isolates except MMC2, which had an MIC of
0.25 µg/mL.

Table 1. Antifungal MIC for 8 Candida auris strains were determined (µg/mL). Values that are bolded
indicate resistance to the specific antifungal, according to CDC’s tentative MIC breakpoints for
C. auris.

Minimal Inhibitory Concentration (µg/mL)

Strain Amphotericin B Caspofungin Fluconazole

MMC1 1 0.25 >256
MMC2 0.25 0.25 4
MMC3 1 0.25 >256
MMC4 1 0.25 >256
MMC5 1 0.25 >256
MMC6 1 0.25 >256
MMC7 1 0.25 >256
MMC8 1 0.25 >256

3.3. Detection of SNPs

Compared to the CDC standard strain, all fluconazole-resistant isolates carried non-
synonymous mutations in both ERG11 (K143R) and TAC1b (A640V) genes. Three additional
SNPs were also identified in the TAC1b gene of the MMC2 isolate, but the effects of these
mutations remain unknown. Although ERG3 was also analyzed, no amino acid changes
were identified in this gene in either isolate (Figure 2).
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3.4. SNO-MP Microplate Susceptibility Test and Hemolytic Activity

The microplate susceptibility test with the SNO-MP showed a similar pattern to the
one with the antifungals, as the NO-releasing microparticles had antifungal activity against
all 8 C. auris strains. The MIC for all strains was 20 mg/mL, except for MMC2, with an
MIC of 5 mg/mL (Table 2). No hemolytic activity was detected, as seen by the absence of
halo formation in blood-agar plates inoculated with the particles in different concentrations
even higher than the MICs (Figure 3). In contrast, the positive control, C. albicans (ATCC
SC5314), showed a halo formation (Pz = 0.397), confirming enzymatic activity.
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Figure 3. Hemolytic activity by SNO-MP. Hemolytic activity was evaluated using. C. albicans
SC5314 was used as a positive control. Different concentrations of SNO-MP and blank particles were
inoculated on plates containing sheep blood agar and incubated for 48 h at 37 ◦C until development
of halo indicating hemolytic activity. Pz values were calculated as Pz = A/B, where A is the colony
diameter and B is the total diameter of the colony plus the enzymatic activity halo (Pz = 1 indicates
no hemolytic activity).
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Table 2. SNO-MP MIC for 8 Candida auris strains was determined in mg/mL.

Minimal Inhibitory Concentration (mg/mL)

Strain SNO-MP Strain SNO-MP

MMC1 20 MMC5 20
MMC2 5 MMC6 20
MMC3 20 MMC7 20
MMC4 20 MMC8 20

3.5. Virulence in Galleria mellonella

G. mellonella injected with a lethal inoculum of C. auris were observed up to 10 days.
Survival curves demonstrate that the clade 2 strain MMC2 was significantly more virulent
than the clade 1 strains MMC1, MMC4, and MMC5. Other clade 1 strains were not
significantly different than MMC2. Control larvae injected with PBS displayed a 100%
survival rate for the experimental timeframe (Figure 4).
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Figure 4. Galleria mellonella survival rates following infection with Candida auris. G. mellonella were
infected with a lethal inoculum of C. auris yeasts, and survival was monitored for 10 days. Infection
with the clade 2 strain, MMC2, resulted in a significantly higher mortality rate compared to the
clade 1 isolates MMC1, 4, and 5. Infection with other clade 1 isolates had no significant survival
rates compared to MMC2. Statistical analysis was performed with log-rank Mantel–Cox, * p < 0.05,
** p < 0.01, **** p < 0.0001.

4. Discussion
With its rapid emergence, C. auris has attracted intense attention from the medical

community for its multidrug-resistant profile and nosocomial pattern of transmission.
In fact, the threat of C. auris infections was recently recognized by the World Health
Organization 2022 Fungal Priority Pathogen List, with C. auris being added to the critical
group alongside Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus [42].

In this study, we characterized clades and antifungal resistance profiles for eight
different strains isolated in one healthcare facility in the Bronx. In line with previous
studies, clade classification further verifies that clade 1 is the most common type in New
York state, as seven out of the eight MMC isolates (87.5%) showed this genotype [8,43]. The
only diverging strain, MMC2, belonged to the rarely isolated clade 2 (Figure 1). Generally,
isolates from clade 2 are associated with sporadic cases, while clade 1 has been linked to
excessive outbreaks of systemic candidiasis [8,44]. This difference in clinical manifestations
may explain the differences in isolation frequencies between the clades.
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Our results also show a resistance pattern that correlates to the literature reports of
the initial four clades of C. auris that showed 93% resistance to fluconazole, 35% resistance
to amphotericin B, and 7% resistance to echinocandins (including caspofungin) [2]. Seven
out of eight strains (87.5%) tested in this study showed resistance to fluconazole (MMC1
and MMC3–8), and no strains resistant to AmB and caspofungin were found (Table 1). The
seven FCZ-resistant isolates belong to clade 1, a clade that often exhibits a high frequency of
antifungal resistance [8,43]. The only identified strain from clade 2, MMC2, was susceptible
to FCZ, Cas, and AmB (Table 1). It is also important to highlight that MMC2, the only strain
from clade 2, was not only susceptible to fluconazole but also the most susceptible to AmB,
in accordance with previous data from our group [45] and the literature [7,8].

Genomic analysis from Chow et al. indicated that in clade 1 isolates, the resistant
phenotype is predominantly associated with single nucleotide polymorphisms (Y132F,
K143R) in the coding region (ERG11) of the 14-α-demethylase enzyme. Since 96% of the 118
studied clade 1 isolates contained either of these mutations, we can hypothesize that they
might also be present in the MMC strains [8]. With that in mind, we verified the genomic
background of the resistant phenotypes in our isolates and found out that resistance profiles
corresponded with sequencing results, as all resistant strains harbored both one of the most
common resistance-inducing amino acid substitution (K143R) in Erg11 and the likewise
commonly present mutation A640V in Tac1b [46]. Additional non-synonymous mutations
were also identified in the MMC2 strain (V4A; F862L; D865A), but they seem to have no
definitive effect on antifungal resistance (Figure 2).

There are several pharmacological limitations associated with conventional antifungal
therapy, such as low bioavailability, lack of selectivity, and high toxicity [30,31]. This, in
addition to C. auris’s high resistance to antifungal drugs, makes alternative treatments
in high demand. As one of the few novel platforms for antifungal delivery currently in
development, micro- and nano-drug delivery systems (MiNaDDS) offer an interesting
alternative to counter both pharmacological limitations and antifungal resistance [47].

Our results demonstrate that the microparticle has antifungal activity similar to what
is described for other NO-releasing particles that were recently tested with MMC1 and
MMC2 [11]. Other than that, the susceptibility pattern was also similar to what was ob-
served for the conventional antifungal agents, with MMC2 being more susceptible than
strains belonging to clade 1 (Table 2). Moreover, the microparticle did not promote hemol-
ysis (Figure 3), suggesting that mSNO nanoparticles may exhibit antifungal properties
without promoting hemolytic-associated toxicity, making them promising candidates for
further investigation in therapeutic applications. The microparticle treatment approach
for C. auris could be applied to systemic approaches for candidemia as well as topically
for either ear infections or as part of a colonization eradication method [48–50]. The latter
is especially notable as there currently is no markedly effective de-colonization method,
which is essential for mitigating risks for outbreaks [51].

Clade 2 isolates have been correlated to a less virulent profile, mainly because they are
rarely isolated and usually not linked to invasive disease, as most isolates originate from
ear infections, while isolates from clade 1 are usually associated with invasive disease and
large outbreaks and are therefore considered more virulent [8,44]. However, this correlation
was not observed in our in vivo model of infection (Figure 4), with clade 2 strain MMC2
not only being as virulent as four clade 1 strains in our wax moth model but also being
significantly more virulent than 3 clade 1 strains (MMC1, 4, and 5). It is important to
highlight that even though G. mellonella has been increasingly used as an infection model
for fungal pathogenesis due to its multiple advantages [52–54], this model also has its
shortcomings, like the lack of an adaptive immune system, and experiments with more
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complex in vivo models and a larger variety of strains are needed in order to achieve more
definitive results.

Taken together, our data corroborates the correlation between clades and the resistance
profiles of the tested strains. The findings also support the need for more studies on
MiNaDDS, as NO-releasing platforms have significant potential as alternative treatments
for C. auris infections, but further development of the platform, in vivo experiments, and
full characterization of the microparticle formulation are still necessary. Additionally, as far
as the model limitations go, our present data suggests that clade 2 isolates can be at the
very least as virulent as clade 1 isolates, going against initial correlations between these
two clades and virulence profiles.

5. Conclusions
In conclusion, our study highlights the complex interplay between clade classification,

antifungal resistance profiles, and virulence in C. auris. While clade 1 remains predominant
at our institution, our findings demonstrate that clade 2 isolates, often considered less
virulent, can exhibit comparable or even greater virulence in an invertebrate model of
infection. Our study also emphasizes the potential of innovative treatment strategies like
MiNaDDS, particularly NO-releasing platforms, to address the challenges posed by C. auris.
Although further experiments featuring more sophisticated in vivo models and a broader
pool of strains are needed, our findings highlight the importance of continued research into
alternative therapeutic options.
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