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Abstract: L-asparaginase (ASNase) hydrolyzes L-asparagine to L-aspartic acid and am-
monia and has been used as an antitumor agent for the treatment of acute lymphoblastic
leukemia. ASNase has also been used to mitigate the suspected carcinogenic effects of
acrylamide in foods. Commercial ASNases currently used in the pharmaceutical and food
industries are produced by microorganisms, such as bacteria and fungi. However, their
toxicity and poor thermal stability limit their application. Therefore, identifying novel
sources of ASNase is critical. In the present study, we identified an asparaginase-producing
marine bacterial strain, GH-W2b, as a Pseudomonas species. Based on the plate assay results,
GH-W2b produced ASNase with marginal L-glutaminase (GLNase) activity, which has
been reported to cause adverse effects in clinical ASNases. The ASNase activity of GH-W2b
was maximized at 50–65 ◦C and pH 7.0–8.5. Notably, the activities were consistent at a wide
range of NaCl concentrations (0–15%) at 37 ◦C. In addition, compared to the control (no
pre-incubation), ASNase activities were retained (>87%) by 2 h pre-incubation at 4–37 ◦C.
Overall, our results suggest that GH-W2b ASNase has the potential to serve as a candidate
for the development of salt-tolerant and/or alternative ASNases in pharmaceutical and
food products.

Keywords: L-asparaginase; a marine bacterium; Pseudomonas sp.; L-glutaminase

1. Introduction
L-Asparaginase (L-asparagine amidohydrolase, E.C. 3.5.1.1, ASNase) catalyzes the

hydrolysis of L-asparagine to aspartic acid and ammonia and concomitantly possesses
glutaminase (GLNase) activity [1]. ASNase is clinically used to treat acute lymphoblastic
leukemia (ALL) and lymphosarcoma [2]. As a therapeutic enzyme, clinical formulations of
ASNase account for 40% of the global enzyme demand [3]. Additionally, ASNase is used to
reduce the formation of acrylamide, a possible carcinogen, in heated foods such as potato
chips, bread, and coffee [4]. ASNase is listed as Generally Recognized as Safe (GRAS) by
the United States Food and Drug Administration (FDA).

ASNase is widely distributed in animals, plants, and microorganisms, including
archaea, bacteria, actinomycetes, fungi, and microalgae [5]. Microorganisms are preferred
over other sources for large-scale production because they are easier to cultivate, extract,
and optimize in a cost-effective manner [3]. Currently, commercial forms of clinical ASNase
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including Elspar®, Oncaspar®, Erwinase®, and Kidrolase® are originated from the bacteria,
Escherichia coli and Erwinia chrysanthemi [6]. Moreover, ASNases used in the food industry
under the trade names Acrylaway® and PreventAse® are produced by the fungi, Aspergillus
oryzae and Aspergillus niger [4]. However, the application of currently used ASNases is
limited because they have significant side effects, including toxicity and low thermal
stability for chemotherapeutic and food applications, respectively [4,7]. Therefore, it is
critical to explore various microbial resources to discover novel ASNases.

Marine microorganisms have a high potential to produce novel and unique bioactive
compounds compared to terrestrial microorganisms because they can adapt to harsh ocean
conditions, such as high salinity and a wide range of temperatures and pressures [8].
Microorganisms isolated from different marine substrates have been reported to produce
various enzymes, including alginate lyase, amylase, cellulase, chitinase, ligninase, lipase,
protease, and xylanase [9]. These enzymes possess more effective and stable activities than
terrestrial enzymes under extreme temperature, pH, and salinity conditions [10].

ASNase activity has been characterized in several marine bacteria, actinomycetes,
and fungi [11]. ASNases produced by the marine bacterium Bacillus sp. TVS55 and the
marine actinomycete Streptomyces canus LA-29 exhibit anticancer activity [12,13]. Moreover,
ASNases from Paenibacillus barengoltzii CAU904 and the marine fungus Trichoderma viride ef-
fectively reduce acrylamide formation in fried potatoes [14,15]. However, marine microbial
ASNases remain largely unexplored.

In this study, we aim to explore alternative resources to develop novel ASNases with
improved stability and fewer side effects. To address this, we characterized the ASNase
activity of Pseudomonas sp. strain GH-W2b isolated from seawater. Using the crude enzyme
extract, we examined the optimum temperature, pH, and NaCl concentration for GH-W2b
ASNase activity. In addition, the thermostability of GH-W2b ASNase was investigated.

2. Materials and Methods
2.1. Sample Collection and Bacterial Isolation

Seawater was collected from Sacheon, Republic of Korea (34◦55′43.5′′ N, 128◦03′24.8′′ E),
in August 2019; serially diluted to 10−3 with sterilized seawater; and spread onto marine
agar (MA; BD, Franklin Lakes, NJ, USA) as described previously [16]. After incubation at
25 ◦C for 7 days, individual bacterial colonies were selected and transferred onto fresh MA
to obtain pure cultures. After isolation, the bacterial strains were cultured on Luria–Bertani
agar (LB agar; BD) at 25 ◦C unless described otherwise. GH-Wb2 was deposited in the
Microbial Marine Bio Bank (MMBB) of the National Marine Biodiversity Institute of Korea
(MABIK) (strain number MABIK MI00009254).

2.2. Examination of ASNase and GLNase Activities in Marine Bacteria

To examine L-asparaginase (ASNase) and/or L-glutaminase (GLNase) activities in
marine bacterial strains, modified asparaginase dextrose salt agar (MADS) was used to
culture the bacteria [17]. The composition of MADS was as follows: 2.0 g glucose, 10.0 g L-
asparagine monohydrate (Sigma-Aldrich, St. Louis, MO, USA), 1.52 g KH2PO4, 0.52 g KCl,
0.52 g MgSO4·7H2O, 0.05% (w/v) CuNO3·3H2O, 0.05% ZnSO4·7H2O, 0.05% FeSO4·7H2O,
and 15.0 g agar for 1 L media. Stock solutions of bromothymol blue (BTB) and phenol red
(PR), as pH indicators of ammonia production, were each prepared at 2% (w/v) in ethanol
and subsequently added to MADS agar at a final concentration of 0.005% (v/v). The final
pH of the medium was adjusted to 6.0 using 1 M NaOH solution. Instead of L-asparagine,
L-glutamine was added to MADS agar to assess GLNase activity. Sodium nitrate (NaNO3)
was used as the nitrogen source in the control media. After incubation at 25 ◦C for 2 to
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3 days, the ASNase and GLNase activities were determined by the presence of blue (from
BTB) or pink (from PR) zones around the colony.

To compare enzyme activities of bacterial strains, the enzymatic index (EI) was deter-
mined as follows:

EI = [diameter of the hydrolyzed zones/diameter of the colonies]
The hydrolyzed zones indicate the presence of blue or pink area.

2.3. DNA Extraction, PCR, and Phylogenetic Analysis

The genomic DNA of GH-W2b was extracted from 5 mL of culture grown overnight in
LB broth using an Exgene DNA extraction kit (Gene All, Seoul, Republic of Korea) according
to the manufacturer’s instructions. Polymerase chain reaction (PCR) was conducted using
two primer sets: bacteria-specific universal primers 27F and 1492R to amplify the 16S rRNA
gene [18] and 70Fs and 70Rs to amplify rpoD gene sequences (the sigma 70 factor subunit
of the DNA polymerase) [19,20]. PCR products were purified using a PCR purification kit
(Qiagen, Hilden, Germany) and sequenced by Macrogen Inc. (Seoul, Republic of Korea).
The amplified partial 16S rRNA and rpoD genes were assembled using Geneious program
v9.0.5 to obtain a nearly full-length 16S rRNA gene sequence, which was deposited in the
GenBank database under accession numbers PQ614850 and PQ633201 for the 16S rRNA
and rpoD gene sequences, respectively. The 16S rRNA gene sequences (1340 nucleotides) of
closely related taxa were searched using the EzBioCloud server (https://www.ezbiocloud.
net/identify) (accessed on 22 October 2024). The rpoD gene sequences (844 nucleotides)
were used as query sequences for the BLASTN search (https://blast.ncbi.nlm.nih.gov/Blast.
cgi) (accessed on 15 November 2024) to assess sequence similarity. Phylogenetic analyses
based on the 16S rRNA and rpoD gene sequences were conducted using the neighbor-
joining (NJ) method with 1000 bootstrap resampled datasets in MEGA X version 11.0 [21].

2.4. Preparation of Crude Enzyme Extract

GH-W2b (100 µL of bacterial suspension at 107 CFU/mL) was inoculated in 200 mL of
MADS broth without agar containing pH indicators and incubated at 25 ◦C for 2 days with
shaking at 150 rpm. The cells were pelleted by centrifugation at 11,000 rpm for 15 min. The
collected cells were washed twice with 50 mM Tris-HCl buffer (pH 8.0) and resuspended
in 30 mL of buffer. The resuspended cells were placed on ice, sonicated for 20 min at 30 s
intervals, and clarified by centrifugation at 11,000 rpm for 15 min. Supernatants were used
as crude enzyme extracts to measure the ASNase activity of GH-W2b [22].

2.5. Quantitative Determination of ASNase Activity

ASNase activity was determined by measuring the amount of ammonia produced
during the enzymatic reaction using the Nesslerization method [23,24]. The mixture
containing 100 µL of 0.04 M L-asparagine prepared in 0.05 M Tris-HCl buffer (pH 8.0) and
50 µL of crude enzyme extract were reacted at 37 ◦C for 30 min. After 30 min, the reaction
was terminated by 50 µL of 1.5 M trichloroacetic acid (TCA, Sigma-Aldrich). For the blank,
the crude enzyme was treated with TCA to stop the enzymatic reaction prior to substrate
addition to the reaction mixture.

Two sets (test and blank) of samples were centrifuged to remove the precipitated
proteins, and the ammonia released in the supernatants was quantified colorimetrically by
Nesslerization. One hundred microliters of clear supernatant was added to tubes containing
700 µL of distilled water, followed by the addition of 100 µL Nessler’s reagent. The mixture
was then incubated at room temperature for 20 min. The presence of ammonia is indicated
by a yellow color change, whereas dark orange to brown precipitates may appear at higher
ammonia concentrations. The absorbance of the reaction mixture was measured at 480 nm
using a spectrophotometer (Hidex, Turku, Finland). The amount of ammonia released
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was determined using an ammonium sulfate standard curve. The ASNase activity unit
was defined as the amount of enzyme that releases 1 µmol of ammonia per hour under
tested conditions.

2.6. Effect of Temperature, pH, NaCl Concentration, and Incubation Time on ASNase Activity

To study the effect of temperature on ASNase activity, 50 µL of GH-W2b crude enzyme
extract was incubated with 100 µL of 0.04 M L-asparagine at 4, 15, 25, 37, 50, and 65 ◦C for
30 min. To examine the effect of pH on ASNase activity, the crude enzyme was incubated
with 0.04 M L-asparagine prepared at various pH values (acetate buffer for pH 4.0 and pH
5.5, sodium phosphate buffer for pH 7, and glycine-NaOH buffer for pH 8.5 and pH 10) at
37 ◦C for 30 min. To assess the effect of incubation time on ASNase activity, the reaction
mixture was incubated for varying durations: 15, 30, 45, 60, 75, 90, 105, and 120 min. The
effect of 0, 2.5, 5, 10, and 15% (w/v) NaCl on ASNase activity was examined. The crude
enzyme was incubated with 0.04 M L-asparagine solution supplemented with NaCl at
37 ◦C for 30 min. For the blank, the GH-W2b crude enzyme was first treated with TCA to
stop the enzymatic activity and subsequently incubated with the substrate. ASNase activity
was measured using the Nesslerization method described above.

2.7. Thermal Stability of ASNase

The thermal stability of ASNase was examined by pre-incubating the crude enzyme at
different temperatures. Fifty microliters of the crude enzyme was pre-incubated at 4, 15,
25, 37, 50, and 65 ◦C for 2 h and promptly cooled in ice. After incubation with 0.04 M L-
asparagine solution at 37 ◦C for 30 min, the ASNase activities of the test and blank samples
were assessed as described above. Residual activities were calculated relative to the activity
of the sample without pre-incubation, which was used as a control and set to 100%.

2.8. Statistical Analysis

Experimental data were analyzed using one-way analysis of variance (ANOVA) fol-
lowed by Tukey’s multiple comparison test or t-test (GraphPad Prism software, version 5.0).
All experiments were performed in triplicate unless stated otherwise.

3. Results
3.1. Examination of Activities of ASNase and GLNase by Plate Assay

We examined the ASNase and GLNase activities in marine bacteria using solid media
supplemented with a pH indicator, phenol red (PR), or bromothymol blue (BTB). When
cultured on the media containing asparagine at 25 ◦C for 2 days, GH-W2b formed a pink
(from PR plates) and a blue (from BTB plates) zone around the colony (Figure 1). In the
control plates containing NaNO3, the pink and blue zones were much smaller and lighter
in color compared to those on the asparagine plates (ASNase). On the glutamine plates
(GLNase), the pink and blue zones were marginal and slightly larger than those on the
control plates. Based on the EI values, the ASNase plates showed the highest activities (EI
value = 3.35 ± 0.08 and 3.44 ± 0.05 on PR and BTB, respectively). The GLNase plates (EI
value = 1.25 ± 0.01 and 1.45 ± 0.02 on PR and BTB) did not show significantly different
activities from the control plates (EI value = 1.31 ± 0.06 and 1.50 ± 0.02) (p > 0.05). Overall,
these results suggest that the marine bacterial strain GH-W2b produces ASNase with low
glutaminase (GLNase) activity.

3.2. Identification of GH-W2b

The 16S rRNA and rpoD gene sequences of GH-W2b clearly clustered with species
belonging to the genus Pseudomonas in neighbor-joining phylogenetic trees (Figure 2). The
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comparative analysis of the 16S rRNA gene revealed that the GH-W2b strain was closely
related to Pseudomonas lactis DSM 29167T and P. salmasensis SWRI126T (100% 16S rRNA
gene sequence similarity) (Figure 2A). The rpoD sequences of GH-W2b were not assigned
to a clade based on close references with a high bootstrap value (99%) (Figure 2B). A BLAST
search using the rpoD sequence as a query indicated 97.87% and 97.46% similarities with
P. salmasensis SWRI126T and P. lactis DSM 29167T, respectively. To distinguish between
strains at the species level, the defined nucleotide identity threshold of the rpoD gene is
98% [25]. Therefore, GH-W2b could not be assigned to the species level and was designated
as Pseudomonas sp.
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Figure 1. Detection of ASNase activity by plate assay. GH-W2b was inoculated onto a modified
asparaginase dextrose salt agar supplemented with (L-asparagine (ASNase), L-glutamine (GLNase),
or NaNO3 (control)). Phenol red (PR) and bromothymol blue (BTB) were used as pH indicators.
After incubation at 25 ◦C for 2 days, the presence of pink (PR plates) or blue (BTB plates) zones
surrounding the colonies were observed.

3.3. Effect of Temperature on ASNase Activity

To assess the effect of temperature on the GH-W2b ASNase activity, the crude enzyme
extract was incubated with asparagine at 4, 15, 25, 37, 50, and 65 ◦C for 30 min. ASNase
activity indicated a tendency to gradually increase as the temperature increased, and the
maximum activity was observed at 65 ◦C (Figure 3). ASNase activities at temperatures
ranging from 4 ◦C to 37 ◦C and those between 50 ◦C and 65 ◦C were similar, respectively
(p > 0.05).

3.4. Effect of pH on ASNase Activity

The effect of pH on ASNase activity was examined at pH 4.0, 5.5, 7.0, 8.5, and 10. The
minimum activity was observed at pH 4.0 (2.71 units), approximately 2.7-fold lower than
the activity at pH 8.5 (15.33 units) (Figure 4). Maximum activity was observed at pH 7
and pH 8.5 (p > 0.05). ASNase activities gradually increased from pH 4 to pH 7.0–8.5 and
decreased at pH 10 (p < 0.05 between pH 7 and pH 10).

3.5. Effect of NaCl Concentration on ASNase Activity

The ASNase activity of GH-W2b was measured at 0, 2.5, 5.0, 10, and 15% (w/v) NaCl.
Under all tested conditions, the ASNase of GH-W2b exhibited similar levels of activity
ranging from 19.15 to 21.48 units (p > 0.05) (Figure 5).
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Figure 2. The phylogenetic trees of a marine bacterial strain GH-W2b. Trees were constructed
based on the (A) 16S rRNA and (B) rpoD gene sequences using the neighbor-joining (NJ) method.
Cellvibrio japonicus Ueda107T (CP000934) and Alloalcanivorax dieselolei B-5T (EF596879) were included
as outgroup taxa. The scale bar indicates the number of nucleotide substitutions per site. Numbers
at the nodes indicate bootstrap values from 1000 replicates. Bootstrap values less than 50% are
not shown.
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the enzyme with L-asparagine solution at 37 ◦C for 30 min, the activity was measured by the
Nesslerization method.



Microbiol. Res. 2025, 16, 2 8 of 12

3.6. Effect of Incubation Time on ASNase Activity

The results on Figure 6 showed the effect of incubation time ranging from 15 to 120
min every 15 min. The maximum ASNase activity of GH-W2b was observed at 60 min
(17.12 units), and the activity decreased with increasing incubating time after 60 min.
ASNase activities at incubation time ranging from 30 to 75 min were similar (p > 0.05).
ASNase activities between 15 and 30 min, and 15 and 60 min were significantly different,
respectively (p < 0.05).

Microbiol. Res. 2025, 16, x FOR PEER REVIEW 8 of 12 
 

 

 

Figure 5. The effect of NaCl concentration on ASNase activity. The ASNase activity of the GH-W2b 
crude enzyme was examined at 0, 2.5, 5.0, 10, and 15% (w/v) NaCl. After incubation of the enzyme 
with L-asparagine solution at 37 °C for 30 min, the activity was measured by the Nesslerization 
method. 

3.6. Effect of Incubation Time on ASNase Activity 

The results on Figure 6 showed the effect of incubation time ranging from 15 to 120 
min every 15 min. The maximum ASNase activity of GH-W2b was observed at 60 min 
(17.12 units), and the activity decreased with increasing incubating time after 60 min. 
ASNase activities at incubation time ranging from 30 to 75 min were similar (p > 0.05). 
ASNase activities between 15 and 30 min, and 15 and 60 min were significantly different, 
respectively (p < 0.05). 

 

Figure 6. The effect of incubation time on ASNase activity. The enzyme and L-asparagine solution 
were incubated for 15, 30, 45, 60, 75, 90, 105, and 120 min. After incubation of the reaction mixture 
at 37 °C every 15 min, the activity was measured by the Nesslerization method. ‘*’ and ‘ns’ indicate 
‘significantly different (p < 0.05)’ and ‘not significantly different (p > 0.05)’, respectively. 

3.7. Thermal Stability of GH-W2b ASNase 

The crude enzyme extract of GH-W2b was pre-incubated at 4, 15, 25, 37, 50, and 65 
°C for 2 h. When pre-incubated at 4, 15, 25, and 37 °C, more than 87% residual activities 
were observed relative to the control (no pre-incubation) (Figure 7). There were no differ-
ences in the residual activities at temperatures ranging from 4 °C to 37 °C (p > 0.05). 
ASNase activity significantly decreased after pre-incubation at 50 °C (30% residual activ-
ity), and no residual activity was detected after pre-incubation at 65 °C for 2 h. 
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were incubated for 15, 30, 45, 60, 75, 90, 105, and 120 min. After incubation of the reaction mixture at
37 ◦C every 15 min, the activity was measured by the Nesslerization method. ‘*’ and ‘ns’ indicate
‘significantly different (p < 0.05)’ and ‘not significantly different (p > 0.05)’, respectively.

3.7. Thermal Stability of GH-W2b ASNase

The crude enzyme extract of GH-W2b was pre-incubated at 4, 15, 25, 37, 50, and 65 ◦C
for 2 h. When pre-incubated at 4, 15, 25, and 37 ◦C, more than 87% residual activities were
observed relative to the control (no pre-incubation) (Figure 7). There were no differences
in the residual activities at temperatures ranging from 4 ◦C to 37 ◦C (p > 0.05). ASNase
activity significantly decreased after pre-incubation at 50 ◦C (30% residual activity), and no
residual activity was detected after pre-incubation at 65 ◦C for 2 h.
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4. Discussion
In the present study, we discovered an ASNase-producing marine bacterial strain,

GH-W2b, belonging to the Pseudomonas species, closely related to P. lactis and P. salmasensis.
A phylogenetic analysis using the 16S rRNA gene sequence is a widely used tool for
bacterial identification; however, it often lacks the necessary discrimination to resolve
relationships within the Pseudomonas genus owing to its very slow evolutionary rate [19].
Instead, analyses using protein-coding genes, specifically gyrB and rpoD, are used to
distinguish between Pseudomonas species. These genes provide more detailed resolution
than 16S rRNA gene sequences due to their much higher evolutionary rate [20]. The
rpoD gene sequence alone is a reliable and affordable option, particularly for classifying
environmental Pseudomonas isolates based on their taxonomic affiliation [25]. Based on the
results of 16S rRNA and rpoD sequence analyses, we concluded that GH-W2b belongs to
the Pseudomonas species.

Bacteria from the genus Pseudomonas inhabit a variety of terrestrial and aquatic envi-
ronments and have been extensively studied for novel secondary metabolites, bioremedi-
ation, plant growth promotion, and biocontrol [26]. Pseudomonas lactis and P. salmasensis
were first isolated from raw bovine milk and wheat rhizosphere in 2017 and 2004, re-
spectively [27,28]. Several Pseudomonas species, including P. acidovorans, P. aeruginosa, P.
geniculata, P. fluorescens, P. otitidis, P. plecoglossicida, and P. stutzeri, produce ASNases, some
of which exhibit antitumor activity and/or the ability to reduce the acrylamide content in
foods [29–35]. However, the ASNase activity has not been previously elucidated in P. lactis
and P. salmasensis.

Based on plate assay results (Figure 1), GH-W2b appeared to produce ASNase with
low GLNase activity. The toxicity of the currently used chemotherapeutic ASNases is
generally attributed to their concomitant GLNase activity [1]. To address this issue, several
researchers have attempted to discover novel sources of ASNases with low or no GLNase
activity. Therefore, GH-W2b ASNases may be beneficial for the development of alternative
clinical ASNases with reduced toxicity.

The ASNase activity of the GH-W2b crude enzyme extract was maximized at 50–65 ◦C,
pH 7.0–8.5, and the incubation time of 30–75 min. The optimum temperature of GH-
W2b ASNase activity was slightly higher than those of the majority of Pseudomonas AS-
Nases that exhibit optimal activity at 37–45 ◦C [30,32,33,35–37]. The optimum pH of
GH-W2b ASNase was similar to those of previously reported Pseudomonas ASNases (pH
7.5–9.5) [29–33,35–37].

Importantly, the ASNase activities of GH-W2b were consistent at a wide range of NaCl
concentrations (0–15%) at 37 ◦C and pH 8.0 for 30 min incubation. The effect of the NaCl
concentration on ASNase activity has been investigated in only a few bacterial ASNases.
Halotolerant Staphylococcus spp. OJ82 produces ASNases that retain 61.2% of the control
activity (at 0 M NaCl) in 2 M NaCl, which corresponds to 11.68% (w/v) NaCl [38]. GH-W2b
ASNase activity was 100% retained at 15% NaCl (2.6 M) compared with that at 0% NaCl.
This suggests that GH-W2b ASNase can be applied in industrial processes that require
high-salt conditions.

GH-W2b ASNase exhibited significantly higher residual activities (more than 87%)
after pre-incubation at 4–37 ◦C for 2 h. The thermal stability of ASNases has been evaluated
in several bacterial strains. Mycobacterium gordonae ASNase shows high thermal stability at
35 ◦C for 50 min, but the activity is completely lost at 50 ◦C for 10 min [39]. Moreover, the
half-life of Acinetobacter soli ASNase activity at 40 ◦C is approximately 9 min [40]. When
foods are treated with ASNases for acrylamide reduction, poor thermal stability is one of
the main reasons for limited application [4]. The addition of ASNase during the dough
resting of biscuits or soaking blanched potato strips in ASNase solution resulted in a 92%



Microbiol. Res. 2025, 16, 2 10 of 12

reduction in acrylamide content in the final products [41]. These processes were performed
at temperatures ranging from 10 ◦C to 40 ◦C. Therefore, GH-W2b ASNase has the potential
to mitigate acrylamide contamination in cooked foods.

Overall, GH-W2b ASNase could serve as a candidate ASNase in the medicinal and
food industries. For biotechnological applications of GH-W2b ASNase, it will be critical
for future studies to perform enzyme purification, optimize cultivation, and evaluate the
anticancer activity and capability of acrylamide reduction.
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