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Abstract: For this article, we evaluated whether wounds would affect the pathogenicity and
virulence of Colletotrichum sp. isolates on Musa spp. banana cultivars. We further assessed
the potential of cross-colonization with other fruit species and investigated the molecular
and phylogenetic characterization of the most virulent isolates. Firstly, we collected dwarf
bananas showing anthracnose symptoms from commercial markets in the city of Gurupi,
Tocantins State, Brazil, and isolated Colletotrichum sp. under controlled conditions prior
to identification. The virulence was assessed on wounded and unwounded banana fruits,
identifying the most virulent isolate by exposure tests on fruits of the “prata”, “maçã”,
“marmelo”, and “terra” banana cultivars. We also subjected specimens of mango (Mangifera
indica), papaya (Carica papaya), and apple (Malus domestica) fruits to the exposure tests. Our
results indicated that pathogenicity varies with the isolate (with C2, C8, and C10 as the most
virulent), fruit condition (wounded fruits are the most susceptible), and cultivars (terra,
marmela, and maça are the most susceptible). All isolates were more virulent on wounded
bananas, while those on unwounded ones showed lower virulence. Among the banana
cultivars, “prata” fruits were the most susceptible, regardless of wounding. Additionally,
Colletotrichum isolates from dwarf bananas were pathogenic to mango, papaya, and apple
fruits. Furthermore, our results demonstrated that the most virulent isolates belong to
the species C. musae. Collectively, our findings reinforce the relevance of minimizing post-
harvest wounds on banana fruits and highlight the risks of cross-infection when storing
bananas alongside other fruit species.

Keywords: anthracnose; tropical fruits; post-harvest diseases; cross-infection

1. Introduction
The genus Colletotrichum is one of the most significant fungal pathogens in agricul-

tural production because it is the causal agent of anthracnose in several crops [1–3]. This
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pathogen is especially prevalent in tropical and subtropical regions, where climatic con-
ditions and a wide variety of susceptible plant species facilitate its spread. It can impact
crops at various stages, including post-harvest; however, infection during the post-harvest
or ripening stages is responsible for major economic losses [4]. Due to the formation of
black to dark brown sunken lesions on the fruit surface, anthracnose reduces fruit quality
and marketability [5–7].

The banana (Musa spp.) is one of the most widely consumed tropical fruits in the
world and has gained significant importance in the global market over the past 60 years.
This popularity is due to its high nutritional value, digestibility, appealing texture, pleasant
aroma, and convenience as both a dry and fresh snack, making it a favorite among people
of all ages [8,9]. However, like other tropical fruits, bananas are delicate and are vulnerable
to external factors during their growth, transportation, and storage, which can severely
impact their quality and lead to significant post-harvest losses. Colletotrichum musae is the
pathogen associated with anthracnose in banana crops, which is the most significant post-
harvest disease, potentially causing 30–40% losses of marketable fruit [5,10]. This pathogen
can infect bananas in the field, remaining dormant until conditions become favorable for
its development [11]. In climacteric fruits like bananas, anthracnose symptoms typically
appear during the ripening phase, manifesting as peel blemishes, brown to black sunken
lesions, and orange to salmon-colored acervuli [12–14]. The severity of the disease depends
on factors such as the banana cultivar, storage conditions, and the specific pathogen isolate.

In the literature, several studies have reported the dependence of cultivar species on
the colonization of Colletotrichum spp. [3,15], including banana cultivars and C. musae [16,17].
Moreover, multiple Colletotrichum species have been found to infect or colonize the same
host plant [18,19]. Additionally, the pathogenicity and virulence of Colletotrichum isolates
vary significantly [2,20,21]. This variability can be attributed to the genetic differences
among isolates and the unique biochemical mechanisms that each cultivar employs to rec-
ognize and defend against pathogens. Furthermore, in both cases, the presence or absence
of injuries in the host also influences the aggressivity and severity of the pathogen [22,23].

Chemical applications using cupric products, strobirins, dithiocarbamates, benzim-
idazole, triazole compounds, prochloraz, imazalil, and chorothalonilis are commonly
employed to control anthracnose in fruits [6,24]. For bananas, soaking the fruits in tedocor,
carbendazim, prochloraz, prochlorin, or thiabendazole is a typical method to prevent and
control post-harvest disease [25]. However, due to the harmful effects of these chemi-
cals, identifying the aggressive isolates of Colletotrichum and resistant cultivars may offer
a more effective approach to disease control [3,4], serving as a foundation for future
management-integrated programs. Research is needed to explore the pathogenic variability
of Colletotrichum species across various banana cultivars, thereby enhancing our under-
standing of their host range. As bananas are sensitive to the injuries that can occur during
harvesting, packaging, and transportation, various microorganisms can penetrate the skin
integuments through wounds. Few studies have evaluated the influence of lesions on fruit
peels and the development of anthracnose in different banana cultivars and other fruits.
Additionally, the potential for cross-infection among intraspecific isolates from banana
cultivars and the fruits of other plant species should be investigated. Therefore, this study
aims to evaluate the pathogenicity and virulence of Colletotrichum sp. isolates on different
banana cultivars, as well as the molecular characterization and potential cross-infection
of Colletotrichum sp. obtained from dwarf banana (Musa cavendishii L.) fruits to mango,
papaya, and apple fruits.
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2. Materials and Methods
2.1. Collection and Identification of Isolates

Initially, banana fruits from the dwarf banana cultivar (M. cavendishii) were collected
from 10 commercial locations in Gurupi (11◦43′4′′ S, 49◦04′07′′ W), State Tocantins, Brazil.
Healthy, uniformly sized fruits with a slightly yellowish color and at an early stage of
maturation, suitable for fresh consumption, were purchased from local stores. The fruits
were washed with neutral soap and rinsed three times in sterile water. After sanitization,
the fruits were placed in plastic trays and incubated for 7 days at 27 ◦C. Following this
period, fruits showing anthracnose symptoms, characterized by depressed brown lesions,
were selected. Using a scalpel, symptomatic lesion pieces were excised and cleaned.
Disinfestation involved immersing the tissues in 50% alcohol for 30 s, followed by 1%
sodium hypochlorite for 40 s and then rinsing three times with sterile water. The cleaned
lesion pieces were then transferred to 9 cm Petri dishes containing potato, dextrose, and
agar (PDA) and incubated at 27 ◦C with a 12-hour photoperiod. Once the fungi grew
from the lesions, the colonies were subcultured onto new PDA Petri dishes to obtain pure
cultures. To identify the isolates at the genus level, slides of the fungus’s assimilative and
reproductive structures were examined under an optical microscope. Identification was
based on the classic literature [26,27]. The Petri dishes containing the isolates were then
stored and maintained in the Mycological Collection of the Phytopathology Laboratory at
the Gurupi Campus of the Federal University of Tocantins.

2.2. Area Under the Disease Progress Curve (AUDPC) Tests of Colletotrichum sp. Isolates

For evaluating the area under the disease progress curve (AUDPC) for the 27 Col-
letotrichum sp. isolates, healthy dwarf banana fruits were used. After aseptic treatment with
50% alcohol and 1% sodium hypochlorite, followed by rinsing in sterile water, the fruit
surface was inoculated with the isolates, using both “wounded” and “unwounded” fruits.
Injuries were made using a sterilized scalpel, then a 6 mm disc mycelium disc was placed
at the site of each wound. The inoculated fruits were placed on separate trays and stored in
a humid chamber with 85 ± 3% relative humidity and a temperature of 27 ± 3 ◦C. Every
48 h, the lesion area and diameter were measured with a digital caliper until the tenth
day [1]. To confirm the causal agent of the infection, reisolation was performed on PDA
growth medium, and the fungus was identified under an optical microscope, ensuring that
all stages of Koch’s postulates were fulfilled. The AUDPC was estimated from the diameter
of the lesions (mm), using the equation: AACPD = Σ (yi + yi+1)/(ti+1 − ti), where yi and
yi+1 are the severity values observed in two consecutive evaluations and ti is the interval
between evaluations [28,29].

2.3. Virulence of Colletotrichum sp. Isolates in Dwarf Banana Fruits, Both Wounded
and Unwounded

For the virulence bioassay, we selected three isolates that caused the largest lesions
on dwarf banana fruits unwound during the pathogenicity test (Section 2.2. AUDPC).
Initially, the isolates “C2”, “C8”, and “C10” were inoculated into the dwarf banana fruits,
following the same procedure as described in Section 2.1. Subsequently, lesion assessments
(virulence) were recorded every 24 h for 10 days using a digital caliper. Following the
same procedures, the virulence of these same isolates was tested in other banana cultivars:
“prata”, “maçã”, “marmelo”, and “terra”.

2.4. Evaluation of Cross-Infection of Colletotrichum sp. Obtained from Banana

The isolates “C2”, “C8”, and “C10” were used to investigate the potential for cross-
infection. Healthy, uniform papaya, mango, and apple fruits, purchased from local stores
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at a suitable stage of ripeness for consumption, were selected. Initially, the fruits were
washed with neutral soap and rinsed three times in sterile water. A 6 mm diameter disc
of mycelium was then placed on the surface of the fruit peel, on fruits both with and
without wounds. The inoculated fruits were placed on separate trays and stored in a humid
chamber with a relative humidity of 85 ± 3% and a temperature of 27 ± 3 ◦C. Every 48 h,
lesion measurements were taken using a digital caliper until the tenth day.

2.5. DNA Extraction, PCR, and Sequencing

Considering the epidemiological importance of the disease, the three isolates (C2, C8,
and C10) that caused the largest lesions on unwounded dwarf banana fruits during the
pathogenicity test were selected for molecular analysis. Colletotrichum isolates were grown
on PDA media at 25 ± 2 ◦C for 7 days under 12 h of light. Genomic DNA was extracted us-
ing the CTAB (cetyl trimethyl ammonium bromide) protocol, as described previously [2,30].
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) partial region was amplified
for all isolates to identify haplotype diversity through DnaSP v.6 [31]. The sequences thus
obtained were compared with those from GenBank using the BLAST tool. The following
loci were amplified for multilocus analyses: the intergenic spacer between DNA lyase and
the mating-type locus MAT1-2-1 (APN2/MAT-IGS), and the intergenic spacer between
GAPDH glutamine synthetase (GS) and β-tubulin (TUB2). These genomic regions are re-
ported to be the most informative for identifying species from several Colletotrichum species
complexes [32]. PCR amplifications were performed in a 12.5 µL volume reaction contain-
ing 4 µL PCR-grade water, 1 µL DNA template, 0.625 µL of each primer (10 µM), and 6.25
µL 2× PCR master mix (Promega GoTaq Master Mix; Madison, Wisconsin, USA). The PCR
products were visualized in a 1.5% agarose/TAE gel by electrophoresis. The primers and
cycles used in this study [33–35] are listed in Supplementary Table S1. PCR products were
purified by ethanol and ammonium acetate precipitation and then sequenced on an ABI
3730xl DNA analyzer (Applied Biosystems, Foster City, CA, USA) on a DNA sequencing
platform located at the Laboratório de Bioinformática e Biologia Evolutiva–LABBE of the
Universidade Federal de Pernambuco (Pernambuco, Recife, Brazil). Sequence reads were
assembled into contigs and edited using the Staden package v.2.0.0 (1998) [36].

2.6. Phylogenetic Analyses

Sequences from the Colletotrichum ex-type and reference isolates from previous studies
were retrieved from GenBank and included in the phylogenetic analyses. Multiple sequence
alignments (MSA) were generated with the online version of MAFFT 7 using the Q-INS-i
iterative refinement method [37,38]. For the multilocus analysis, the loci were concatenated
using Sequence Matrix v. 1.8 [39].

A phylogeny for each locus and concatenated alignments were inferred using maxi-
mum likelihood (ML). ML analyses were performed using IQ-TREE v. 2.1.2 [40], keeping
identical sequences in the alignment. The ML tree search was estimated using a specific
substitution model for each locus. Model parameters were separately estimated for each
partition using ModelFinder [41,42], allowing each partition to have its evolution rate (-m
MFP-p). The best ML tree was found after 1000 iterations with a perturbation strength
of 0.2. ML analyses were carried out with 1000 bootstrap pseudoreplicates under the
GTR-GAMMA model (-m GTRGAMMA-p 12345-k-f a–N 1000-x 12345). The species were
recognized by utilizing the Genealogical Concordance Phylogenetic Species Recognition
(GCPSR) criteria, as described previously [43,44].

2.7. Morphological Characterizations

For phenotypic characterization of the new species, mycelial plugs 5 mm in diameter
were taken from the margin of 7-day-old colonies and transferred to the center of Petri
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dishes containing PDA. The culture was maintained in the same incubation conditions
and the colony features were recorded from 7-day-old colonies. The conidia from PDA
were prepared for examination under a microscope by mounting them in a solution of 10%
lactic acid. A modified version of the slide culture technique developed by Johnston and
Jones [45] was used to induce the formation of appressoria. In this method, a small block of
agar-agar medium (4%) was placed on a sterile microscope slide, and conidial masses were
spread on the top edges of the block. The block was then covered with a sterile coverslip
and left to incubate in the dark at a temperature of 25 ◦C for 24 h. Microscopic images
of the samples were captured using a Nikon Eclipse Ni-U transmitted light microscope
equipped with a DS151 L3 digital camera.

2.8. Statistical Analysis

The difference in the area under the disease progress curve (AUDPC) of the same
isolate between fruits with and without wounds was estimated by a t-test (p < 0.05).
Virulence results were examined through linear and non-linear regression, a one-way
ANOVA, and test-t p< 0.05 (after 10 days), with the normality and variance assumptions
checked. All statistical analyses were performed using SigmaPlot software (Systat Software,
San Jose, CA, USA), version 12.0.

3. Results
3.1. Morphological Characterization

The basic growth pattern, colony characteristics on PDA growth medium, and spore
morphology were observed to identify the morphological groups associated with the genus
Colletotrichum sp. (Figure 1A). The colonies exhibited colors ranging from white to light
gray, with a similar reverse side. They varied in aerial mycelium formation, ranging
from flaky with no visible conidia to sparse, submerged, and well-sporulated mycelia
(Figure 1B,C). Most isolates displayed masses of orange-colored conidia on the colony
surface. The conidia were hyaline, straight, and featured rounded appendages. At the
end of the evaluations, the three isolates that showed the best responses to the analyzed
variables were selected, and the length and width of 30 conidia were measured, yielding
an average size of 23.5 µm by 9.7 µm.
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3.2. Pathogenicity and AUDPC of Isolates in Dwarf Banana

The pathogenicity results revealed the effects of 27 Colletotrichum sp. isolates on
banana fruits under two exposure conditions. When the fruits were wounded, all isolates
at the inoculation sites developed dark brown necrotic lesions that became depressed as
the pathogen colonized the tissues, confirming their pathogenicity. In the absence of a
wound, 19 of the isolates exhibited similar symptoms (Figure 2). Five days after inoculation,
pinkish/orange conidial cirri (masses of spores) were observed under both conditions.
To confirm the causal agent of the infection, the pathogenic isolates were reisolated on
PDA growth medium, and the fungi were identified under an optical microscope, fulfilling
all stages of Koch’s postulates. The assessment of the area under the disease progress
curve (AUDPC) showed that all isolates affected the bananas when wounds were present.
Although the AUDPCs for isolates 8, 22, and 25 were similar under both conditions, a
greater area of infection was noted for isolates 2, 8, and 10 in the absence of wounds on the
dwarf banana (Figure 2). This indicates the potential of these three isolates (C2, C8, and
C10) to penetrate tissues through physical and/or biochemical mechanisms.
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Figure 2. The area under the disease progress curve (AUDPC) after 10 days of inoculation of
27 Colletotrichum sp. isolates in dwarf banana fruits, both with and without wounds, as shown in
the center. Symbols represent the mean values of three replicates, while asterisks indicate significant
differences for the same isolate between wounded and unwounded fruits (t-test, p < 0.05).

3.3. Virulence of Colletotrichum sp. Isolates in Dwarf Banana

Virulence increased over time in both fruits with lesions on the skin (Figure 3A) and
fruits without lesions (Figure 3B); no differences were seen between isolates in injured fruits
(H = 1.86; p = 0.439) and non-injured fruits (F2,6 = 0.88; p = 0.459) after 10 days. However,
the infections caused by the isolate C2 (t = 2.88; df = 4; p = 0.044) and the isolate C10
(t = 5.99; df = 4; p = 0.0039) were greater when wounds were made in the skin of the fruit
than in fruit without wounds, and were without variation for the isolate C8 (t = 1.83; df = 4;
p = 0.140) (Figure 3C).
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Figure 3. Increase of the virulence of Colletotrichum sp. isolates in dwarf banana fruits with wounds
(A) and without wounds (B) over time, and final virulence after 10 days (C). (A,B) Symbols are the
mean of three replicates and vertical lines represent the standard error (SE). The horizontal bars
(C) showed the mean (±SE) of three replicates and asterisks (*) on the bars indicate the statistical
difference between treatments in the same isolate according to the t-test (p < 0.05). Horizontal bars
grouped by vertical lines indicate that no statistical difference (p > 0.05) among the isolates was seen
for wounded and unwounded fruits. We used a Tukey test (for parametric data) or the Kruskal–Wallis
test (for nonparametric data).

3.4. Virulence of Colletotrichum sp. Isolate “C8” in Four Banana Cultivars

Since isolate “C8” caused the most significant and most severe infection in inoculated
dwarf banana fruits without prior wounds (as shown in Figure 2), it was selected for the
evaluation of virulence in four banana cultivars. Our results indicated that Colletotrichum
colonization on bananas varied with the cultivar (Figure 4), with a constant increase
in virulence in the four banana varieties regardless of whether the fruit was wounded
(Figure 5A) and in the absence of wounds (Figure 5B). After 10 days, the virulence was
similar in all varieties of banana with injuries (F3,8 = 3.33; p = 0.077); in non-injured
fruits, the banana variety “prata” was most susceptible. When the susceptibility of the
same banana variety was evaluated after 10 days, the “terra” banana (t = 14.55; df = 4;
p = 0.0001), “marmela” banana (t = 6.02; df = 4; p = 0.0038), and “maçã” banana (t = 7.09;
df = 4; p = 0.0021) were more susceptible when the fruit had wounds on the skin, while
the “prata” banana showed no difference in both conditions (t = 1.66; df = 4; p = 0.170)
(Figure 5C).
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replicates, and asterisks (*) on the bars indicate the statistical difference between the same variety of
bananas at the test-t (p < 0.05); vertical lines above the bars at the same level indicate that no statistical
difference was found by the Tukey test, p < 0.05.
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3.5. Cross-Infection of Colletotrichum sp. Obtained from Bananas to Other Fruit Species

Our results demonstrated that cross-inoculation occurred in the three isolates tested
on papaya and apple fruits, regardless of whether the fruits were injured. However, isolate
“C10” was not pathogenic to apples without wounds. In mango, only the isolates “C2” and
“C8” affected the fruit when it was injured (Figure 6). Additionally, when the isolate was
pathogenic, initial symptoms appeared earlier in the injured fruits (Figure 6).
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3.6. Sequencing and Phylogenetic Analyses

A preliminary analysis among the three isolates (C2, C8, and C10) using partial
GAPDH sequences identified one haplotype among the Colletotrichum banana isolates. The
BLAST analysis indicated that isolates presented a high similarity with species from one
of the Colletotrichum species complex: one haplotype in C. gloeosporioides sensu lato. Three
isolates were aligned within the C. musae clade in the multilocus analysis, with strong
support (100%) in the ML multilocus analyses (Figure 7, Table S2).
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4. Discussion
Our results indicated that all tested isolates were pathogenic when the protective skins

of the fruits were ruptured by wounds. Notably, three isolates were virulent, even in fruits
without injuries. While pathogenicity in these uninjured fruits was delayed and resulted in
larger necrotic areas, virulence was lower over time. Similarly, the virulence of these isolates
varied among different banana species, paralleling the findings on cross-inoculation.

Fruits of dwarf bananas with injuries exhibited the largest necrotic areas (AUDPC) ten
days post-inoculation. In contrast, not all isolates caused disease in “unwounded” condi-
tions. In both cases, we confirmed the causal agent of fruit damage through Koch’s postu-
lates, concluding that all isolates obtained from reisolation had characteristics similar to
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those used in the fruit inoculation process. Our results align with those of Santos et al. [46],
who evaluated the genotypic and pathogenic diversity of C. musae in bananas, noting
that all isolates were pathogenic in fruits with injuries. Similarly, Pessoa et al. [47] found
that C. musae specimens that were inoculated and without injury exhibited a lower rate of
lesions compared to inoculations with injuries. The “unwounded” condition also yielded
lower averages in AUDPC evaluations. Although it has been noted that Colletotrichum spp.
possess specific penetration mechanisms that can be effective regardless of the presence
of wounds or natural openings [48,49], other studies report that injuries in the host can
facilitate the entry of phytopathogens and promote colonization [22,23,50,51]. This can
accelerate and enhance the infection and colonization processes [52]. Additionally, banana
peel contains various compounds, such as hydroxycinnamic acids, flavonoids, tannins,
alkaloids, phlorotannins, glycosides, catecholamines, and anthocyanins, which exhibit anti-
fungal and antibacterial activity [53–55]. Consequently, in damaged fruit, these defenses
may be weakened, facilitating the colonization of microorganisms.

Our results also indicate that pathogenicity varied among the collected isolates. In
this context, differences were found among Colletotrichum sp. isolates, likely due to ge-
netic variability within the same species, which affected their pathogenic capacity [20].
According to Barguil et al. [56], the non-pathogenicity of certain isolates in their original
hosts may relate to the pathogen’s endophytic habits or a loss of pathogenicity in those
isolates. Additionally, Farias Couto et al. [57] demonstrated that C. musae isolates can differ
significantly, whether inoculated in their original cultivar or isolated from one cultivar and
inoculated in another, and some may even be non-pathogenic.

This study also demonstrates the ability of the fungus to cross-infect popular banana
cultivars, with variability in virulence among Colletotrichum sp. isolates and banana species.
With injuries, all four banana species were similarly colonized, but in the absence of
wounds, the “terra”, “marmelo”, and “maçã” cultivars were less affected, while the “prata”
cultivar was the most affected after 10 days, regardless of the wound. Similar findings were
reported by Ootani et al. [58], who noted that the “prata” and “maçã” banana cultivars
were more susceptible to C. musae. Differences in susceptibility among banana cultivars
have been attributed to complex biochemical mechanisms that allow each fruit species to
recognize and defend against potential pathogens [5,16,17]. Furthermore, factors such as
soil nutrition, the presence or absence of magnesium (Mg) or calcium (Ca), and geographic
conditions have also been reported to influence banana susceptibility to C. musae [59].
Additionally, the pH of the fruit peel and the soluble solid content have been implicated in
the development of anthracnose across different banana cultivars [60], highlighting that
these biochemical characteristics are specific to each species.

Isolates of Colletotrichum sp. obtained from dwarf bananas demonstrated cross-
infection capability, with pathogenicity to other fruit species, including mango, papaya,
and apple, indicating their lack of specificity. This contrasts with studies that have shown
that C. musae is almost exclusively associated with bananas [4,61,62]. However, colonization
was dependent on the fruit type and its condition, particularly whether it had wounds,
with mango being notably less affected. Studies have shown that mangoes contain gal-
lotannins and resorcinols in both unripe and ripe fruit peels, with a negative correlation
between the levels of these compounds and the development of anthracnose caused by C.
gloeosporioides [63–65]. Similarly, Karunanayake et al. [66] further suggested that mango
resistance to C. gloeosporioides is attributed to a constitutive defense system comprising
antifungal resorcinols, gallotannins, and chitinases, with anthocyanins and flavonoids also
associated with resistance to this pathogen [67]. Additionally, other studies have reported
instances of cross-colonization of Colletotrichum spp. in various tropical fruits, including
mango [4,18,20,61]. C. musae has also been shown to infect other species of fruit, such as
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guava, water apple, avocado, and dragon fruit plants [68,69]; most recently, it has been
reported to infect the roots and leaves of coffee and lychee trees [70,71]. The results obtained
from the phylogenetic analyses corroborate the morphological characterization data of this
study; the morphological features described in Section 3.1 are consistent with the descrip-
tions of the type and epitype isolates of C. musae [72,73]. It is important to highlight that
other Colletotrichum species have been reported as causal agents of banana anthracnose in
Brazil, including C. chrysophilum, C. tropicale, C. theobromicola, and C. siamense [33]. Accurate
and precise identification of the etiological agent is essential for the implementation of
effective management strategies. However, it has been demonstrated that the presence of
wounds makes the fruits more vulnerable to pathogen attack. Therefore, studies must be
directed toward the search for substances that can prevent the penetration of pathogens via
wounds in the integuments.

5. Conclusions
Our results show both the lack of specificity of Colletotrichum musae and its ability

to colonize several fruit species, with greater virulence in fruits that have wounds. Care
for the fruits must occur from their development in the field, avoiding the mechanical
damage that may occur due to attacks by birds and insects or management practices. This
highlights the care that must also be taken when harvesting, packaging, transporting, and
storing fruits.
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