A Comparative Analysis between the Phenolic Content, Key Enzyme Inhibitory Potential, and Cytotoxic Activity of Arum italicum Miller in Two Different Organs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Extract Preparation
2.3. UHPLC-DAD-ESI/MS Characterization of A. italicum Extracts
2.4. Inhibition of Enzymatic Activities
2.4.1. Inhibition of α-Glucosidase Activity
2.4.2. Inhibition of α-Amylase Activity
2.5. Cytotoxic Activity
2.5.1. Viability Assessment
2.5.2. Morphological Assessment
2.5.3. Involvement of the RIP1 Kinase
2.6. Statistical Analysis
3. Results
3.1. UHPLC-DAD-ESI/MS Characterization of A. italicum Extracts
3.2. Enzyme Inhibitory Activities
3.3. Cytotoxic Activity
4. Discussion
4.1. Chemical Constituents
4.2. Biological Activities
4.2.1. Enzyme Inhibition Activities
4.2.2. Cytotoxic Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pearson-Stuttard, J.; Papadimitriou, N.; Markozannes, G.; Cividini, S.; Kakourou, A.; Gill, D.; Rizos, E.C.; Monori, G.; Ward, H.A.; Kyrgiou, M.; et al. Type 2 diabetes and cancer: An umbrella review of observational and Mendelian randomization studies. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1218–1228. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Ghasemi, A.; Hosseinpanah, F. Type 2 diabetes and cancer: An overview of epidemiological evidence and potential mechanisms. Crit. Rev. Oncog. 2019, 24, 223–233. [Google Scholar] [CrossRef]
- Desai, A.G.; Qazi, G.N.; Ganju, R.K.; El-Tamer, M.; Singh, J.; Saxena, A.K.; Bedi, Y.S.; Taneja, S.C.; Bhat, H.K. Medicinal plants and cancer chemoprevention. Curr. Drug Metab. 2008, 9, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Khor, T.O.; Shu, L.; Su, Z.; Fuentes, F.; Lee, J.-H.; Kong, A.T. Plants against cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med. Chem. 2012, 12, 1281–1305. [Google Scholar] [CrossRef]
- Siddiqui, A.J.; Jahan, S.; Singh, R.; Saxena, J.; Ashraf, S.A.; Khan, A.; Choudhary, R.K.; Balakrishnan, S.; Badraoui, R.; Bardakci, F.; et al. Plants in anticancer drug discovery: From molecular mechanism to chemoprevention. BioMed. Res. Int. 2022, 2022, 5425485. [Google Scholar] [CrossRef]
- Lin, H.-H.; Huang, H.-P.; Huang, C.-C.; Chen, J.-H.; Wang, C.-J. Hibiscus polyphenol-rich extract induces apoptosis in human gastric carcinoma cells via p53 phosphorylation and p38 MAPK/FasL cascade pathway. Mol. Carcinog. 2005, 43, 86–99. [Google Scholar] [CrossRef]
- Kuruppu, A.I.; Paranagama, P.; Goonasekara, C.L. Medicinal plants commonly used agaisnt cancer in traditional medicine formulae in Sri Lanka. Saudi Pharmaceut. J. 2019, 27, 565–573. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, V.; Rana, M.; Kumar, D. Enzymes inhibitors from plants: An alternate approach to treat diabetes. Pharmacog. Commun. 2012, 2, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.H. Flora of Turkey and the East Aegean Islands. JSTOR 1984, 8, 41–55. [Google Scholar]
- Meddour, R.; Meddour, O.S. Medicinal plants and their traditional uses in Kabylia (Tizi Ouzou, Algeria). Arab. J. Med. Aromat. Plants 2015, 1, 137–151. [Google Scholar]
- Azab, A. Arum: A plant genus with great medicinal potential. Eur. Chem. Bull. 2017, 6, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Ağalar, H.G.; Akalin, C.G.; Goger, F.; Kirimer, N. Activity guided fractionation of Arum italicum Miller tubers and the LC/MS-MS profiles. Rec. Nat. Prod. 2017, 12, 64–75. [Google Scholar] [CrossRef]
- Rechek, H.; Haouat, A.; Hamaidia, K.; Allal, H.; Boudiar, T.; Pinto, D.C.G.A.; Cardoso, S.M.; Bensouici, C.; Soltani, N.; Silva, A.M.S. Chemical composition and antioxidant, anti-Inflammatory, and enzyme inhibitory activities of an endemic species from Southern Algeria: Warionia saharae. Molecules 2021, 26, 5257. [Google Scholar] [CrossRef]
- Haouat, A.; Rechek, H.; Pinto, D.C.G.A.; Cardoso, S.M.; Válega, M.S.G.A.; Boudjerda, A.; Silva, A.M.S.; Mekkiou, R. Metabolite profiling, antioxidant and key enzymes linked to hyperglycemia inhibitory activities of Satureja hispidula: An underexplored species from Algeria. Molecules 2022, 27, 8657. [Google Scholar] [CrossRef]
- Pereira, O.R.; Catarino, M.D.; Afonso, F.; Silva, A.M.S.; Cardoso, S.M. Salvia elegans, Salvia greggii and Salvia officinalis decoctions: Antioxidant activities and inhibition of carbohydrate and lipid metabolic enzymes. Molecules 2018, 23, 3169. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, C.; Pereira, R.B.; Pinto, N.F.S.; Coelho, C.M.M.; Fernandes, M.J.G.; Fortes, A.G.; Gonçalves, M.S.T.; Pereira, D.M. Eugenol β-amino/β-alkoxy alcohols with selective anticancer activity. Int. J. Mol. Sci. 2022, 23, 3759. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Dueñas, M.; Ferreira, I.; Carvalho, A.; Santos-Buelga, C. Use of HPLC–DAD–ESI/MS to profile phenolic compounds in edible wild greens from Portugal. Food Chem. 2011, 127, 169–173. [Google Scholar] [CrossRef]
- Spínola, V.; Llorent-Martínez, E.; Gouveia-Figueira, S.; Castilho, P. Ulex europaeus: From noxious weed to source of valuable isoflavones and flavanones. Ind. Crops Prod. 2016, 90, 9–27. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Spínola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
- Cao, J.; Yin, C.; Qin, Y.; Cheng, Z.; Chen, D. Approach to the study of flavone di-C-glycosides by high performance liquid chromatography-tandem ion trap mass spectrometry and its application to characterization of flavonoid composition in Viola yedoensis. Mass Spectrom. 2014, 49, 1010–1024. [Google Scholar] [CrossRef]
- Jung, E.S.; Lee, S.; Lim, S.H.; Ha, S.H.; Liu, K.H.; Lee, C.H. Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv: Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Sci. 2013, 210, 61–69. [Google Scholar] [CrossRef]
- Abdelaziz, S.; Al-Youssef, H.; Alqahtani, A.; Hassan, W.; Fantoukh, O.; El-Sayed, M. Phytochemical profile, antioxidant and cytotoxic potential of Parkinsonia aculeata L. growing in Saudi Arabia. Saudi Pharm. J. 2020, 28, 1129–1137. [Google Scholar] [CrossRef]
- Boukhalkhal, S.; Gourine, N.; Pinto, D.C.G.A.; Silva, A.M.S.; Yousfi, M. UHPLC-DAD-ESI-MSn profiling variability of the phenolic constituents of Artemisia campestris L. populations growing in Algeria. Biocatal. Agric. Biotechnol. J. 2020, 23, 101483. [Google Scholar] [CrossRef]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of Sorghum wholegrains by LC-ESI-MSn. Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Ben Said, R.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative characterization of polyphenolic compounds in the male flowers of Phoenix dactylifera by liquid chromatography coupled with mass spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef]
- Kumar, S.; Singha, A.; Kumar, B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. Pharm. Anal. 2017, 7, 214–222. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Fan, M.X.; Wu, X.; Wang, H.J.; Yang, J.; Si, N.; Bian, B.L. Chemical profiling of the Chinese herb formula Xiao-Cheng-Qi decoction using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Chromatogr. Sci. 2013, 51, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Hong, Y.; Chen, Z. Identification and quantification of the bioactive components in Osmanthus fragrans roots by HPLC-MS/MS. Pharm. Anal. 2020, 11, 299–307. [Google Scholar] [CrossRef]
- El-Sayed, M.; Abbas, F.; Refaat, S.; El-Shafae, A.; Ahmed, E. UPLC-ESI-MS/MS profile of the ethyl acetate fraction of aerial parts of Bougainvillea “Scarlett O’Hara” cultivated in Egypt. Egypt. Chem. 2020, 64, 793–806. [Google Scholar] [CrossRef]
- Faustino, M.V.; Faustino, M.A.F.; Silva, H.; Cunha, Â.; Silva, A.M.S.; Pinto, D.C.G.A. Puccinellia maritima, Spartina maritime, and Spartina patens halophytic grasses: Characterization of polyphenolic and chlorophyll profiles and evaluation of their biological activities. Molecules 2019, 24, 3796. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Kim, H.J.; Ali, M.S.; Lee, Y.S. An update on bioactive plant lignans. Nat. Prod. J. 2005, 22, 696–716. [Google Scholar] [CrossRef]
- Bienz, S.; Detterbeck, R.; Ensch, C.; Guggisberg, A.; Hausermann, U.; Meisterhans, C.; Wendt, B.; Werner, C.; Hesse, M. ; Putrescine, spermidine, spermine and related polyamine alkaloids, In The Alkaloids: Chemistry and Biology; Cordell, G.A., Ed.; Academic Press: Cambridge, MA, USA, 2002; Volume 58, pp. 103–120. [Google Scholar]
- Akar, Z.; Demir, Ç.; Alkan, O.; Can, Z.; Akar, B. LC–MS/MS and RP–HPLC–UV analysis and antioxidant activities of Arum italicum Miller edible and nonedible tuber parts. Anatol. Environ. Anim. Sci. 2021, 6, 294–301. [Google Scholar] [CrossRef]
- Afifi, F.U.; Kasabri, V.; Litescu, S.C.; Abaza, I.M. In vitro and in vivo comparison of the biological activities of two traditionally and widely used Arum species from Jordan: Arum dioscoridis Sibth & Sm. and Arum palaestinum Boiss. Nat. Prod. 2016, 30, 1777–1786. [Google Scholar]
- Afifi, F.U.; Kasabri, V.; Litescu, S.; Abaza, I.F.; Tawaha, K. Phytochemical and biological evaluations of Arum hygrophilum Boiss. (Araceae). Pharmacogn. Mag. 2017, 13, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Gin, H.; Rigalleau, V. Post-prandial hyperglycemia and diabetes. Diabetes Metabol. 2000, 26, 265–272. [Google Scholar]
- Etxeberria, U.; de la Garza, A.L.; Campión, J.; Martínez, J.A.; Milagro, F.I. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Exp. Opin. Therapeut. Targets 2012, 16, 269–297. [Google Scholar] [CrossRef] [Green Version]
- Lordan, S.; Smyth, T.J.; Soler-Vila, A.; Stanton, C.; Ross, R.P. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem. 2013, 141, 2170–2176. [Google Scholar] [CrossRef]
- Poovitha, S.; Parani, M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complem. Altern. Med. 2016, 16, 185. [Google Scholar] [CrossRef] [Green Version]
- Teng, H.; Chen, L.; Fang, T.; Yuan, B.; Lin, Q. Rb2 inhibits α-glucosidase and regulates glucose metabolism by activating AMPK pathways in HepG2 cells. J. Funct. Foods 2017, 28, 306–313. [Google Scholar] [CrossRef]
- Van de Laar, F.A. Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc. Health Risk Manag. 2008, 4, 1189–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apostolidis, E.; Kwon, Y.I.; Shetty, K. Potential of cranberry-based herbal synergies for diabetes and hypertension management. Asia Pac. J. Clin. Nutr. 2006, 15, 433–441. [Google Scholar] [PubMed]
- Jay, M.; Viricel, M.R.; Gonnet, J.F. C-glycosylflavonoids. In Flavonoids: Chemistry, Biochemistry and Aplications; Andersen, O.M., Markham, K.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 857–916. [Google Scholar]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-glucosidase and α-amylaseby flavonoids. J. Nutrit. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.N.; Ishita, I.J.; Jung, H.A.; Choi, J.S. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem. Toxicol. 2014, 69, 55–62. [Google Scholar] [CrossRef]
- Kashyap, A.K.; Dubey, S.K. Molecular mechanisms in cancer development. In Understanding Cancer; Jain, B., Pandey, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 5; pp. 79–90. [Google Scholar]
- Lu, S.; Ma, Y.; Sun, T.; Ren, R.; Zhang, X.; Ma, W. Expression of α-fetoprotein in in gastric cancer AGS cells contributes to invasion and metastasis by influencing anoikis sensitivity. Oncol. Rep. 2016, 35, 2984–2990. [Google Scholar] [CrossRef] [Green Version]
- Roleira, F.M.F.; Tavares da Silva, E.J.; Varela, C.L.; Costa, S.C.; Silva, T.; Garrido, J.; Borges, F. Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chem. 2015, 183, 235–258. [Google Scholar] [CrossRef]
- Mukhija, M.; Joshi, B.C.; Bairy, P.S. Lignans: A versatile source of anticancer drugs. Appl. Sci. 2022, 11, 76. [Google Scholar]
Peak | Rt | [M−H]− | MS2 | Identified Compound | Quantity |
---|---|---|---|---|---|
Leaf extract | |||||
1 | 8.76 | 179 | 135 | Caffeic acid [13] | 0.41 ± 0.06 |
2 | 10.39 | 593 | 283, 311, 341, 431, 473, 503 | Apigenin 6-C-glucoside-7-O-glucoside [18,19] | 11.38 ± 1.63 |
3 | 10.54 | 563 | 353, 383, 443, 455, 473, 503 | Apigenin 6-C-arabinosyl-8-C-glucoside * [20] | 4.81 ± 0.64 |
4 | 10.91 | 563 | 353, 383, 443, 455, 473, 503 | Apigenin 6-C-glucosyl-8-C-arabinoside * [20,21] | 3.84 ± 1.23 |
5 | 11.11 | 593 | 293, 413 | Isovitexin 2″-O-glucoside [20,22] | 1.03 ± 0.15 |
6 | 11.46 | 593 | 297, 325, 383, 413, 455, 473, 503 | Apigenin 6,8-di-C-glucoside [21] | 2.59 ± 0.40 |
7 | 11.65 | 431 | 311, 341 | Isovitexin or vitexin [18,19,23] | 7.46 ± 1.22 |
8 | 11.78 | 431 | 311, 341 | Isovitexin or vitexin isomer 1 [18,19] | 0.75 ± 0.15 |
9 | 12.07 | 431 | 311, 341 | Vitexin or isovitexin [18,19,23] | 4.41 ± 0.75 |
10 | 12.23 | 431 | 311, 341 | Isovitexin or vitexin isomer 2 [18,19] | 0.41 ± 0.27 |
11 | 13.92 | 447 | 284 | Kaempferol 3-O-glucoside [19,23] | 0.32 ± 0.18 |
12 | 14.12 | 343 | 171, 209, 229, 253, 267, 289, 307, 325 | Furofuranolignan derivative [14] | NQ |
13 | 16.87 | 317 | 193, 289, 299 | Myricetin [24] | 0.56 ± 0.08 |
14 | 17.78 | 299 | 284 | Chrysoeriol [13] | 0.21 ± 0.06 |
15 | 20.23 | 359 | 299, 317, 341 | Trimethylmyricetin [25,26,27] | 0.61 ± 0.07 |
16 | 22.73 | 297 | 111, 136, 171, 223, 268 | Unknown | NQ |
17 | 23.65 | 279 | 261 | Unknown | NQ |
18 | 23.87 | 297 | 251, 253, 279 | 3,8-Dihydroxy-1-methylanthraquinone [28] | NQ |
Tuber extract | |||||
19 | 7.36 | 387 | 164, 207, 369 | Medioresinol [20] | NQ |
20 | 9.58 | 447 * | 269, 401 | Apigenin O-pentoside ** [23] | 1.94 ± 0.44 |
21 | 9.76 | 593 | 353, 383, 473, 503, 575 | Apigenin 6,8-di-C-hexoside [21] | NQ |
22 | 10.17 | 563 | 353, 383, 413, 425, 443, 473, 503, 545 | Apigenin 6-C-glucosyl-8-C-arabinoside * [20,21] | 1.93 ± 0.79 |
23 | 10.47 | 563 | 353, 383, 413, 425, 443, 473, 503, 545 | Apigenin 6-C-glucosyl-8-C-arabinoside * [21] | 4.08 ± 2.71 |
24 | 10.71 | 563 | 353, 383, 413, 425, 443, 473, 503, 545 | Apigenin 6-C-arabinosyl-8-C-glucoside * [20] | 3.07 ± 1.21 |
25 | 10.92 | 563 | 353, 383, 413, 425, 443, 473, 503, 545 | Apigenin 6-C-glucosyl-8-C-arabinoside * [21] | 5.68 ± 1.19 |
26 | 11.30 | 563 | 353, 383, 425, 443, 455, 473, 503, 533, 545 | Apigenin 6-C-glucosyl-8-C-arabinoside * [18] | 0.57 ± 0.18 |
27 | 11.79 | 565 | 295, 373, 403 | Fraxiresinol hexoside isomer 1 [29,30] | NQ |
28 | 11.92 | 565 | 295, 355, 373, 385, 403 | Fraxiresinol 1-O-glucoside [29,30] | NQ |
29 | 12.22 | 436 | 145, 272, 316 | Dicoumaroyl-spermidine isomer 1 [13] | NQ |
30 | 12.82 | 436 | 145, 272, 316 | Dicoumaroyl-spermidine isomer 2 [13] | NQ |
31 | 13.22 | 403 | 161, 205, 367, 385 | Fraxiresinol [29,30] | NQ |
32 | 13.30 | 565 | 161, 205, 295, 373, 403 | Fraxiresinol hexoside isomer 2 [29,30] | NQ |
33 | 13.73 | 329 | 229, 314 | Tricin [31] | 0.42 ± 0.16 |
34 | 14.90 | 343 | 171, 177, 201, 217, 297, 289, 307, 325 | Furofuranolignan derivative [12] | NQ |
Sample | Enzyme Inhibitory Activity | |||
---|---|---|---|---|
α-Glucosidase | α-Amylase | |||
IC50 (μg/mL) | % of Inhibition | IC50 (μg/mL) | % of Inhibition | |
Leaves | ND | 46.53 ± 3.55 A,a | ND | 32.64 A,b |
Tubers | 170.87 ± 4.75 B | - | ND | 35.49 A,c |
Acarbose (μg/mL) | 405.77 ± 34.83B | - | ND | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rechek, H.; Haouat, A.; Pinto, D.C.G.A.; Pereira, D.M.; Pereira, R.B.; Válega, M.S.G.A.; Cardoso, S.M.; Silva, A.M.S. A Comparative Analysis between the Phenolic Content, Key Enzyme Inhibitory Potential, and Cytotoxic Activity of Arum italicum Miller in Two Different Organs. Int. J. Plant Biol. 2023, 14, 520-532. https://doi.org/10.3390/ijpb14020041
Rechek H, Haouat A, Pinto DCGA, Pereira DM, Pereira RB, Válega MSGA, Cardoso SM, Silva AMS. A Comparative Analysis between the Phenolic Content, Key Enzyme Inhibitory Potential, and Cytotoxic Activity of Arum italicum Miller in Two Different Organs. International Journal of Plant Biology. 2023; 14(2):520-532. https://doi.org/10.3390/ijpb14020041
Chicago/Turabian StyleRechek, Habiba, Ammar Haouat, Diana C. G. A. Pinto, David M. Pereira, Renato B. Pereira, Mónica S. G. A. Válega, Susana M. Cardoso, and Artur M. S. Silva. 2023. "A Comparative Analysis between the Phenolic Content, Key Enzyme Inhibitory Potential, and Cytotoxic Activity of Arum italicum Miller in Two Different Organs" International Journal of Plant Biology 14, no. 2: 520-532. https://doi.org/10.3390/ijpb14020041
APA StyleRechek, H., Haouat, A., Pinto, D. C. G. A., Pereira, D. M., Pereira, R. B., Válega, M. S. G. A., Cardoso, S. M., & Silva, A. M. S. (2023). A Comparative Analysis between the Phenolic Content, Key Enzyme Inhibitory Potential, and Cytotoxic Activity of Arum italicum Miller in Two Different Organs. International Journal of Plant Biology, 14(2), 520-532. https://doi.org/10.3390/ijpb14020041