Development of Cryopreservation Technique for Meristems of Syringa vulgaris L. Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Cryopreservation
2.2.1. Preculture
2.2.2. Explant Excision
2.2.3. Pretreatment
2.2.4. Dehydration
2.2.5. Thawing
2.2.6. Regrowth
2.3. Experimental Design and Statistical Analysis
3. Results
3.1. Preculture
3.2. Dehydration of Explants
3.3. Regrowth after Thawing
4. Discussion
4.1. Effect of PGRs on Micro-Plantlets during Preculture
4.2. Regeneration of the Explants after Thawing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BAP | 6-Benzylaminopurine |
IAA | Indole-3-acetic acid |
IPP RAS | Timiryazev Institute of Plant Physiology of Russian Academy of Science |
LN | Liquid Nitrogen |
MBG RAS | Tsitsin Main Botanical Garden of Russian Academy of Science |
MS | Murashige and Skoog |
PBZ | Paclobutrazol |
PGRs | plant growth regulators |
TDZ | Thidiazuron |
QL | Quorin and Lepoivre |
SE | standard error |
CI | confidence interval |
References
- Su, G.; Cao, Y.; Li, C.; Yu, X.; Gao, X.; Tu, P.; Chai, X. Phytochemical and pharmacological progress on the genus Syringa. Chem. Cent. J. 2015, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Wang, Z.; Sun, Y.; Yang, B.; Wang, Q.; Kuang, H. Traditional uses, phytochemistry and pharmacology of genus Syringa: A comprehensive review. J. Ethnopharmacol. 2021, 266, 113465. [Google Scholar] [CrossRef] [PubMed]
- The International Plant Names Index. Available online: http://www.ipni.org (accessed on 17 May 2023).
- World Checklist of Vascular Plants 2022. Available online: https://powo.science.kew.org/ (accessed on 17 May 2023).
- Luneva, Z.S.; Mikhaylov, N.L.; Sudakova, E.A. Lilac; Agropromizdat: Moscow, Russia, 1989; p. 256. [Google Scholar]
- International Register and Checklist of cultivar names in the genus Syringa L. (Oleaceae). 2022. Available online: http://www.internationallilacsociety.org/public-register/ (accessed on 17 May 2023).
- Ozodugru, E.A.; Previaty, A.; Lambardi, M. In vitro conservation and cryopreservation of ornamental plants. In Protocols for In Vitro Propagation of Ornamental Plants; Jain, S.M., Ochatt, S.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 589, pp. 303–324. [Google Scholar] [CrossRef]
- Silva, D.P.C. In vitro conservation of ornamental plants. Ornam. Hortic. 2018, 24, 28–33. [Google Scholar] [CrossRef]
- Rajasekharan, P.E.; Ramanatha Rao, V. (Eds.) Conservation and Utilization of Horticultural Genetic Resources; Springer: Singapore, 2019; p. 680. [Google Scholar] [CrossRef]
- Reed, B.M.; Engelmann, F.; Dulloo, E.; Engels, J.M.M. (Eds.) Technical Guidelines for the Management of Field and In Vitro Germplasm Collections; Bioversity International: Rome, Italy, 2004; p. 95. [Google Scholar]
- Häggman, H.; Rusanen, M.; Jokipii, S. Cryopreservation of in vitro tissues of deciduous forest trees. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 365–386. [Google Scholar]
- Matsumoto, T. Cryopreservation of plant genetic resources: Conventional and new methods. Rev. Agric. Sci. 2017, 5, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A.; Yoshida, S. Survival of plant tissue at superlow temperature VI. Effects of cooling and rewarming rates on survival. Plant Physiol. 1967, 42, 1695–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, B.M. Cryopreservation—Practical considerations. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 3–13. [Google Scholar]
- Engelmann, F. Cryopreservation of embryos: An overview. Methods Mol. Biol. 2011, 710, 155–184. [Google Scholar] [CrossRef]
- Febre, J.; Dereuddre, J. Encapsulation-dehydration: A new approach to cryopreservation of solanum shoot-tips. CryoLetters 1990, 11, 413–426. [Google Scholar]
- Sakai, A.; Kobayashi, S.; Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990, 9, 30–33. [Google Scholar] [CrossRef]
- Schafer-Menuher, A.; Schumacher, H.M.; Mix-Wagner, G. Cryopreservation of potato cultivars-design of a method for routine application in genebanks. Acta Hortic. 1997, 447, 477–482. [Google Scholar] [CrossRef]
- Keller, E.R.J.; Dreiling, M. Potato cryopreservation in Germany-using the droplet method for the establishment of a new large collection. Acta Hortic. 2020, 623, 193–200. [Google Scholar] [CrossRef]
- Kim, H.H.; Lee, Y.G.; Park, S.U.; Lee, S.C.; Baek, H.J.; Cho, E.G.; Engelmann, F. Development of alternative loading solutions in droplet-vitrification procedures. CryoLetters 2009, 30, 291–299. [Google Scholar] [PubMed]
- Sekizawa, K.; Yamamoto, S.; Rafique, T.; Fukui, K.; Niino, T. Cryopreservation of in vitro-grown shoot tips of carnation (Dianthus caryophyllus L.) by vitrification method using aluminium cryo-plates. Plant Biot. 2011, 28, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, K.E.S.; Souza, R.A.V.; Carvalho, L.S.O.; Paiva, L.V. Influence of ethylene glycol on Eucalyptus grandis cryopreservation using the V cryo-plate technique. Crop Breed. Appl. Biotechnol. 2022, 22, e378422210. [Google Scholar] [CrossRef]
- Funnekotter, B.; Mancera, R.L.; Bunn, E. Advances in understanding the fundamental aspects required for successful cryopreservation of Australian flora. Vitr. Cell. Dev. Biol. Plant 2017, 53, 289–298. [Google Scholar] [CrossRef]
- Nesterowicz, S.; Kulpa, D.; Moder, K.; Kurek, J. Micropropagation of an old specimen of common lilac (Syringa vulgaris L.) from the dendrological garden at Przelewice. Acta Sci. Pol. Hortorum Cultus 2006, 5, 27–35. [Google Scholar]
- Gabruszewska, E. Effect of various levels of sucrose, nitrogen salts and temperature on the growth and development of Syringa vulgaris L. shoots in vitro. J. Fruit Ornam. Plant Res. 2011, 19, 133–148. [Google Scholar]
- Molkanova, O.; Koroleva, O. Biotechological methods of Syringa L. collection propagation and preservation. Vitr. Cell. Dev. Biol. 2018, 54, 545–546. [Google Scholar] [CrossRef] [Green Version]
- Koroleva, O.V.; Molkanova, O.I.; Mishanova, E.V. Biotechnological methods of reproduction and preservation of species and cultivars of the genus Syringa L. Acta Hortic. 2022, 1339, 87–92. [Google Scholar] [CrossRef]
- Nukari, A.; Laamanen, J.; Uosukainen, M. A preliminary study of the droplet vitrification method applied on lilac. Acta Hortic. 2011, 908, 269–273. [Google Scholar] [CrossRef]
- Laurén, J. Using the Cryomethod for Long–Term Preservation of Lilac. Bachelor’s Thesis, JAMK University of Applied Sciences, Jyväskylä, Finland, 2011. Available online: http://urn.fi/URN:NBN:fi:amk-201101191524 (accessed on 31 January 2023).
- Refouvelet, E.; Le Nours, S.; Tallon, C.; Daguin, F. A new method for in vitro propagation of lilac (Syringa vulgaris L.): Regrowth and storage conditions for axillary buds encapsulated in alginate beads, development of a pre-acclimatization stage. Scientia Hort. 1998, 74, 233–241. [Google Scholar] [CrossRef]
- Revilla, A.; Fernández, H. Dehydration of olive shoot tips. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 417–418. [Google Scholar]
- Sánchez-Romero, C.; Swennen, R.; Panis, B. Cryopreservation of olive embryogenic cultures. CryoLetters 2009, 30, 359–372. [Google Scholar] [PubMed]
- Ozudogru, E.A.; Capuana, M.; Kaya, E.; Panis, B.; Lambard, M. Cryopreservation of Fraxinus excelsior L. embryogenic callus by one-step freezing and slow cooling techniques. CryoLetters 2010, 31, 63–75. [Google Scholar] [PubMed]
- Bradaï, F.; Almagro-Bastante, J.; Sánchez-Romero, C. Cryopreservation of olive somatic embryos using the droplet-vitrification method: The importance of explant culture conditions. Sci. Hortic. 2017, 218, 14–22. [Google Scholar] [CrossRef]
- Yu, X.; Liu, Y.; Liu, X.; Tretyakova, I.N.; Nosov, A.M.; Shen, H.; Yang, L. Cryopreservation of Fraxinus mandshurica Rupr. by Using the Slow Cooling Method. Forests 2022, 13, 773. [Google Scholar] [CrossRef]
- Vysotskaya, O.N. Method of Cryopreservation of Meristem Shoot Tips Isolated from In Vitro Plantlets. Patent EAPO 036602 B1, 27 November 2020. [Google Scholar]
- Plokhinskii, N.A. Biometrics; Nauka: Novosibirsk, Russia, 1961; p. 368. [Google Scholar]
- Isachkin, A.V.; Krjuchkova, V.A. Fundamentals of Scientific Research in Horticulture: A Textbook for Universities, 3rd ed.; Lan: St. Petersburg, Russia, 2020; 420p. [Google Scholar]
- Engelmann, F. Plant cryopreservation: Progress and prospects. Vitr. Cell. Dev. Biol. Plant 2004, 40, 427–433. [Google Scholar] [CrossRef]
- Benelli, C. Plant Cryopreservation: A Look at the Present and the Future. Plants 2021, 10, 2744. [Google Scholar] [CrossRef]
- Balekin, A.Y.; Vysotskaya, O.N. Growth peculiarities of blackberry culture (Rubus L.) Recovery in vitro after cryopreservation. Pomic. Small Fruits Cult. Russ. 2015, 41, 41–44. [Google Scholar]
- Vysotskaya, O.N.; Sprinchanou, E.K.; Vysotskiy, V.A. The verification of long-term storage techniques for in vitro strawberry collections. Pomic. Small Fruits Cult. Russ. 2016, 45, 50–53. [Google Scholar]
- Barraco, G.; Chatelet, P.; Balsemin, E.; Decourcelle, T.; Sylvestre, I.; Engelmann, F. Cryopreservation of Prunus cerasus through vitrification and replacement of cold hardening with preculture on medium enriched with sucrose and/or glycerol. Sci. Hort. 2012, 148, 104–108. [Google Scholar] [CrossRef]
- Palonen, P.; Junttila, O. Cold hardening of raspberry plants in vitro is enhanced by increasing sucrose in the culture medium. Physiol. Plant 1999, 106, 386–392. [Google Scholar] [CrossRef]
- O’Brien, C.; Hiti-Bandaralage, J.; Folgado, R.; Lahmeyer, S.; Hayward, A.; Folsom, J.; Mitter, N. A method to increase regrowth of vitrified shoot tips of avocado (Persea americana Mill.): First critical step in developing a cryopreservation protocol. Sci. Hort. 2020, 266, 109305. [Google Scholar] [CrossRef]
- Ferrando, M.; Spiess, W.E.L. Cellular response of plant tissue during the osmotic treatment with sucrose, maltose, and trehalose solutions. J. Food Eng. 2001, 49, 115–127. [Google Scholar] [CrossRef]
- El-Bahr, M.K.; Abd EL-Hamid, A.; Matter, M.A.; Shaltout, A.; Bekheet, S.A.; El-Ashry, A.A. In vitro conservation of embryogenic cultures of date palm using osmotic mediated growth agents. J. Genet. Eng. Biotechnol. 2016, 14, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Debergh, P.C. Effects of agar brand and concentration on the tissue culture medium. Physiol. Plant. 1983, 59, 270–276. [Google Scholar] [CrossRef]
- von Arnold, S.; Eriksson, T. Effect of agar concentration on growth and anatomy of adventitious shoots of Picea abies (L.) Karst. Plant Cell Tissue Organ Cult. 1984, 3, 257–264. [Google Scholar] [CrossRef]
- Benelli, C.; Tarraf, W.; Izgu, T.; De Carlo, A. In Vitro Conservation through Slow Growth Storage Technique of Fruit Species: An Overview of the Last 10 Years. Plants 2022, 11, 3188. [Google Scholar] [CrossRef]
- Skoog, F.; Miller, C. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 1957, 11, 118–440. [Google Scholar]
- Novikova, T.I.; Zaytseva, Y.G. TDZ-Induced Morphogenesis Pathways in Woody Plant Culture. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Ahmad, N., Faisal, M., Eds.; Springer: Singapore, 2018; pp. 61–94. [Google Scholar] [CrossRef]
- Dinani, E.T.; Shukla, M.R.; Turi, C.E.; Sullivan, J.A.; Saxena, P.K. Thidiazuron: Modulator of Morphogenesis In Vitro. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Ahmad, N., Faisal, M., Eds.; Springer: Singapore, 2018; pp. 1–36. [Google Scholar] [CrossRef]
- Huetteman, C.A.; Preece, J.E. Thidiazuron: A potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult. 1993, 33, 105–119. [Google Scholar] [CrossRef]
- Chalupa, V. Effect of benzylaminopurine and thidiazuron on in vitro shoot proliferation of Tilia cordata MILL., Sorbus aucuparia L. and Robinia pseudoacacia L. Biol. Plant 1987, 29, 425–429. [Google Scholar] [CrossRef]
- Vinoth, A.; Ravindhran, R. In Vitro Morphogenesis of Woody Plants Using Thidiazuron. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Ahmad, N., Faisal, M., Eds.; Springer: Singapore, 2018; pp. 211–230. [Google Scholar] [CrossRef]
- Desta, B.; Amare, G. Paclobutrazol as a plant growth regulator. Chem. Biol. Technol. Agric. 2021, 8, 1. [Google Scholar] [CrossRef]
- Snir, I. Influence of Paclobutrazol on in vitro growth of sweet cherry shoots. HortScience 1988, 23, 304–305. [Google Scholar] [CrossRef]
- Indrayanti, R.; Putri, R.E.; Sedayu, A.; Adisyahputra, A. Effect of paclobutrazol for in vitro medium-term storage of banana variant cv. Kepok (Musa acuminata × balbisiana Colla). In Proceedings of the 9th International Conference on Global Resource Conservation (ICGRC) and AJI from Ritsumeikan University, Malang City, Indonesia, 7–8 March 2018; Volume 2019. [Google Scholar]
- Popova, E.; Kulichenko, I.; Kim, H.-H. Critical Role of Regrowth Conditions in Post-Cryopreservation of In Vitro Plant Germplasm. Biology 2023, 12, 542. [Google Scholar] [CrossRef] [PubMed]
- FAO. Genebank Standards for Plant Genetic Resources for Food and Agriculture. 2014. Available online: http://www.fao.org/3/a-i3704e.pdf (accessed on 17 May 2023).
- Ukhatova, Y.V.; Gavrilenko, T.A. Cryoconservation methods for vegetatively propagated crops (review). Plant Biotechnol. Breed. 2018, 1, 52–63. [Google Scholar] [CrossRef]
Macronutrients | Standard MS (mg∙L−1) | Preculture Medium (mg∙L−1) |
---|---|---|
NH4NO3 | 370 | 740 |
KNO3 | 1640 | 820 |
MgSO4∙7H2O | 1900 | 950 |
KH2PO4 | 170 | 340 |
Plant Growth Regulators | Variants of Medium | |||
---|---|---|---|---|
I | II | III | IV | |
BAP | 0.2 mg∙L−1 | - | 0.2 mg∙L−1 | - |
TDZ | - | 0.02 mg∙L−1 | - | 0.02 mg∙L−1 |
PBZ | 1.0 mg∙L−1 | - | 1.0 mg∙L−1 | - |
Cultivar | Variants of Medium | |||
---|---|---|---|---|
I | II | III | IV | |
Aucubaefolia | 1.3 ± 0.1 | 2.7 ± 0.1 | 0.9 ± 0.2 | 3.1 ± 0.3 |
Polina Osipenko | 0.8 ± 0.1 | 1.9 ± 0.1 | 0.8 ± 0.2 | 2.6 ± 0.3 |
Cultivar | BAP + PBZ | TDZ + PBZ |
---|---|---|
Aucubaefolia | 57.1 ± 0.7 | 66.7 ± 0.9 |
Polina Osipenko | 56.4 ± 0.7 | 51.9 ± 0.7 |
Cultivar | Preculture Medium I | Preculture Medium III | ||||
---|---|---|---|---|---|---|
Pretreated | Dehydrated | Frozen in LN | Pretreated | Dehydrated | Frozen in LN | |
Aucubaefolia | 100 | 50.0 ± 0.6 | 66.5 ± 0.9 | 100 | 86.0 ± 1.4 | 100 |
Polina Osipenko | 100 | 87.5 ± 1.5 | 85.0 ± 1.5 | 83.3 ± 1.3 | 87.5 ± 1.5 | 85.0 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koroleva, O.V.; Molkanova, O.I.; Vysotskaya, O.N. Development of Cryopreservation Technique for Meristems of Syringa vulgaris L. Cultivars. Int. J. Plant Biol. 2023, 14, 625-637. https://doi.org/10.3390/ijpb14030048
Koroleva OV, Molkanova OI, Vysotskaya ON. Development of Cryopreservation Technique for Meristems of Syringa vulgaris L. Cultivars. International Journal of Plant Biology. 2023; 14(3):625-637. https://doi.org/10.3390/ijpb14030048
Chicago/Turabian StyleKoroleva, Olga Vasilevna, Olga Ivanovna Molkanova, and Olga Nikolaevna Vysotskaya. 2023. "Development of Cryopreservation Technique for Meristems of Syringa vulgaris L. Cultivars" International Journal of Plant Biology 14, no. 3: 625-637. https://doi.org/10.3390/ijpb14030048
APA StyleKoroleva, O. V., Molkanova, O. I., & Vysotskaya, O. N. (2023). Development of Cryopreservation Technique for Meristems of Syringa vulgaris L. Cultivars. International Journal of Plant Biology, 14(3), 625-637. https://doi.org/10.3390/ijpb14030048