Investigating the Impact of Irrigation Water Quality on Secondary Metabolites and Chemical Profile of Mentha piperita Essential Oil: Analytical Profiling, Characterization, and Potential Pharmacological Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mentha Piperita Culture
2.2. Irrigation Waters
2.2.1. Sampling
2.2.2. Physicochemical Analyses of Irrigation Water
- i.
- Nitrates Assay
- ii.
- Orthophosphate Assay
- iii.
- Chemical Oxygen Demand (COD) Assay
- iv.
- Biochemical Oxygen Demand (BOD5) Assay
- v.
- Nitrites Assay
2.3. Plant Material
2.4. Essential Oil Extraction
2.5. Qualitative and Semi-Quantitative Analysis of MPEO
2.6. PASS, ADME, and the Prediction of the Toxicity Analysis (Pro-Tox II)
2.7. Tests of the Antioxidant Activity
2.7.1. DPPH Radical Scavenging Assay
2.7.2. Total Antioxidant Capacity
2.8. Antimicrobial Activity Tests of MPEOs
2.8.1. Antibacterial Activity
- i.
- Bacterial Strains and Growth Conditions
- ii.
- Disc Diffusion Method
- iii.
- Minimum Inhibitory Concentration (MIC)
- iv.
- Minimum Bactericidal Concentration (MBC)
2.8.2. Antifungal Activity
- i.
- Fungal Strains and Disc Diffusion Method
- ii.
- Minimum Inhibitory Concentration (MIC)
- iii.
- Minimum Fungicidal Concentration (MFC)
2.9. Statistical Analysis
3. Results
3.1. Physico-Chemical Analysis of Irrigation Waters
3.2. Yield of the Three Essential Oils
3.3. Qualitative and Semi-Quantitative Analyses of MPEOs
3.4. Physiochemical and Pharmacokinetic Properties (ADME)
3.5. PASS
3.6. Results of the Toxicity Predictions
3.7. Antioxidant Activity of MPEOs
3.8. Antibacterial Activity
3.9. Antifungal Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fennane, M.; Tattou, M.I. Statistiques et Commentaires Sur l’inventaire Actuel de La Flore Vasculaire Du Maroc. Bull. De L’institut Sci. Rabat Sect. Sci. De La Vie 2012, 34, 1–9. [Google Scholar]
- Faysse, N.; Raïs, I.; Ait El Mekki, A.; Jourdain, D. Prospects for a Certified Mint Supply Chain in Morocco Based on an Assessment of Consumers’ Willingness to Pay. New Medit. 2017, 16, 47–54. [Google Scholar]
- Edris, A.E. Pharmaceutical and Therapeutic Potentials of Essential Oils and Their Individual Volatile Constituents: A Review. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2007, 21, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.M. Mint: The Genus Mentha, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 185–216. [Google Scholar] [CrossRef]
- Singh, R.; Shushni, M.A.M.; Belkheir, A. Antibacterial and Antioxidant Activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Rosato, A.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Franchini, C.; Corbo, F.; Carbonara, G.G.; Carrieri, A.; Fracchiolla, G. Elucidation of the Synergistic Action of Mentha piperita Essential Oil with Common Antimicrobials. PLoS ONE 2018, 13, E0200902. [Google Scholar] [CrossRef] [PubMed]
- Al-Mijalli, S.H.; Mrabti, N.N.; Ouassou, H.; Sheikh, R.A.; Abdallah, E.M.; Assaggaf, H.; Bakrim, S.; Alshahrani, M.M.; Awadh, A.A.A.; Qasem, A.; et al. Phytochemical Variability, In Vitro and In Vivo Biological Investigations, and In Silico Antibacterial Mechanisms of Mentha piperita Essential Oils Collected from Two Different Regions in Morocco. Foods 2022, 11, 3466. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations, Government of the United Kingdom: London, UK, May 2016.
- Moghaddam, M.; Pourbaige, M.; Tabar, H.K.; Farhadi, N.; Hosseini, S.M.A. Composition and Antifungal Activity of Peppermint (Mentha Piperita) Essential Oil from Iran. J. Essent. Oil Bear. Plants 2013, 16, 506–512. [Google Scholar] [CrossRef]
- Hayani, M.; Bencheikh, N.; Ailli, A.; Bouhrim, M.; Elbouzidi, A.; Ouassou, H.; Kharchoufa, L.; Baraich, A.; Atbir, A.; Ayyad, F.Z.; et al. Quality Control, Phytochemical Profile, and Antibacterial Effect of Origanum Compactum Benth. Essential Oil from Morocco. IJPB 2022, 13, 546–560. [Google Scholar] [CrossRef]
- Borodin, N.; Bagrin, N.; Bogonina, Z. Nutrients in Waters of the Prut River, Lower Sector. In Proceedings of the Actual Problems of Protection and Sustainable Use of the Animal World Diversity, Chișinău, Moldova, 10–12 October 2013; p. 193, ISBN 978-9975-66-361-8. [Google Scholar]
- Gonzalez, C.; Greenwood, R.; Quevauviller, P. (Eds.) Rapid Chemical and Biological Techniques for Water Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bouyakhsass, R.; Souabi, S.; Rifi, S.K.; Taleb, A.; Pala, A.; Madinzi, A. Optimization of Coagulation-Flocculation for Landfill Leachate Treatment: An Experimental Design Approach Using Response Surface Methodology. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100841. [Google Scholar] [CrossRef]
- Gherairi, F.; Hamdi-Aissa, B.; Touil, Y.; Hadj-Mahammed, M.; Messrouk, H.; Amrane, A. Comparative Study between Two Granular Materials and Their Influence on the Effectiveness of Biological Filtration. Energy Procedia 2015, 74, 799–806. [Google Scholar] [CrossRef]
- Artigas, J.; Majerholc, J.; Foulquier, A.; Margoum, C.; Volat, B.; Neyra, M.; Pesce, S. Effects of the Fungicide Tebuconazole on Microbial Capacities for Litter Breakdown in Streams. Aquat. Toxicol. 2012, 122, 197–205. [Google Scholar] [CrossRef] [PubMed]
- El Kharraf, S.; Farah, A.; Miguel, M.G.; El-Guendouz, S.; El Hadrami, E.M. Two Extraction Methods of Essential Oils: Conventional and Non-Conventional Hydrodistillation. J. Essent. Oil Bear. Plants 2020, 23, 870–889. [Google Scholar] [CrossRef]
- Alam, A.; Jawaid, T.; Alam, P. In Vitro Antioxidant and Anti-Inflammatory Activities of Green Cardamom Essential Oil and in Silico Molecular Docking of Its Major Bioactives. J. Taibah Univ. Sci. 2021, 15, 757–768. [Google Scholar] [CrossRef]
- Linde, G.; Gazim, Z.; Cardoso, B.; Jorge, L.; Tešević, V.; Glamočlija, J.; Soković, M.; Colauto, N. Antifungal and Antibacterial Activities of Petroselinum Crispum Essential Oil. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Filimonov, D.; Lagunin, A.; Gloriozova, T.; Rudik, A.; Druzhilovskii, D.; Pogodin, P.; Poroikov, V. Prediction of the Biological Activity Spectra of Organic Compounds Using the PASS Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Kandsi, F.; Lafdil, F.Z.; Elbouzidi, A.; Bouknana, S.; Miry, A.; Addi, M.; Conte, R.; Hano, C.; Gseyra, N. Evaluation of Acute and Subacute Toxicity and LC-MS/MS Compositional Alkaloid Determination of the Hydroethanolic Extract of Dysphania ambrosioides (L.) Mosyakin and Clemants Flowers. Toxins 2022, 14, 475. [Google Scholar] [CrossRef]
- Elbouzidi, A.; Taibi, M.; Ouassou, H.; Ouahhoud, S.; Ou-Yahia, D.; Loukili, E.H.; Aherkou, M.; Mansouri, F.; Bencheikh, N.; Laaraj, S.; et al. Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua Var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity. Pharmaceuticals 2023, 16, 840. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [Green Version]
- Kandsi, F.; Elbouzidi, A.; Lafdil, F.Z.; Meskali, N.; Azghar, A.; Addi, M.; Hano, C.; Maleb, A.; Gseyra, N. Antibacterial and Antioxidant Activity of Dysphania ambrosioides (L.) Mosyakin and Clemants Essential Oils: Experimental and Computational Approaches. Antibiotics 2022, 11, 482. [Google Scholar] [CrossRef]
- Zrouri, H.; Elbouzidi, A.; Bouhrim, M.; Bencheikh, N.; Kharchoufa, L.; Ouahhoud, S.; Ouassou, H.; El Assri, S.; Choukri, M. Phytochemical Analysis, Antioxidant Activity, and Nephroprotective Effect of the Raphanus Sativus Aqueous Extract. Mediterr. J. Chem. 2021, 11, 84. [Google Scholar] [CrossRef]
- Elbouzidi, A.; Ouassou, H.; Aherkou, M.; Kharchoufa, L.; Meskali, N.; Baraich, A.; Mechchate, H.; Bouhrim, M.; Idir, A.; Hano, C.; et al. LC–MS/MS Phytochemical Profiling, Antioxidant Activity, and Cytotoxicity of the Ethanolic Extract of Atriplex halimus L. against Breast Cancer Cell Lines: Computational Studies and Experimental Validation. Pharmaceuticals 2022, 15, 1156. [Google Scholar] [CrossRef]
- Alderman, D.; Smith, P. Development of Draft Protocols of Standard Reference Methods for Antimicrobial Agent Susceptibility Testing of Bacteria Associated with Fish Diseases. Aquaculture 2001, 196, 211–243. [Google Scholar] [CrossRef]
- Remmal, A.; Bouchikhi, T.; Rhayour, K.; Ettayebi, M.; Tantaoui-Elaraki, A. Improved Method for the Determination of Antimicrobial Activity of Essential Oils in Agar Medium. J. Essent. Oil Res. 1993, 5, 179–184. [Google Scholar] [CrossRef]
- Lekbach, Y.; Xu, D.; El Abed, S.; Dong, Y.; Liu, D.; Khan, M.S.; Ibnsouda Koraichi, S.; Yang, K. Mitigation of Microbiologically Influenced Corrosion of 304L Stainless Steel in the Presence of Pseudomonas Aeruginosa by Cistus Ladanifer Leaves Extract. Int. Biodeterior. Biodegrad. 2018, 133, 159–169. [Google Scholar] [CrossRef]
- Lalitha, M. Manual on Antimicrobial Susceptibility Testing. Perform. Stand. Antimicrob. Test. Twelfth Informational Suppl. 2004, 56238, 454–456. [Google Scholar]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of Nitrogen for Plant Growth and Development: A Review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Bolan, N. A Critical Review on the Role of Mycorrhizal Fungi in the Uptake of Phosphorus by Plants. Plant Soil 1991, 134, 189–207. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Xie, H.; Li, C.; Bao, N.; Zhang, C.; Shi, Q. Physiological Responses of Phragmites Australis to Wastewater with Different Chemical Oxygen Demands. Ecol. Eng. 2010, 36, 1341–1347. [Google Scholar] [CrossRef]
- Blokhina, O. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: A Review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbano, V.R.; Mendonça, T.G.; Bastos, R.G.; Souza, C.F. Effects of Treated Wastewater Irrigation on Soil Properties and Lettuce Yield. Agric. Water Manag. 2017, 181, 108–115. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Scavroni, J.; Boaro, C.S.F.; Marques, M.O.M.; Ferreira, L.C. Yield and Composition of the Essential Oil of Mentha piperita L. (Lamiaceae) Grown with Biosolid. Braz. J. Plant Physiol. 2005, 17, 345–352. [Google Scholar] [CrossRef]
- De Sousa, A.A.S.; Soares, P.M.G.; de Almeida, A.N.S.; Maia, A.R.; de Souza, E.P.; Assreuy, A.M.S. Antispasmodic Effect of Mentha piperita Essential Oil on Tracheal Smooth Muscle of Rats. J. Ethnopharmacol. 2010, 130, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi, M.; Kazempour, N. Chemical Composition and Antimicrobial Activity of Peppermint (Mentha piperita L.) Essential Oil. Songklanakarin J. Sci. Technol. 2014, 36, 83–87. [Google Scholar]
- Delaquis, P. Antimicrobial Activity of Individual and Mixed Fractions of Dill, Cilantro, Coriander and Eucalyptus Essential Oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Yayi-Ladekan, E.; Kpoviessi, D.; Gbaguidi, F.; Kpadonou-Kpoviessi, B.; Gbenou, J.; Jolivalt, C.; Moudachirou, M.; Accrombessi, G.; Quetin-Leclercq, J. Variation diurne de la composition chimique et influence sur les propriétés antimicrobiennes de l’huile essentielle de Ocimum canum Sims cultivé au Bénin. Int. J. Bio Chem. Sci. 2012, 5, 1462–1475. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, H.; Wang, J.; Zhou, L.; Yang, P. Chemical Composition and Anti-Inflammatory, Cytotoxic and Antioxidant Activities of Essential Oil from Leaves of Mentha piperita Grown in China. PLoS ONE 2014, 9, e114767. [Google Scholar] [CrossRef] [Green Version]
- Taibi, M.; Elbouzidi, A.; Ou-Yahia, D.; Dalli, M.; Bellaouchi, R.; Tikent, A.; Roubi, M.; Gseyra, N.; Asehraou, A.; Hano, C.; et al. Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis Verticillata Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis. Antibiotics 2023, 12, 655. [Google Scholar] [CrossRef]
- Satmi, F.R.S. In Vitro Antimicrobial Potential of Crude Extracts and Chemical Compositions of Essential Oils of Leaves of Mentha piperita L. Native to the Sultanate of Oman. Pac. Sci. Rev. A Nat. Sci. Eng. 2016, 18, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.-W. Antimicrobial Effect of Mentha piperita (Peppermint) Oil against Bacillus cereus, Staphylococcus aureus, Cronobacter sakazakii, and Salmonella enteritidis in Various Dairy Foods: Preliminary Study. J. Milk Sci. Biotechnol. 2018, 36, 146–154. [Google Scholar] [CrossRef]
- Vagionas, K.; Graikou, K.; Chinou, I.B.; Runyoro, D.; Ngassapa, O. Chemical Analysis and Antimicrobial Activity of Essential Oils from the Aromatic Plants Artemisia afra Jacq. and Leonotis ocymifolia (Burm. F.) Lwarsson Var. Raineriana (Vision1) Lwarsson Growing In Tanzania. J. Essent. Oil Res. 2007, 19, 396–400. [Google Scholar] [CrossRef]
- Gershenzon, J.; Dudareva, N. The Function of Terpene Natural Products in the Natural World. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef]
- Hassanpouraghdam, M.; Gohari, G.; Tabatabaei, S.; Dadpour, M.; Shirdel, M. NaCl Salinity and Zn Foliar Application Influence Essential Oil Composition of Basil (Ocimum basilicum L.). Acta Agric. Slov. 2011, 97, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, C. Unraveling the Selective Antibacterial Activity and Chemical Composition of Citrus Essential Oils. Sci. Rep. 2019, 9, 17719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkhair, E.A. Antidermatophytic Activity of Essential Oils against Locally Isolated Microsporum Canis—Gaza Strip. Nat. Sci. 2014, 6, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Freire, M.M. Composition, Antifungal Activity and Main Fungitoxic Components of the Essential Oil of Mentha piperita L. J. Food Saf. 2011, 32, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Parveen, M. Response of Saccharomyces Cerevisiae to a Monoterpene: Evaluation of Antifungal Potential by DNA Microarray Analysis. J. Antimicrob. Chemother. 2004, 54, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Slimani, I.; Nassiri, L.; Boukil, A.; Bouiamrine, E.H.; Bachiri, L.; Bammou, M.; Ibijbijen, J. Inventaire Des Plantes Aromatiques et Médicinales Du Site d’intérêt Biologique et Écologique de Jbel Zerhoun, Région Meknès Tafilalet. Afr. Sci. 2016, 12, 393–409. [Google Scholar]
- Giordani, R.; Kaloustian, J. Action Anticandidosique Des Huiles Essentielles: Leur Utilisation Concomitante Avec Des M├® Dicaments Antifongiques. Phytoth Rapie 2006, 4, 121–124. [Google Scholar] [CrossRef]
Parameters | Water | Limit Values 2 | ||
---|---|---|---|---|
TWW 1 | Well | River | ||
pH | 9.00 ± 0.03 a | 7.58 ± 0.04 b | 7.5 ± 0.01 b | 6–9 |
EC (mS/cm) | 2.76 ± 0.10 a | 2.55 ± 0.05 b | 1.78 ± 0.05 c | 12 |
Nitrates NO3− (mg/L) | 4.74 ± 0.04 a | 3.81 ± 0.03 b | 1.31 ± 0.05 c | 30 |
Nitrites NO2− (mg/L) | 2.03 ± 0.04 a | 1.41 ± 0.01 b | 0.11 ± 0.01 c | - |
(COD) 3 (mg/L O2) | 142.6 ± 2.80 a | 13.00 ± 1.3 b | 10 ± 0.01 b | 150 |
(BOD5) 4 (mg/L O2) | 77.5 ± 2.50 a | 4.00 ± 0.025 b | 0.45 ± 0.05 c | - |
Orthophosphate PO4 (mg/L) | 0.017 ± 0.002 a | 0.013 ± 0.002 a | 0.011 ± 0.002 a | - |
Essential Oil | EO1 | EO2 | EO3 |
---|---|---|---|
Essential oil yield (% w/w) | 0.98 ± 0.06 a | 0.84 ± 0.05 b | 0.66 ± 0.02 c |
N° | Compounds | Formula | RT 1,2,3 (min) | % Area | ||
---|---|---|---|---|---|---|
EO1 | EO2 | EO3 | ||||
1 | α-Pinene | C10H16 | 5.219 1; 5.218 2 | - | 0.13 | 0.130 |
2 | β-Pinene | C10H16 | 5.949 1; 5.948 2; | 1.22 | 0.18 | 0.350 |
3 | β-Myrcene | C10H16 | 6.122 1; 6.120 2; | 0.89 | 0.71 | 0.740 |
4 | D-Limonene | C10H16 | 6.804 1; 6.803 2; | 17.88 | 3.27 | 3.420 |
5 | 2-methyl-5-propan-2-ylbicyclo [3.1.0] hexan-2-ol | C10H18O4 | 7.521 1 | - | - | 0.750 |
6 | p-Menth-1-en-4-ol | C10H18O | 9.348 1; 9.346 2,3 | 2.56 | 1.78 | 1.720 |
7 | 2H-Inden-2-one, octahydro-3a-methyl-, trans- | C10H16O | 9.633 1,2 | - | 0.58 | 0.660 |
8 | Carvone | C10H14O | 10.384 1; 10.386 2; 10.378 3 | 51.35 | 76.44 | 77.17 |
9 | α-Bourbonene | C15H24 | 12.632 1,2,3 | 2.47 | 0.89 | 0.92 |
10 | β-Caryophyllene | C15H24 | 13.148 1; 13.146 2,3 | 4.39 | 3.02 | 2.93 |
11 | β-Bisabolene | C15H24 | 13.435 1 | - | - | 0.74 |
12 | 8-Isopropyl-5-methyl-2-methylene-1,2,3,4,4a,5,6,7-octahydronaphthalene | C15H24 | 13.700 1 | - | - | 0.51 |
13 | α-Cubebene | C15H24 | 13.915 1 | - | - | 2.98 |
14 | γ-Elemene | C15H24 | 14.091 1; 14.089 2 | - | 0.77 | 0.72 |
15 | Cubenol | C15H26O | 15.314 1 | - | - | 0.50 |
16 | Epiglobulol | C15H26O | 15.671 1 | - | - | 0.70 |
17 | Sabinene | C10H16 | 5.874 2 | - | 0.18 | - |
18 | Eucalyptol | C10H18O | 6.856 1; 6.855 2; 6.854 3 | 10.69 | 5.22 | 5.06 |
19 | Plinol A | C10H18O | 7.519 2; 7.521 3 | 1.24 | 0.76 | - |
20 | p-menth-1-en-8-ol | C10H18O | 9.202 2 | - | 0.40 | - |
21 | α-Pinene oxide | C10H16O | 10.078 2 | - | 0.86 | - |
22 | β-Farnesene | C15H24 | 13.434 2 | - | 0.75 | - |
23 | γ-Cadinene | C15H24 | 13.697 2 | - | 0.48 | - |
24 | Germacrene D | C15H24 | 13.914 2,3 | 5.21 | 2.97 | - |
25 | Sabinene hydrate | C10H18O | 5.217 3 | 0.56 | - | - |
26 | Germacrene B | C15H24 | 14.087 3 | 1.54 | - | - |
Hydrocarbon monoterpenes | 15.72 | 9.33 | 9.51 | |||
Oxygenated monoterpenes | 0.56 | 1.33 | 1.16 | |||
Hydrocarbon sesquiterpenes | 0 | 0 | 1.26 | |||
Oxygenated sesquiterpenes | 81.16 | 88.73 | 86.35 | |||
Total identified (%) | 97.44 | 99.39 | 98.28 |
N° | Compounds | HBD/HBA | TPSA (Å2) | Log Po/w (WLOGP) | Log S (SILICO S-IT) | Lipinski’s Rule of Five | Veber Filter |
---|---|---|---|---|---|---|---|
1 | α-Pinene | 0/0 | 0.00 | 3.00 | 2.79 | Yes; 1 violation * | Yes |
2 | β-Pinene | 0/0 | 0.00 | 3.00 | 3.08 | Yes; 1 violation * | Yes |
3 | β-Myrcene | 0/0 | 0.00 | 3.48 | 3.05 | Yes | Yes |
4 | D-Limonene | 0/0 | 0.00 | 3.31 | 2.97 | Yes | Yes |
5 | 2-methyl-5-propan-2-ylbicyclo [3.1.0] hexan-2-ol | 1/1 | 20.23 | 2.19 | 2.44 | Yes | Yes |
6 | p-Menth-1-en-4-ol | 1/1 | 20.23 | 2.50 | 2.44 | Yes | Yes |
7 | 2H-Inden-2-one, octahydro-3a-methyl-, trans- | 0/1 | 17.07 | 2.55 | 2.92 | Yes | Yes |
8 | Carvone | 0/1 | 17.07 | 2.49 | 2.64 | Yes | Yes |
9 | α-Bourbonene | 0/0 | 0.00 | 4.27 | 3.73 | Yes; 1 violation * | Yes |
10 | β-Caryophyllene | 0/0 | 0.00 | 4.73 | 4.19 | Yes; 1 violation * | Yes |
11 | β-Bisabolene | 0/0 | 0.00 | 5.04 | 4.50 | Yes; 1 violation * | Yes |
12 | 8-Isopropyl-5-methyl-2-methylene-1,2,3,4,4a,5,6,7-octahydronaphthalene | 0/0 | 0.00 | 4.73 | 4.41 | Yes; 1 violation * | Yes |
13 | α-Cubebene | 0/0 | 0.00 | 4.27 | 3.73 | Yes; 1 violation * | Yes |
14 | γ-Elemene | 0/0 | 0.00 | 4.89 | 4.61 | Yes; 1 violation * | Yes |
15 | Cubenol | 1/1 | 20.23 | 3.78 | 3.22 | Yes | Yes |
16 | Epiglobulol | 1/1 | 20.23 | 3.47 | 3.00 | Yes | Yes |
17 | Sabinene | 0/0 | 0.00 | 3.00 | 3.23 | Yes; 1 violation * | Yes |
18 | Eucalyptol | 0/1 | 9.23 | 2.74 | 2.86 | Yes | Yes |
19 | Plinol A | 1/1 | 20.23 | 2.36 | 2.23 | Yes | Yes |
20 | p-menth-1-en-8-ol | 1/1 | 20.23 | 2.50 | 2.17 | Yes | Yes |
21 | α-Pinene oxide | 0/1 | 12.53 | 2.21 | 2.70 | Yes | Yes |
22 | β-Farnesene | 0/0 | 0.00 | 5.20 | 4.93 | Yes; 1 violation * | Yes |
23 | γ-Cadinene | 0/0 | 0.00 | 4.58 | 4.01 | Yes; 1 violation * | Yes |
24 | Germacrene D | 0/0 | 0.00 | 4.89 | 4.01 | Yes; 1 violation * | Yes |
25 | Sabinene hydrate | 1/1 | 20.23 | 2.19 | 2.44 | Yes | Yes |
26 | Germacrene B | 0/0 | 0.00 | 5.18 | 4.25 | Yes; 1 violation * | Yes |
N° | Compounds | Biological Activities | |||||
---|---|---|---|---|---|---|---|
Antioxidant | Antibacterial | Antifungal | |||||
Pa | Pi | Pa | Pi | Pa | Pi | ||
1 | α-Pinene | - | - | 0.326 | 0.051 | 0.439 | 0.042 |
2 | β-Pinene | - | - | 0.233 | 0.093 | 0.225 | 0.121 |
3 | β-Myrcene | 0.470 | 0.008 | 0.398 | 0.030 | 0.584 | 0.020 |
4 | D-Limonene | 0.157 | 0.094 | 0.405 | 0.029 | 0.582 | 0.020 |
5 | 2-methyl-5-propan-2-ylbicyclo [3.1.0] hexan-2-ol | - | - | 0.217 | 0.103 | 0.457 | 0.038 |
6 | p-Menth-1-en-4-ol | 0.151 | 0.102 | 0.328 | 0.050 | 0.466 | 0.036 |
7 | 2H-Inden-2-one, octahydro-3a-methyl-, trans- | 0.145 | 0.109 | 0.269 | 0.073 | 0.386 | 0.053 |
8 | Carvone | 0.193 | 0.059 | 0.396 | 0.031 | 0.562 | 0.022 |
9 | α-Bourbonene | - | - | 0.319 | 0.053 | 0.278 | 0.091 |
10 | β-Caryophyllene | 0.174 | 0.075 | 0.437 | 0.023 | 0.582 | 0.020 |
11 | β-Bisabolene | 0.257 | 0.034 | 0.413 | 0.027 | 0.585 | 0.020 |
12 | 8-Isopropyl-5-methyl-2-methylene-1,2,3,4,4a,5,6,7-octahydronaphthalene | - | - | 0.315 | 0.055 | 0.509 | 0.029 |
13 | α-Cubebene | - | - | 0.278 | 0.069 | 0.298 | 0.082 |
14 | γ-Elemene | 0.164 | 0.086 | 0.452 | 0.022 | 0.564 | 0.022 |
15 | Cubenol | - | - | 0.403 | 0.029 | 0.356 | 0.061 |
16 | Epiglobulol | - | - | 0.381 | 0.035 | 0.484 | 0.033 |
17 | Sabinene | - | - | 0.201 | 0.117 | 0.340 | 0.066 |
18 | Eucalyptol | 0.161 | 0.090 | 0.298 | 0.061 | 0.214 | 0.128 |
19 | Plinol A | 0.170 | 0.079 | 0.519 | 0.015 | 0.557 | 0.023 |
20 | p-menth-1-en-8-ol | 0.137 | 0.118 | 0.369 | 0.038 | 0.435 | 0.042 |
21 | α-Pinene oxide | - | - | 0.323 | 0.052 | 0.368 | 0.057 |
22 | β-Farnesene | 0.497 | 0.007 | 0.415 | 0.027 | 0.607 | 0.018 |
23 | γ-Cadinene | - | - | 0.447 | 0.022 | 0.489 | 0.032 |
24 | Germacrene D | - | - | 0.427 | 0.025 | 0.570 | 0.022 |
25 | Sabinene hydrate | - | - | 0.217 | 0.103 | 0.457 | 0.038 |
26 | Germacrene B | - | - | 0.374 | 0.037 | 0.297 | 0.082 |
N | Predicted LD50 (mg/kg) | Class | Hepatotoxicity | Carcinogenicity | Immunotoxicity | Mutagenicity | Cytotoxicity | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predi. * | Prob.** | Predi. | Prob. | Predi. | Prob. | Predi. | Prob. | Predi. | Prob. | |||
1 | 3700 | V | Inactive | 0.86 | Inactive | 0.60 | Inactive | 0.99 | Inactive | 0.93 | Inactive | 0.75 |
2 | 4700 | V | Inactive | 0.80 | Inactive | 0.66 | Inactive | 0.97 | Inactive | 0.95 | Inactive | 0.71 |
3 | 5000 | V | Inactive | 0.77 | Inactive | 0.60 | Inactive | 0.99 | Inactive | 0.98 | Inactive | 0.75 |
4 | 4400 | V | Inactive | 0.76 | Inactive | 0.65 | Inactive | 0.95 | Inactive | 0.97 | Inactive | 0.82 |
5 | 2000 | IV | Inactive | 0.78 | Inactive | 0.74 | Inactive | 0.97 | Inactive | 0.88 | Inactive | 0.85 |
6 | 1016 | IV | Inactive | 0.80 | Inactive | 0.72 | Inactive | 0.99 | Inactive | 0.83 | Inactive | 0.88 |
7 | 775 | IV | Inactive | 0.70 | Inactive | 0.64 | Inactive | 0.98 | Inactive | 0.91 | Inactive | 0.64 |
8 | 1640 | IV | Inactive | 0.65 | Inactive | 0.83 | Inactive | 0.99 | Inactive | 0.97 | Inactive | 0.80 |
9 | 3700 | V | Inactive | 0.79 | Inactive | 0.68 | Inactive | 0.85 | Inactive | 0.89 | Inactive | 0.76 |
10 | 5300 | VI | Inactive | 0.80 | Inactive | 0.70 | Active | 0.54 | Inactive | 0.95 | Inactive | 0.75 |
11 | 4400 | V | Inactive | 0.82 | Inactive | 0.74 | Active | 0.60 | Inactive | 0.93 | Inactive | 0.81 |
12 | 5000 | V | Inactive | 0.80 | Inactive | 0.73 | Inactive | 0.87 | Inactive | 0.70 | Inactive | 0.70 |
13 | 5000 | V | Inactive | 0.85 | Inactive | 0.72 | Inactive | 0.98 | Inactive | 0.72 | Inactive | 0.67 |
14 | 5300 | VI | Inactive | 0.82 | Inactive | 0.79 | Inactive | 0.99 | Inactive | 0.70 | Inactive | 0.82 |
15 | 1016 | IV | Inactive | 0.82 | Inactive | 0.65 | Inactive | 0.68 | Inactive | 0.91 | Inactive | 0.95 |
16 | 2000 | IV | Inactive | 0.77 | Inactive | 0.69 | Inactive | 0.87 | Inactive | 0.75 | Inactive | 0.89 |
17 | 5000 | V | Inactive | 0.81 | Inactive | 0.59 | Inactive | 0.51 | Inactive | 0.82 | Inactive | 0.71 |
18 | 2840 | V | Inactive | 0.86 | Inactive | 0.68 | Inactive | 0.99 | Inactive | 0.96 | Inactive | 0.75 |
19 | 3900 | V | Inactive | 0.72 | Inactive | 0.66 | Inactive | 0.99 | Inactive | 0.87 | Inactive | 0.91 |
20 | 2830 | V | Inactive | 0.72 | Inactive | 0.76 | Inactive | 0.99 | Inactive | 0.90 | Inactive | 0.64 |
21 | 5000 | V | Inactive | 0.85 | Inactive | 0.53 | Inactive | 0.98 | Inactive | 0.89 | Inactive | 0.74 |
22 | 5000 | V | Inactive | 0.79 | Inactive | 0.73 | Inactive | 0.99 | Inactive | 0.98 | Inactive | 0.81 |
23 | 4400 | V | Inactive | 0.84 | Inactive | 0.76 | Active | 0.55 | Inactive | 0.69 | Inactive | 0.74 |
24 | 5300 | VI | Inactive | 0.80 | Inactive | 0.73 | Active | 0.80 | Inactive | 0.87 | Inactive | 0.83 |
25 | 2000 | IV | Inactive | 0.78 | Inactive | 0.74 | Inactive | 0.97 | Inactive | 0.88 | Inactive | 0.85 |
26 | 4390 | V | Inactive | 0.81 | Inactive | 0.75 | Inactive | 0.98 | Inactive | 0.86 | Inactive | 0.83 |
Antioxidant Test | Inhibitory Concentration 50 IC50) | |||
---|---|---|---|---|
EO1 | EO2 | EO3 | Ascorbic Acid | |
DPPH Assay (µg/mL) | 136.89 ± 0.05 a | 154.88 ± 0.04 b | 90.67 ± 0.05 c | 21.06 ± 0.001 |
TAC (µg AA/mL) | 50.24 ± 0.6 a | 38.81 ± 0.40 b | 78.26 ± 0.70 c | - |
Bacterial Strain | S. aureus | M. luteus | E. coli | P. aeruginosa | |
---|---|---|---|---|---|
15 µL 1 of Essential oil, IZ 2 | EO1 | 33 ± 0.7 | 27 ± 0.7 | 22.3 ± 0.9 | 11 ± 0.7 |
EO2 | 31 ± 0.7 | 23.5 ± 0.7 | 15.3 ± 0.9 | 10 ± 0.7 | |
EO3 | 29.3 ± 0.9 | 21.3 ± 0.9 | 11.2 ± 0.7 | 8.3 ± 0.4 | |
15 µL 1 Gentamicine, IZ 2 (1 mg/mL) | 19.5 | 21.5 | 22.5 | 20.5 | |
MIC (% v/v) | EO1 | 0.0625 | 0.25 | 2 | 4 |
EO2 | 0.125 | 1 | 4 | 4 | |
EO3 | 0.5 | 1 | 4 | 4 | |
MBC (% v/v) | EO1 | 0.5 | 1 | 4 | 8 |
EO2 | 1 | 2 | 8 | 8 | |
EO3 | 1 | 2 | 8 | 8 |
Fungal Strains | P. digitatum | A. niger | C. glabrata | R. glutinis | |
---|---|---|---|---|---|
15 µL 1 of Essential oil, IZ 2 | EO1 | 40.00 ± 0.70 | 38.30 ± 0.40 | 27.70 ± 0.40 | 15.70 ± 0.10 |
EO2 | 29.70 ± 0.90 | 35.00 ± 0.70 | 26.30 ± 0.90 | 13.30 ± 0.40 | |
EO3 | 27.70 ± 0.90 | 30.00 ± 0.70 | 20.30 ± 0.40 | 10.30 ± 0.40 | |
15 µL 1 Cycloheximide, IZ 2 (1 mg/mL) | 22.90 | 22.30 | 21.50 | 21.00 | |
MIC (% v/v) | EO1 | 0.0625 | 0.125 | 0.25 | 1 |
EO2 | 0.25 | 0.125 | 0.5 | 2 | |
EO3 | 0.25 | 0.125 | 0.5 | 2 | |
MFC (% v/v) | EO1 | 0.50 | 1 | 2 | 8 |
EO2 | 1 | 2 | 4 | 8 | |
EO3 | 2 | 2 | 4 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddou, M.; Taibi, M.; Elbouzidi, A.; Loukili, E.H.; Yahyaoui, M.I.; Ou-Yahia, D.; Mehane, L.; Addi, M.; Asehraou, A.; Chaabane, K.; et al. Investigating the Impact of Irrigation Water Quality on Secondary Metabolites and Chemical Profile of Mentha piperita Essential Oil: Analytical Profiling, Characterization, and Potential Pharmacological Applications. Int. J. Plant Biol. 2023, 14, 638-657. https://doi.org/10.3390/ijpb14030049
Haddou M, Taibi M, Elbouzidi A, Loukili EH, Yahyaoui MI, Ou-Yahia D, Mehane L, Addi M, Asehraou A, Chaabane K, et al. Investigating the Impact of Irrigation Water Quality on Secondary Metabolites and Chemical Profile of Mentha piperita Essential Oil: Analytical Profiling, Characterization, and Potential Pharmacological Applications. International Journal of Plant Biology. 2023; 14(3):638-657. https://doi.org/10.3390/ijpb14030049
Chicago/Turabian StyleHaddou, Mounir, Mohamed Taibi, Amine Elbouzidi, El Hassania Loukili, Meryem Idrissi Yahyaoui, Douaae Ou-Yahia, Lamyae Mehane, Mohamed Addi, Abdeslam Asehraou, Khalid Chaabane, and et al. 2023. "Investigating the Impact of Irrigation Water Quality on Secondary Metabolites and Chemical Profile of Mentha piperita Essential Oil: Analytical Profiling, Characterization, and Potential Pharmacological Applications" International Journal of Plant Biology 14, no. 3: 638-657. https://doi.org/10.3390/ijpb14030049
APA StyleHaddou, M., Taibi, M., Elbouzidi, A., Loukili, E. H., Yahyaoui, M. I., Ou-Yahia, D., Mehane, L., Addi, M., Asehraou, A., Chaabane, K., Bellaouchi, R., & El Guerrouj, B. (2023). Investigating the Impact of Irrigation Water Quality on Secondary Metabolites and Chemical Profile of Mentha piperita Essential Oil: Analytical Profiling, Characterization, and Potential Pharmacological Applications. International Journal of Plant Biology, 14(3), 638-657. https://doi.org/10.3390/ijpb14030049