Humus Forms of Moist and Wet Forest Stands. A Review
Abstract
:1. Introduction
Objectives
- To give an overview on research about moist and wet humus forms in forests with a specific view on their classification system and morphology;
- To assess which kind of related topics, like soil organisms and vegetation, are addressed in research;
- To recommend further research on the classification and morphology of moist and wet humus forms in forests.
2. Materials and Methods
3. Results and Discussion
3.1. Overview of Research on Moist Humus Forms and Wet Humus Forms in Forest Stands around the World
3.1.1. Chronological Occurrence of Aero-Hydromorphic and Hydromorphic Humus Forms in the Literature
3.1.2. Aero-Hydromorphic and Hydromorphic Humus Forms in Soil Classification Systems
3.1.3. Soil Information Categories from the Literature Search
3.2. Conditions for the Formation of Moist and Wet Humus Forms
3.2.1. Soil Moisture
3.2.2. Oxygen
3.3. Effects of Moist and Wet Soil Conditions on Important Forest Ecosystem Properties
3.3.1. Soil Organic Carbon
3.3.2. Vegetation
3.3.3. Soil Organisms
3.3.4. Climate Change
4. Research Needs on Moist and Wet Humus Forms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erber, C.; Broll, G. Feuchthumus und Torf als Indikatoren für einen sich verändernden Wasserhaushalt—Zwei Beispiele aus dem Sauerland. In Freiburger Forstliche Forschung; der Uni Freiburg, F.F., Versuchs, F., Baden-Württemberg, F., Eds.; Eigenverlag der Forstl. Versuchsanstalt: Freiburg, Germany, 2003; pp. 33–42. [Google Scholar]
- Bens, O.; Buczko, U.; Sieber, S.; Hüttl, R.F. Spatial variability of O layer thickness and humus forms under different pine beech–forest transformation stages in NE Germany. Z. Pflanzenernähr. Bodenk. 2006, 169, 5–15. [Google Scholar] [CrossRef]
- Zanella, A.; Jabiol, B.; Ponge, J.F.; Sartori, G.; de Waal, R.; van Delft, B.; Graefe, U.; Cools, N.; Katzensteiner, K.; Hager, H.; et al. A European morpho-functional classification of humus forms. Geoderma 2011, 164, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Beyer, L. Humusformen und -typen. Handbuch der Bodenkunde; Blume, H.-P., Stahr, K., Fischer, W., Guggenberger, G., Horn, R., Frede, H.-G., Felix-Henningsen, P., Eds.; Wiley: Hoboken, NJ, USA, 2014; pp. 1–22. ISBN 9783527321292. [Google Scholar]
- Wachendorf, C.; Milbert, G.; Broll, G.; Frank, T.; Graefe, U.; Beylich, A. A concept for a consolidated humus form description—An updated version of the German humus form systematics. J. Plant Biol. 2023, 14, 658–686. [Google Scholar] [CrossRef]
- Graefe, U.; Belotti, E. Strukturmerkmale der Bodenbiozönose als Grundlage für ein natürliches System der Humusformen. Mitteilungen Dtsch. Bodenkd. Ges. 1999, 89, 181–184. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; ISBN 979-8-9862451-1-9. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Pickering, C.; Byrne, J. The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. High. Educ. Res. Dev. 2014, 33, 534–548. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. Text mining and visualization using VOSviewer. arXiv 2011, arXiv:1109.2058. [Google Scholar]
- Klinka, K.; Green, R.N.; Trowbridge, R.L.; Lowe, L.E. First Approximation. Land Management Report 08. 1981. Available online: https://www.for.gov.bc.ca/hfd/pubs/Docs/Mr/Lmr/Lmr008.pdf (accessed on 6 August 2023).
- Milbert, G.; Broll, G. Diskussionsvorschlag zur Gliederung der Humusformen unter Berücksichtigung von Bodenwasserhaushalt und Nutzung. Mitteilungen Dtsch. Bodenkd.Ges. 1998, 88, 133–136. [Google Scholar]
- Jabiol, B.; Brethes, A.; Ponge, J.F.; Toutain, F.; Brun, J.J. L’Humus: Sous Toutes ses Formes, 1st ed.; École Nationale du Génie Rural des Eaux et Forêts: Nancy, France, 1995; ISBN 978-2857100430. [Google Scholar]
- Green, R.N.; Trowbridge, R.L.; Klinka, K. Towards a Taxonomic Classification of Humus Forms. For. Sci. 1993, 39, a0001–z0002. [Google Scholar] [CrossRef]
- Baritz, R. Humus Forms in Forests of the Northern German Lowlands: Dissertation; Technical University Berlin: Berlin, Germany, 2001. [Google Scholar]
- Babel, U. Gliederung und Beschreibung des Humusprofils in mitteleuropäischen Wäldern. Geoderma 1971, 5, 297–324. [Google Scholar] [CrossRef]
- Hartmann, F. Forstökologie: Zustandserfassung und Standortgemässe Gestaltung der Lebensgrundlage des Waldes; Georg Fromme & Co.: Wien, Austria, 1952. [Google Scholar]
- Beyer, L. Der morphologische Aufbau und die chemische Zusammensetzung der organischen Bodensubstanz unterschiedlicher Humusformen in Waldböden Schleswig-Holsteins. Forstw. Cbl. 1996, 115, 129–145. [Google Scholar] [CrossRef]
- Zezschwitz, E.V. Ansprachemerkmale der terrestrischen Waldhumusformen des nordwestdeutschen Mittelgebirgsraumes. Geol. Jb. 1976, 3, 53–105. [Google Scholar]
- Erber, C.; Broll, G. Ausbildung von Feuchtmoder-Humusformen in Abhängigkeit von der Sauerstoff-Verfügbarkeit. Mitteilungen Dtsch. Bodenkd. Ges. 2005, 107, 301–302. [Google Scholar]
- Erber, C.; Broll, G. Topsoil Changes in former wet Forest Stands in North-Western Germany. In Hydrology and Management of Forested Wetlands; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2006; pp. 552–559. [Google Scholar] [CrossRef]
- Moor- und Torfkunde: Mit 63 Table im Text; Göttlich, K.; Averdieck, F.-R. (Eds.) 3. vollst. überarb., ergänzte u. erw. Aufl.; Schweizerbart: Stuttgart, Germany, 1990; ISBN 3510651391. [Google Scholar]
- Dierßen, K.; Dierßen, B. Moore: 16 Tabellen, [Neuausg.]; Ulmer: Stuttgart, Germany, 2008; ISBN 9783800156436. [Google Scholar]
- Succow, M. Landschaftsökologische Moorkunde, 2nd ed.; Schweizerbart: Stuttgart, Germany, 2020; ISBN 9783510654543. [Google Scholar]
- Hiller, B.; Müterthies, A.; Holtmeier, F.-L.; Broll, G. Investigations on spatial heterogeneity of humus forms and natural regeneration of Larch (Larix decidua Mill.) and Swiss Stone Pine (Pinus cembra L.) in an alpine timberline ecotone (Upper Engadine, Central Alps, Switzerland). Geogr. Helv. 2002, 57, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Hiller, B.; Nuebel, A.; Broll, G.; Holtmeier, F.-K. Snowbeds on Silicate Rocks in the Upper Engadine (Central Alps, Switzerland)—Pedogenesis and Interactions among Soil, Vegetation, and Snow Cover. Arct. Antarct. Alp. Res. 2005, 37, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Broll, G.; Milbert, G.; Belotti, E. Der Bodenwasserhaushalt als ein Kriterium für die Klassifikation von Humusformen. Mitteilungen Dtsch. Bodenkd. Ges. 1998, 88, 125–128. [Google Scholar]
- van Delft, B.; de Waal, R.; Kemmers, R.; Mekkink, P.; Sevink, J. Humus Forms: Description and Classification of Humus Forms for Ecological Applications; Alterra: Wageningen, The Netherlands, 2006. [Google Scholar]
- BGS. Klassifikation der Böden der Schweiz (KLABS), 3rd ed.; BGS: Luzern, Switzerland, 2010. [Google Scholar]
- Nestroy, O.; Aust, G.; Blum, W.; Englisch, M.; Hager, H.; Herzberger, E.; Kilian, W.; Nelhiebel, P.; Ortner, G.; Pecina, E.; et al. Systematische Gliederung der Böden Österreichs—Österreichische Bodensystematik 2000 in der revidierten Fassung von 2011. Mitteilungen Osterr. Bodenkd. Ges. 2012, 79, 1–96. [Google Scholar]
- Kabała, C. Systematyka Gleb Polski, Wydanie 6; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu; Polskie Towarzystwo Gleboznawcze. Komisja Genezy, Klasyfikacji i Kartografii Gleb; Instytut Nauk o Glebie i Ochrony Środowiska Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland; Warszawa, Poland, 2019; ISBN 978-83-7717-321-3. [Google Scholar]
- Labaz, B.; Galka, B.; Bogacz, A.; Waroszewski, J.; Kabala, C. Factors influencing humus forms and forest litter properties in the mid-mountains under temperate climate of southwestern Poland. Geoderma 2014, 230–231, 265–273. [Google Scholar] [CrossRef]
- Ad-hoc-AG Boden. Bodenkundliche Kartieranleitung: Mit 103 Tabellen; 5. verb. und erw. Aufl.; Schweizerbart i. Komm; Bundesanst. für Geowiss. und Rohstoffe: Stuttgart/Hannover, Germany, 2005; ISBN 3510959205. [Google Scholar]
- Standortkartierung, A. Forstliche Standortsaufnahme: Begriffe, Definitionen, Einteilungen, Kennzeichnungen, Erläuterungen; 7. Auflage; IHW-Verlag: Eching bei München, Germany, 2016; ISBN 9783930167807. [Google Scholar]
- Vacca, A.; Serra, G.; Scalenghe, R. Vegetation, soils, and humus forms of Sardinian holm oak forests and approximated cross-harmonization of vegetation types, WRB Soil Groups and humus forms in selected Mediterranean ecosystems. Appl. Soil Ecol. 2018, 123, 659–663. [Google Scholar] [CrossRef]
- Hiller, B. Landschaftsökologische Untersuchungen zu Böden und Vegetation von Schneetälchen auf Silikatgestein im Oberengadin. Diploma Thesis, University of Münster, Münster, Germany, 1996. [Google Scholar]
- Bojko, O.; Kabala, C. Organic carbon pools in mountain soils—Sources of variability and predicted changes in relation to climate and land use changes. CATENA 2017, 149, 209–220. [Google Scholar] [CrossRef]
- Klinka, K. Towards a Taxonomic Classification of Humus Forms: Third Approximation. Sci. Silvia 1997, 1–5. [Google Scholar]
- Blume, H.-P. Scheffer/SchachtschabelSoil Science, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783642309427. [Google Scholar]
- Blume, H.-P. Zum Mechanismus der Marmorierung und Konkretionsbildung in Stauwasserböden. Z. Pflanzenernaehr. Bodenk. 1968, 119, 124–134. [Google Scholar] [CrossRef]
- Zepp, H. Klassifikation und Regionalisierung von Bodenfeuchteregime-Typen: Mit 58 Tabellen im Text; Borntraeger: Berlin, Germany; Stuttgart, Germany, 1995; ISBN 3443090095. [Google Scholar]
- Dorau, K.; Wessel-Bothe, S.; Milbert, G.; Schrey, H.P.; Elhaus, D.; Mansfeldt, T. Climate change and redoximorphosis in a soil with stagnic properties. CATENA 2020, 190, 104528. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; U.S. Department of Agriculture: Washington, DC, USA, 1999.
- Jabiol, B.; Zanella, A.; Ponge, J.-F.; Sartori, G.; Englisch, M.; van Delft, B.; de Waal, R.; Le Bayon, R.-C. A proposal for including humus forms in the World Reference Base for Soil Resources (WRB-FAO). Geoderma 2013, 192, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Ponge, J.-F.; Juilleret, J.; de Waal, R.; Le Bayon, R.-C.; Vacca, A.; Andreetta, A. Humusica 1, article 6: Terrestrial humus systems and forms—Hydro intergrades. Appl. Soil Ecol. 2018, 122, 87–91. [Google Scholar] [CrossRef]
- Broll, G.; Brauckmann, H.-J.; Overesch, M.; Junge, B.; Erber, C.; Milbert, G.; Baize, D.; Nachtergaele, F. Topsoil characterization—Recommendations for revision and expansion of the FAO-Draft (1998) with emphasis on humus forms and biological features. Z. Pflanzenernähr. Bodenk. 2006, 169, 453–461. [Google Scholar] [CrossRef]
- Baritz, R.; Wilke, B.M. Humus Forms in the Northern German Lowlands. Mitteilungen Dtsch. Bodenkd. Gesellschaf 1999, 929–932. [Google Scholar]
- Chertov, O.G.; Nadporozhskaya, M.A. Humus Forms in Forest Soils: Concepts and Classifications. Eurasian Soil Sc. 2018, 51, 1142–1153. [Google Scholar] [CrossRef]
- Füllgraf, T.; Brauckmann, H.-J.; Broll, G. Kriterien für die Ansprache von Humusformen extensiv genutzter Feuchtgrünlandstandorte im Münsterland. Mitteilungen Dtsch. Bodenkd. Ges. 1998, 88, 129–132. [Google Scholar]
- Kõlli, R.; Tamm, I. Humus cover and its fabric depending on pedo-ecological conditions and land use: An Estonian approach to classification of humus forms. Estonian J. Ecol. 2013, 62, 6. [Google Scholar] [CrossRef] [Green Version]
- Kõlli, R.; Köster, T. Interrelationships of humus cover (pro humus form) with soil cover and plant cover: Humus form as transitional space between soil and plant. Appl. Soil Ecol. 2018, 123, 451–454. [Google Scholar] [CrossRef]
- Kõlli, R.; Rannik, K. Matching Estonian humus cover types’ (pro humus forms’) and soils’ classifications. Appl. Soil Ecol. 2018, 123, 627–631. [Google Scholar] [CrossRef]
- Jansen, C. Untersuchungen zu Tiefenprofilen von Sauerstoffgehalten in Organischen Auflagehorizonten Feuchter Waldstandorte des Sauerlandes mit Hilfe von Sauerstoff-Mikroelektroden, 1st ed. Diploma Thesis, Westfälische Wilhelms Universität, Münster, Germany, 2004. [Google Scholar]
- Zausig, J.; Horn, R. Soil Water Relations and Aeration Status of Single Soil Aggregates—Taken from a Gleyic Vertisol. Z. Pflanzenernaehr. Bodenk. 1992, 155, 237–245. [Google Scholar] [CrossRef]
- van der Lee, G. Anoxic conditions in a Douglas fir litter layer. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2000. [Google Scholar]
- Andreetta, A.; Ciampalini, R.; Moretti, P.; Vingiani, S.; Poggio, G.; Matteucci, G.; Tescari, F.; Carnicelli, S. Forest humus forms as potential indicators of soil carbon storage in Mediterranean environments. Biol Fertil Soils 2011, 47, 31–40. [Google Scholar] [CrossRef]
- Wellbrock, N.; Grüneberg, E.; Riedel, T.; Polley, H. Carbon stocks in tree biomass and soils of German forests. Cent. Eur. For. J. 2017, 63, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Ferronato, C.; de Nobili, M.; Vianello, G.; Vittori Antisari, L.; Ponge, J.-F.; de Waal, R.; van Delft, B.; Vacca, A. Humusica 2, article 12: Aqueous humipedons—Tidal and subtidal humus systems and forms. Appl. Soil Ecol. 2018, 122, 170–180. [Google Scholar] [CrossRef]
- Lavoie, M.; Paré, D.; Fenton, N.; Groot, A.; Taylor, K. Paludification and management of forested peatlands in Canada: A literature review. Environ. Rev. 2005, 13, 21–50. [Google Scholar] [CrossRef]
- Bārdule, A.; Butlers, A.; Lazdiņš, A.; Līcīte, I.; Zvirbulis, U.; Putniņš, R.; Jansons, A.; Adamovičs, A.; Razma, Ģ. Evaluation of Soil Organic Layers Thickness and Soil Organic Carbon Stock in Hemiboreal Forests in Latvia. Forests 2021, 12, 840. [Google Scholar] [CrossRef]
- Bens, O.; Felix-Henningsen, P. Variability of decomposition and nitrogen turnover in Scots pine ecosystems of Northwest-Germany under the influence of groundwater lowering. In Wetlands in Central Europe; Broll, G., Merbach, W., Pfeiffer, E.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 133–148. ISBN 978-3-642-07795-1. [Google Scholar]
- Buczko, U.; Köhler, S.; Bahr, F.; Scharnweber, T.; Wilmking, M.; Jurasinski, G. Variability of soil carbon stocks in a mixed deciduous forest on hydromorphic soils. Geoderma 2017, 307, 8–18. [Google Scholar] [CrossRef]
- Olsson, M.; Erlandsson, M.; Lundin, L.; Nilsson, T.; Nilsson, Å.; Stendahl, J. Organic carbon stocks in Swedish Podzol soils in relation to soil hydrology and other site characteristics. Silva Fenn. 2009, 43, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Hiller, B. Humusformen im Waldgrenzökoton (Oberengadin, Schweiz). Ph.D. Thesis, University of Münster, Münster, Germany, 2001. [Google Scholar]
- Graefe, U. Humusformengliederung aus Bodenzoologischer Sicht. Mitteilungen Dtsch. Bodenkd. Ges. 1994, 74, 41–44. [Google Scholar]
- Anschlag, K.; Tatti, D.; Hellwig, N.; Sartori, G.; Gobat, J.-M.; Broll, G. Vegetation-based bioindication of humus forms in coniferous mountain forests. J. Mt. Sci. 2017, 14, 662–673. [Google Scholar] [CrossRef]
- Aubert, M.; Bureau, F.; Alard, D.; Bardat, J. Effect of tree mixture on the humic epipedon and vegetation diversity in managed beech forests (Normandy, France). Can. J. For. Res. 2004, 34, 233–248. [Google Scholar] [CrossRef]
- Kopp, D.; Dieckmann, O.; Konopatzky, A. Methode der Humusformenansprache bei der forstlichen Standortserkundung im nordostdeutschen Tiefland. Mitteilungen Dtsch. Bodenkd. Ges. 1996, 80, 205–216. [Google Scholar]
- Ellenberg, H.; Leuschner, C. Vegetation Mitteleuropas mit den Alpen: In Ökologischer, Dynamischer und Historischer Sicht; 203 Tabellen, 6., vollst. neu bearb. und stark erw. Aufl.; Ulmer: Stuttgart, Germany, 2010; ISBN 9783825281045. [Google Scholar]
- Wilson, S.; Pyatt, D.; Malcolm, D.; Connolly, T. The use of ground vegetation and humus type as indicators of soil nutrient regime for an ecological site classification of British forests. For. Ecol. Manag. 2001, 140, 101–116. [Google Scholar] [CrossRef]
- Griesbauer, H.; DeLong, S.C.; Rogers, B.; Foord, V. Growth sensitivity to climate varies with soil moisture regime in spruce–fir forests in central British Columbia. Trees 2021, 35, 649–669. [Google Scholar] [CrossRef]
- Bal, L. Morphological investigation in two moder-humus profiles and the role of the soil fauna in their genesis. Geoderma 1970, 4, 5–36. [Google Scholar] [CrossRef]
- Ascher, J.; Sartori, G.; Graefe, U.; Thornton, B.; Ceccherini, M.T.; Pietramellara, G.; Egli, M. Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions? Biol. Fertil. Soils 2012, 48, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Keplin, B.; Broll, G. Earthworm coenoses in wet grassland of Northwest-Germany. Effects of restoration management on a Histosol and a Gleysol. In Wetlands in Central Europe; Broll, G., Merbach, W., Pfeiffer, E.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 11–34. ISBN 978-3-642-07795-1. [Google Scholar]
- Beylich, A.; Graefe, U. Annelid coenoses of wetlands representing different decomposer communities. In Wetlands in Central Europe; Broll, G., Merbach, W., Pfeiffer, E.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–10. ISBN 978-3-642-07795-1. [Google Scholar]
- Andreetta, A.; Cecchini, G.; Bonifacio, E.; Comolli, R.; Vingiani, S.; Carnicelli, S. Tree or soil? Factors influencing humus form differentiation in Italian forests. Geoderma 2016, 264, 195–204. [Google Scholar] [CrossRef]
- Cates, A.M.; Jilling, A.; Tfaily, M.M.; Jackson, R.D. Temperature and moisture alter organic matter composition across soil fractions. Geoderma 2022, 409, 115628. [Google Scholar] [CrossRef]
- Domsch, K.H. Pestizide im Boden: Mikrobieller Abbau und Nebenwirkungen auf Mikroorganismen; 1. Aufl.; VCH: Weinheim, Germany; New York, NY, USA; Basel, Switzerland; Cambridge, UK, 1992; ISBN 3527284311. [Google Scholar]
- Bernier, N. Hotspots of biodiversity in the underground: A matter of humus form? Appl. Soil Ecol. 2018, 123, 305–312. [Google Scholar] [CrossRef]
- Gorres, H.J.; Amador, J.A. Partitioning of habitable pore space in earthworm burrows. J. Nematol. 2010, 42, 68–72. [Google Scholar] [PubMed]
- Egli, M.; Sartori, G.; Mirabella, A.; Favilli, F.; Giaccai, D.; Delbos, E. Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 2009, 149, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Amendola, D.; Mutema, M.; Rosolen, V.; Chaplot, V. Soil hydromorphy and soil carbon: A global data analysis. Geoderma 2018, 324, 9–17. [Google Scholar] [CrossRef]
- Dorau, K.; Bamminger, C.; Koch, D.; Mansfeldt, T. Evidences of soil warming from long-term trends (1951–2018) in North Rhine-Westphalia, Germany. Clim. Chang. 2022, 170, 9. [Google Scholar] [CrossRef]
- Graefe, U.; Beylich, A. Humus Forms as Tool for Upscaling Soil Biodiversity Data to Landscape Level? Mitteilungen Dtsch. Bodenkd.Ges. 2006, 108, 6–7. [Google Scholar]
- Ponge, J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil Biol. Biochem. 2013, 57, 1048–1060. [Google Scholar] [CrossRef] [Green Version]
- Frank, T.; Brauckmann, H.-J.; Broll, G. Humusformen als Indikatoren für die Zersetzergesellschaft in Feuchten Waldökosystemen (Projekt: “BioFeuchtHumus”). 2022. Available online: https://eprints.dbges.de/1847/2/DBG_Tagung_Trier_BeitragBFH.pdf (accessed on 6 August 2023).
Item | Sub-Item | Details |
---|---|---|
Keywords | Main keywords | “forest floor”, “moist humus forms”, “wet humus forms”,“aerohydro-humus”, “hydro humus” |
Keywords | Supplemented keywords | “organic layer”, “moisture content”, “soil moisture”,(moist-, wet-) mull, “moder”, “mor”, “classification”,“wetlands”, “humus form” |
Operators | “and” | |
Time period | 1970–2022 | |
Languages | German, English | |
Document type | Journal paper, Conference paper, Book chapter, Monography |
2021–2022 | 2016–2020 | 2011–2015 | 2006–2010 | 2000–2005 | 1994–1999 | <1993 |
---|---|---|---|---|---|---|
7 | 18 | 9 | 10 | 15 | 14 | 10 |
Soil Moisture | Oxygen | Soil Organic Carbon | Vegetation | Soil Organisms | Climate Change | Classification & Morphology |
---|---|---|---|---|---|---|
19 | 3 | 12 | 8 | 9 | 3 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frank, T.; Brauckmann, H.-J.; Broll, G. Humus Forms of Moist and Wet Forest Stands. A Review. Int. J. Plant Biol. 2023, 14, 780-796. https://doi.org/10.3390/ijpb14030058
Frank T, Brauckmann H-J, Broll G. Humus Forms of Moist and Wet Forest Stands. A Review. International Journal of Plant Biology. 2023; 14(3):780-796. https://doi.org/10.3390/ijpb14030058
Chicago/Turabian StyleFrank, Tina, Hans-Jörg Brauckmann, and Gabriele Broll. 2023. "Humus Forms of Moist and Wet Forest Stands. A Review" International Journal of Plant Biology 14, no. 3: 780-796. https://doi.org/10.3390/ijpb14030058
APA StyleFrank, T., Brauckmann, H. -J., & Broll, G. (2023). Humus Forms of Moist and Wet Forest Stands. A Review. International Journal of Plant Biology, 14(3), 780-796. https://doi.org/10.3390/ijpb14030058