Evaluating the Phytochemical Composition and Antioxidant Activity of Leaves of Different Rose Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Total Chlorophyll and Carotenoid Content
2.3. Total Phenolic Estimation
2.4. Total Flavonoids Estimation
2.5. Determination of Antioxidant Activity
2.5.1. DPPH (2,2-diphenyl-1-picrylhydrazyl) Free Radical Scavenging Assay
(Ao = absorbance without extract; Ae = absorbance with extract).
2.5.2. ABTS (2,2′-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)) Assay
2.6. Color Value
2.7. Statistical Analysis
3. Results and Discussion
3.1. Total Chlorophyll Content
3.2. Total Carotenoid Content
3.3. Total Anthocyanin Content
3.4. Total Phenol Content
3.5. Total Flavonoid Content
3.6. Antioxidant Activity
3.6.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Free Radical Scavenging Assay
3.6.2. ABTS•+ (2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid))
3.7. Colour Value
3.8. Correlation between TAC, TPC, TFC, and Antioxidant Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
ABTS | 2,2′-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) |
CSIR | Council of Scientific and Industrial Research |
FC | Folin–Ciocalteu |
Na2CO3 | Sodium carbonate |
GAE | Gallic acid equivalents |
QE | Quercitin equivalents |
ANOVA | Analysis of variance |
CRD | Completely randomized design |
HAT | Hydrogen atom transfer |
ET | Electron transfer |
IC50 | Inhibitory concentration |
RHS | Royal Horticultural Society |
References
- Belal, M.H.; Yesmin, M.R.; Islam, M.D.; Mamun, M.A.; Hasan, N.; Rahman, M.A.; Rahman, M.S. Evaluation of Phytochemical and Antioxidative properties of Rosa hordes Petal Extracts. J. Pharm. Biol. Sci. 2016, 11, 50–60. [Google Scholar]
- Hajizadeh, H.S.; Azizi, S.; Rasouli, F.; Okatan, V. Modulation of physiological and biochemical traits of two genotypes of Rosa damascena Mill. by SiO2-NPs under in vitro drought stress. BMC Plant Biol. 2022, 22, 538. [Google Scholar] [CrossRef] [PubMed]
- Hegde, A.S.; Gupta, S.; Sharma, S.; Srivatsan, V.; Kumari, P. Edible Rose flowers: A doorway to gastronomic and nutraceutical research. Food Res. Int. 2022, 162, 111977. [Google Scholar] [CrossRef]
- Verma, A.; Srivastava, R.; Sonar, P.K.; Yadav, R. Traditional, phytochemical, and biological aspects of Rosa alba L.: A systematic review. Future J. Pharm. Sci. 2020, 6, 114. [Google Scholar] [CrossRef]
- D’angiolillo, F.; Mammano, M.M.; Fascella, G. Pigments, polyphenols and antioxidant activity of leaf extracts from four wild Rose species grown in Sicily. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 402–409. [Google Scholar] [CrossRef]
- Yang, H.; Shin, Y. Antioxidant compounds and activities of edible Roses (Rosa hybrida spp.) from different cultivars grown in Korea. Appl. Biol. Chem. 2017, 60, 129–136. [Google Scholar] [CrossRef]
- Khurshid, H.; Sabir, S.M.; Awan, S.I.; Abbas, S.R.; Irshad, M. Antioxidant activities of aqueous extracts from nine different Rose cultivars. Int. J. Food Stud. 2018, 7, 64–75. [Google Scholar] [CrossRef]
- Dumbrava, D.G. Contribuţii la Studiul, Izolarea şi Purificarea Pigmenţilor Carotenoidici din Produse Naturale; Editura Politehnica: Timișoara, Romania, 2008. [Google Scholar]
- Selvi, K.C.; Kabutey, A.; Gurdil, G.A.K.; Herak, D.; Kurhan, S.; Kloucek, P. The effect of infrared drying on color, projected area, drying time, and total phenolic content of Rose petals. Plants 2020, 9, 236. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Kaszuba, M.; Konopacka, A.; Marzec-Wroblewska, U.; Wesolowski, M.; Waleron, K.; Bucinski, A.; Viapiana, A. Phenolic composition and biological properties of wild and commercial dog Rose fruits and leaves. Molecules 2020, 25, 5272. [Google Scholar] [CrossRef]
- Jayraman, J. Laboratory Manual in Biochemistry; Willay Eastern Pvt. Ltd.: New Delhi, India, 1981. [Google Scholar]
- Davies, B.H. Carotenoids in Chemistry and Biochemistry of Plant Pigments; Goodwin, T.W., Ed.; Academic Press: London, UK, 1976; Chapter 19; Volume II, pp. 154–155. [Google Scholar]
- Genwali, G.R.; Acharya, P.P.; Rajbhandari, M. Isolation of gallic acid and estimation of total phenolic content in some medicinal plants and their antioxidant activity. Nepal J. Sci. Technol. 2013, 14, 95–102. [Google Scholar] [CrossRef]
- Madaan, R.; Bansal, G.; Kumar, S.; Sharma, A. Estimation of total phenols and flavonoids in extracts of Actaea spicata roots and antioxidant activity studies. Indian J. Pharm. Sci. 2011, 73, 666. [Google Scholar] [CrossRef]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from bauhinia tarapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef] [PubMed]
- Sakuta, M.; Ohmiya, A. Pigment biosynthesis II: Betacyanins and carotenoids. In Plant Metabolism and Biotechnology; Wiley: Hoboken, NJ, USA, 2011; pp. 343–371. [Google Scholar]
- Ohmiya, A.; Hirashima, M.; Yagi, M.; Tanase, K.; Yamamizo, C. Identification of genes associated with chlorophyll accumulation in flower petals. PLoS ONE 2014, 9, 113738. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, J.; Qiu, K.; Kuai, B. Phytohormone and light regulation of chlorophyll degradation. Front. Plant Sci. 2017, 8, 1911. [Google Scholar] [CrossRef]
- Hortensteiner, S.; Krautler, B. Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta Bioenerg. 2011, 1807, 977–988. [Google Scholar] [CrossRef]
- Dolatkhahi, A.; Matloobi, M.; Motallebiazar, A.; Vahdati, N. Shading impact on qualitative characteristics and chlorophyll content of cut Rose (Rosa hybrida cv. Avalanche). J. Ornam. Plant. 2013, 4, 215–220. [Google Scholar]
- Yousefi, F.; Jabbarzadeh, Z.; Amiri, J.; Rasouli-Sadaghiani, M.H. Response of Roses (Rosa hybrida L.‘Herbert Stevens’) to foliar application of polyamines on root development, flowering, photosynthetic pigments, antioxidant enzymes activity and NPK. Sci. Rep. 2019, 9, 16025. [Google Scholar] [CrossRef]
- Matthews, R.E.F. Plant Virology, 2nd ed.; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Badawy, E.S.; Hussein, M.; Shanan, N.T. Postharvest studies on cut Rose flowers (Rosa hybrida, L. cv. First Red). 3-effect of some preservative solutions on flower quality, physiological characteristics, and chemical composition of fresh cut flowers. J. Prod. Dev. 2007, 12, 595–612. [Google Scholar]
- Young, A.; Britton, G. Carotenoids and Stress; Cummings, J.R., Ed.; Wiley: Hoboken, NJ, USA, 1990; pp. 87–112. [Google Scholar]
- Reddy, A.R.; Chaitanya, K.V.; Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 2004, 161, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Mibei, E.K.; Ambuko, J.; Giovannoni, J.J.; Onyango, A.N.; Owino, W.O. Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress. Food Sci. Nutr. 2017, 5, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Ram, M.; Prasad, K.V.; Kaur, C.; Singh, S.K.; Arora, A.; Kumar, S. Induction of anthocyanin pigments in callus cultures of Rosa hybrida L. in response to sucRose and ammonical nitrogen levels. Plant Cell Tissue Organ Cult. 2011, 104, 171–179. [Google Scholar] [CrossRef]
- Kumari, P.; Raju, D.V.S.; Singh, K.P.; Prasad, K.V.; Saha, S.; Arora, A.; Hossain, F.; Sharma, K. Rose leaves, a potential nutraceutical: An assessment of the total anthocyanin content and total phenolic content. Chem. Sci. Rev. Lett. 2017, 6, 1333–1337. [Google Scholar]
- Gould, K.S.; Markham, K.R.; Smith, R.H.; Goris, J.J. Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. J. Exp. Bot. 2000, 51, 1107–1115. [Google Scholar] [CrossRef]
- Bitis, L.; Sen, A.; Ozsoy, N.; Birteksoz-Tan, S.; Kultur, S.; Melikoglu, G. Flavonoids and biological activities of various extracts from Rosa sempervirens leaves. Biotechnol. Biotechnol. Equip. 2017, 31, 299–303. [Google Scholar] [CrossRef]
- Ozturk, M.; Bulduk, I.; Korcan, S.E.; Liman, R.; Çoban, F.K.; Kargıoglu, M.; Konuk, M. Total phenolics, flavonoids contents, antioxidant activity and DNA protective effect of Lenten Rose (Helleborus orientalis). Asian J. Biochem. 2019, 1, 1–12. [Google Scholar]
- Dey, S. Review on different methods to assess the antioxidant activity of some common plants of Indian traditional medicine. J. Drug Deliv. Ther. 2011, 1, 36–39. [Google Scholar] [CrossRef]
- Mattila, H.; Khorobrykh, S.; Havurinne, V.; Tyystjarvi, E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. J. Photochem. Photobiol. 2015, 152, 176–214. [Google Scholar] [CrossRef]
- Mattila, H.; Valev, D.; Havurinne, V.; Khorobrykh, S.; Virtanen, O.; Antinluoma, M.; Mishra, K.B.; Tyystjarvi, E. Degradation of chlorophyll and synthesis of flavonols during autumn senescence—The story told by individual leaves. AoB Plants 2018, 10, ply028. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods. 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Aberoumand, A.; Deokule, S.S. Comparison of phenolic compounds of some edible plants of Iran and India. Pak. J. Nutr. 2008, 7, 582–585. [Google Scholar] [CrossRef]
- Sahgal, G.; Ramanathan, S.; Sasidharan, S.; Mordi, M.N.; Ismail, S.; Mansor, S.M. In Vitro antioxidant and xanthine oxidase inhibitory activities of methanolic Swietenia mahagoni seed extracts. Molecules 2009, 14, 4476–4485. [Google Scholar] [CrossRef] [PubMed]
- Mahdi-Pour, B.; Jothy, S.L.; Latha, L.Y.; Chen, Y.; Sasidharan, S. Antioxidant activity of methanol extracts of different parts of Lantana camara. Asian Pac. J. Trop. Biomed. 2012, 2, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Gawlik-Dziki, U. Polyphenols of Rosa L. leaves extracts and their radical scavenging activity. Z. Naturforschung C 2007, 62, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Debener, T.; Gudin, S. Rose: Genetics and breeding. Plant Breed. Rev. 2000, 17, 59–189. [Google Scholar]
- Su, T.; Yu, S.; Zhang, J.W.F.; Yu, Y.; Zhang, D.; Zhao, X.; Wang, W. Loss of function of the carotenoid isomerase gene BrCRTISO confers orange color to the inner leaves of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol. Biol. Rep. 2015, 33, 648–659. [Google Scholar] [CrossRef]
- Carlson, J.E.; Holsinger, K.E. Natural selection on inflorescence color polymorphisms in wild Protea populations: The role of pollinators, seed predators, and intertrait correlations. Am. J. Bot. 2010, 97, 934–944. [Google Scholar] [CrossRef]
- Yu, F.E.I.; Fu, A.; Aluru, M.; Park, S.; Xu, Y.; Liu, H.; Liu, X.; Foudree, A.; Nambogga, M.; Rodermel, S. Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ. 2007, 30, 350–365. [Google Scholar] [CrossRef]
- Yuan, M.; Xu, M.Y.; Yuan, S.; Chen, Y.E.; Du, J.B.; Xu, F.; Zhang, Z.W.; Guo, Z.C.; Zhao, Z.Y.; Lin, H.H. Light regulation to chlorophyll synthesis and plastid development of the chlorophyll-less golden-leaf privet. J. Integr. Plant Biol. 2010, 52, 809–816. [Google Scholar] [CrossRef]
- Fang, Y.; Zhao, S.; Zhang, F.; Zhao, A.; Zhang, W.; Zhang, M.; Liu, L. The Arabidopsis glutamyl-tRNA reductase (GluTR) forms a ternary complex with FLU and GluTR-binding protein. Sci. Rep. 2016, 6, 19756. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Wang, P.; Wang, S.A.; Ma, L.; Li, L.; Yang, R.; Ma, Y.; Wang, Q. Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. Genes Genom. 2015, 37, 851–863. [Google Scholar] [CrossRef]
- Tang, Y.; Fang, Z.; Liu, M.; Zhao, D.; Tao, J. Colour characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony (Paeonia lactiflora Pall.). 3 Biotech 2020, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Kendal, D.; Hauser, C.E.; Garrard, G.E.; Jellinek, S.; Giljohann, K.M.; Moore, J.L. Quantifying plant color and color difference as perceived by humans using digital images. PLoS ONE 2013, 8, 72296. [Google Scholar] [CrossRef]
- Klaring, H.P.; Zude, M. Sensing of tomato plant response to hypoxia in the root environment. Sci. Hortic. 2009, 122, 17–25. [Google Scholar] [CrossRef]
Varieties | Adaxial Surface (Upper) | Abaxial Surface (Lower) |
---|---|---|
Thelma Barlow | Greyed purple group 187 A | Greyed purple group 187 B |
Le Rouge et le Noir | Greyed purple group 187 A | Greyed purple group 184 B |
Majestic Burgundy | Greyed purple group 187 A | Brown group 200 C |
Grand Amore | Brown group 200 A | Greyed purple group 187 C |
Swamy | Greyed purple group 187 A | Greyed purple group 187 C |
Silver Shadow | Greyed purple group 187 A | Greyed purple group 187 C |
Louis Estes | Greyed purple group 183 A | Greyed purple group 183 B |
Dr. N.C. Sen | Greyed purple group 187 A | Greyed purple group 184 A |
Whippet | Greyed purple group 187 A | Greyed purple group 187 C |
Ma Normandie | Brown group 200 A | Greyed purple group 184 A |
Rose Varieties | Chlorophyll “a” mg/g | Chlorophyll “b” mg/g | Total Chlorophyll mg/g |
---|---|---|---|
Thelma Barlow | 0.51 ± 0.08 f | 0.17 ± 0.97 f | 0.74 ± 0.75 f |
Le Rouge et le Noir | 0.79 ± 0.09 ab | 0.66 ± 0.84 b | 0.83 ± 0.25 e |
Majestic Burgundy | 0.74 ± 0.32 c | 0.24 ± 0.08 d | 0.96 ± 0.84 d |
Grand Amore | 0.80 ± 0.45 a | 0.74 ± 0.37 a | 1.41 ± 0.08 a |
Swamy | 0.73 ± 0.08 c | 0.19 ± 0.09 e | 0.96 ± 0.98 d |
Silver Shadow | 0.55 ± 0.98 e | 0.17 ± 0.86 f | 1.27 ± 1.32 b |
Louis Estes | 0.76 ± 0.07 bc | 0.26 ± 1.23 c | 0.95 ± 0.97 d |
Dr. N.C. Sen | 0.63 ± 0.08 d | 0.18 ± 0.08 f | 1.13 ± 0.42 c |
Whippet | 0.63 ± 0.09 d | 0.18 ± 0.08 ef | 0.96 ± 0.06 d |
Ma Normandie | 0.76 ± 0.78 bc | 0.28 ± 0.92 c | 0.84 ± 0.48 e |
CD (0.05) | 0.032 | 0.017 | 0.055 |
Rose Varieties | Carotenoids mg/g | Total Anthocyanin mg/100 g |
---|---|---|
Thelma Barlow | 12.93 ± 1.36 h | 128.85 ± 0.40 a |
Le Rouge et le Noir | 34.74 ± 0.94 b | 45.90 ± 0.08 i |
Majestic Burgundy | 27.17 ± 0.87 d | 73.90 ± 0.08 f |
Grand Amore | 36.29 ± 1.21 a | 35.40 ± 1.25 j |
Swamy | 24.80 ± 1.66 e | 79.95 ± 1.38 e |
Silver Shadow | 17.76 ± 0.93 g | 112.6 ± 0.98 b |
Louis Estes | 28.12 ± 0.91 d | 59.25 ± 0.31 g |
Dr. N.C. Sen | 18.28 ± 0.85 g | 94.20 ± 0.71 c |
Whippet | 22.53 ± 0.89 f | 87.50 ± 0.53 d |
Ma Normandie | 30.81 ± 0.08 c | 52.35 ± 0.58 h |
CD (0.05) | 1.514 | 1.459 |
Rose Varieties | DPPH IC50 (µg/mL) | ABTS IC50 (µg/mL) |
---|---|---|
Thelma Barlow | 206.86 ± 0.49 a | 301.62 ± 2.31 a |
Le Rouge et le Noir | 119.30 ± 0.95 i | 217.42 ± 2.02 h |
Majestic Burgundy | 156.91 ± 0.79 f | 240.06 ± 2.33 f |
Grand Amore | 111.30 ± 1.09 j | 177.58 ± 1.95 i |
Swamy | 168.82 ± 0.19 e | 262.41 ± 2.60 e |
Silver Shadow | 193.06 ± 0.44 b | 291.08 ± 2.68 b |
Louis Estes | 149.00 ± 0.08 g | 223.14 ± 3.10 g |
Dr. N.C. Sen | 181.19 ± 1.02 c | 282.73 ± 2.84 c |
Whippet | 171.78 ± 2.04 d | 266.37 ± 2.63 d |
Ma Normandie | 127.34 ± 0.08 h | 219.38 ± 0.69 h |
CD (0.05) | 1.754 | 4.584 |
Parameters | TAC | TPC | TFC | DPPH | ABTS |
---|---|---|---|---|---|
TAC | 1 | 0.952 * | 0.969 * | 0.984 * | 0.968 * |
TPC | ** | 1 | 0.975 * | 0.907 * | 0.871 * |
TFC | ** | ** | 1 | 0.943 * | 0.936 * |
DPPH | ** | ** | ** | 1 | 0.969 * |
ABTS | ** | ** | ** | ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Awasthi, L.; Kumari, P. Evaluating the Phytochemical Composition and Antioxidant Activity of Leaves of Different Rose Varieties. Int. J. Plant Biol. 2023, 14, 1051-1063. https://doi.org/10.3390/ijpb14040076
Sharma S, Awasthi L, Kumari P. Evaluating the Phytochemical Composition and Antioxidant Activity of Leaves of Different Rose Varieties. International Journal of Plant Biology. 2023; 14(4):1051-1063. https://doi.org/10.3390/ijpb14040076
Chicago/Turabian StyleSharma, Shivani, Lipakshi Awasthi, and Poonam Kumari. 2023. "Evaluating the Phytochemical Composition and Antioxidant Activity of Leaves of Different Rose Varieties" International Journal of Plant Biology 14, no. 4: 1051-1063. https://doi.org/10.3390/ijpb14040076
APA StyleSharma, S., Awasthi, L., & Kumari, P. (2023). Evaluating the Phytochemical Composition and Antioxidant Activity of Leaves of Different Rose Varieties. International Journal of Plant Biology, 14(4), 1051-1063. https://doi.org/10.3390/ijpb14040076