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Abstract: Estimation of carbon (C) stocks revealed a very high carbon sequestration potential of
mangroves, which play a major role in the global C cycle. The C stored in the biomass of live trees
can be estimated from above- and below-ground measurements, i.e., tree diameter and height, leaf
litter, root biomass, necromass, and soil. The allocation of biomass and C in the scrub mangrove
forest is influenced by various factors, including low structural development. The objective of this
study was to estimate the carbon stock (in relation to biomass) and storage in the soil of the San
Ignacio and El Dátil lagoons in an arid region of the north Pacific. Above-ground biomass (AGB) was
estimated based on mangrove structure and leaf litter; below-ground biomass (BGB) was measured
by extracting root cores (45 cm depth) and soil (1.2 m depth). Biomass values were converted to
carbon with allometric equations. We found an inverse relationship between BGB content (roots) and
above-ground structural development, with a mean total biomass (AGB + BGB) of 101.7 MgC ha−1.
Below-ground carbon content (roots, necromass, and soil) was 2.8 times higher than above-ground
carbon content (trees and litter). Control sites (devoid of vegetation) adjacent to the mangrove have
recorded low carbon stocks of 7.3 MgC ha−1, which supports the recommendations for conserving
and restoring degraded areas. The present study contributes valuable information on carbon related
to mangrove biomass and stored in the soil of arid mangrove areas of northwestern Mexico.

Keywords: root biomass; biomass; root/shoot; Corg; wetland

1. Introduction

Increasing greenhouse gas emissions and associated impacts on global warming [1]
have led to an urgent need to identify and protect ecosystems with a high carbon (C)
stock capacity [2,3]. Coastal ecosystems with vegetation produce and sequester significant
amounts of organic carbon [4,5]. Mangroves, seagrasses, and salt marshes are known as
blue-carbon ecosystems; they sequester greenhouse gases and store more organic carbon
per unit area than terrestrial forests over the long term [6]. Estimation of C-stocks revealed
a very high carbon sequestration potential by mangroves, which play a central role in the
global carbon cycle [7].

Int. J. Plant Biol. 2023, 14, 1078–1091. https://doi.org/10.3390/ijpb14040078 https://www.mdpi.com/journal/ijpb

https://doi.org/10.3390/ijpb14040078
https://doi.org/10.3390/ijpb14040078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijpb
https://www.mdpi.com
https://orcid.org/0000-0001-8444-3885
https://doi.org/10.3390/ijpb14040078
https://www.mdpi.com/journal/ijpb
https://www.mdpi.com/article/10.3390/ijpb14040078?type=check_update&version=1


Int. J. Plant Biol. 2023, 14 1079

The C stored in the biomass of live trees can be estimated from above- and below-
ground measurements, i.e., tree diameter and height, leaf litter, root biomass, necromass,
and soil [8,9]. In general, studies about biomass production by mangrove forests [10]
have focused on above-ground biomass (AGB) [11,12]. Only a few have addressed below-
ground biomass (BGB) [13], and none have focused specifically on the BGB of scrub or
dwarf mangrove forests [14]. In the latter, the amount of below-ground root biomass
(BRB) in arid regions is inversely related to the structural development of the mangrove
forest, probably as a response to high salinity and low organic matter content, among other
factors [8,9].

Carbon stocks related to biomass in the scrub mangrove forest are influenced by
several factors, including low structural development [15,16], particularly in response to
environmental stressors [17]. In addition, soil organic carbon (Corg) increases as roots grow,
die, and accumulate carbon [18]. Currently, there are few studies on carbon stores in tropical
and subtropical mangrove areas. Recently, academia, nongovernmental organizations, and
governmental groups have created synergies to increase scientific knowledge concerning
blue-carbon ecosystems, and the Corg reserves of several ecosystems have been quantified
and mapped [19].

In this context, the objective of this study was to estimate the carbon stock (in relation
to biomass) and storage in the soil of the San Ignacio and El Datil lagoons, located in an arid
region of northwest Mexico. Furthermore, we hypothesized that mangroves of subtropical
arid zones have (i) low carbon stocks due to their low structure development relative to
mangroves of tropical zones and (ii) high below-ground carbon content (carbon in roots,
necromass, and soil) related to high root biomass.

2. Materials and Methods
2.1. Study Site

The study site is located at coordinates 26.941721 N and −113.739291 W, characterized
by an arid and warm climate with a mean annual temperature ≥22 ◦C, a temperature of
the coldest month <18 ◦C, and a winter precipitation regime ≥36% of the annual total [20].
The mangrove species present are Laguncularia racemosa [L.] Gaertn (white mangrove) and
Rhizophora mangle [L.] (red mangrove) [21]. The study site includes two lagoons located
within the area of influence of El Vizcaino Biosphere Reserve [22,23], an area of importance
for conservation [21], and Ramsar Site number 1341 [24] (Figure 1).

The monitoring was designed to establish three study sites in the mangrove ecosystem
of each lagoon (San Ignacio and El Dátil), with two monitoring units (MU) at each site,
in addition to two sites with no vegetation coverage (control sites) for the comparison of
carbon stocks (total of 20 MU). The monitoring was carried out in November 2021.
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2.2. Physico-Chemical Characteristics of Water and Sediment

In each mangrove ecosystem MU, a sample of interstitial water (50 cm depth) was col-
lected with a piezometer, according to Moreno-Casasola and Warner [25]. The piezometers
were built with 1 inch PVC tubing, and in the 20 cm of the buried tube, alternating grooves
were cut every 2 cm and covered with a 250 µ mesh affixed with plastic fasteners [25].
Surface water samples were collected from the water column since the sites were flooded.
Water salinity (practical salinity units: PSU), redox potential (mV), temperature (◦C), and
pH were measured with a Hanna HI 9828 multiparameter portable meter. Two sediment
samples were collected from the upper 20 cm of soil (24 samples) with a corer (0.0033 m2).
These samples were used to determine soil texture according to the Bouyucos method,
which allows for the determination of the particle size distribution of fine-grained soils
by means of a hydrometer [26], pH by electrometry in a 1:2 ratio with water, and organic
matter (OM) content by ignition according to Heiri et al. [27]. In addition, two sediment
samples of known volume were collected in each MU (24 samples) to determine soil bulk
density and moisture content, according to Moreno-Casasola and Warner [25]. Soil moisture
content is the percentage of water stored in one gram of soil; a value of 100% would mean
that 1 g of soil stores 1 g of water [28].

2.3. Mangrove Forest Structure

The method to estimate the structural attributes was according to Velázquez-Salazar
et al. [29]. In each MU, a 10 m × 10 m quadrant was established to determine the abundance
of each mangrove species and the height and diameter of the stem (DS > 2.5 cm). DS was
measured at 30 cm above ground level [30]; afterward, we estimated the tree basal area
and coverage.

2.4. Primary Productivity Based on Above-Ground Leaf Litter

Above-ground leaf litter was estimated by collecting samples from four 50 cm × 50 cm
quadrants in each MU (48 quadrants in total) using the planar intersections methodol-
ogy described by Barrios-Calderón [31], with four planar intersection lines measuring
10 m long.
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2.5. Below-Ground Root Biomass (BRB)

BRB was determined according to Adame et al. [8]. Two cores were collected from each
MU (24 cores in total) using a stainless steel corer measuring 11 cm in diameter, reaching a
depth of 45 cm, corresponding to the most active portion of the roots [32]. Each sample
was divided into depth strata to analyze the distribution of the roots: the first stratum
was from 0 to 15 cm, the second from 15 to 30 cm, and the third from 30 to 45 cm. Each
sample was kept cold (4 ◦C) and transported to the laboratory. Afterward, it was washed
with fresh water through a 500-micron mesh to separate roots from sediment. Roots were
immersed in water; the floating live roots were sorted manually from sunken dead roots, as
proposed by Castañeda-Moya et al. [32]. Necromass (dead roots) in each depth stratum was
dry-weighed. Live roots were separated into three diameter classes: thin (<2 mm), medium
(2–5 mm), and large (>5 mm); then, leaves were oven-dried at 60 ◦C and weighed [32]. Data
are shown in grams’ dry weight per square meter (gDw·m−2) for each diameter class and
depth stratum. No pneumatophores were observed at the study sites.

2.6. Biomass-Related Carbon

Above-ground biomass was determined for L. racemosa and R. mangle using allometric
equations (Table 1), as proposed by Smith and Whelan [33] for South Florida, United
States, where mangrove forests show structural attributes similar to those of forests in
northwestern Mexico. Wood density values for each species were used according to the
proposals by Howard et al. [34].

Table 1. Allometric equations to estimate mangrove tree biomass.

Component Species Equation Reference

BA: Live trees
Rm B = 0.722*ρ*(DR)1.731 Smith and

Whelan [33]Lr B = 0.362*ρ*(DS)1.92

Rm, R. mangle; Lr, L. racemosa; B, biomass; DR, diameter at 30 cm from the highest root; DS, diameter at breast
height (cm); ρ = wood density (g cm−3).

The conversion factor used to estimate carbon content from tree biomass was as
proposed by Kauffman and Donato [33]: carbon content of each tree (MgC ha−1) = tree
biomass * carbon conversion factor (0.48) [35].

Carbon in the leaf litter component (MgCorg ha−1) = (mean leaf litter biomass × carbon
conversion factor (0.45))/area [36].

Jaramillo et al. [37] reported that the carbon content of tropical forest roots ranges
between 36% and 42%. A suitable value for the carbon content of roots is 39% (median).
Carbon content of below-ground roots (MgCorg ha−1) = below-ground biomass * carbon
conversion factor (0.39).

The carbon content of necromass was estimated using the acceptable default value
based on the carbon content of dead wood in tropical forests (50%). Carbon content in
necromass (MgCorg ha−1) = Necromass biomass × carbon conversion factor (0.5) [34].

2.7. Carbon in Soil

At each site, plots were selected to collect a core sample at 1 m [34]. Each core was
divided by depth from 0–15 cm, 15–30 cm, 30–50 cm, and 50–100 cm; samples were collected
using a 50 mL falcon tube [38]. Samples were stored at 4 ◦C and transported for labora-
tory testing [34,38]. We followed the standardized laboratory and calculation protocols
established by the blue carbon community [34]. The percentages of total and organic C
were determined in a Flash 2000 Elemental Analyzer, (Thermo Fisher Scientific) Waltham,
MA, USA, (www.thermofisher.com accessed on 16 November 2023), The equipment is
located in Obregón city, Mexico, in the Regional Headquarters of the National Laboratory
of Geochemistry and Mineralogy, (LANGEM, https://www.langem.org/, (accessed on
16 November 2023). The percentage of organic carbon was calculated by subtracting the
percent inorganic carbon from the percent total carbon.

www.thermofisher.com
https://www.langem.org/
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2.8. AGC/BGC Ratio

One approach to gaining a deeper understanding of carbon distribution has been to
explore the ratio between above-ground and below-ground content. This ratio is defined
as above-ground carbon (AGC), which considers structure and soil leaf litter, divided by
below-ground carbon (BGC), which corresponds to the carbon content in roots, necromass,
and soil [39].

2.9. Statistical Analysis

Data were processed using the software IBM SPSS Statistics version 23 The data were
analyzed by the Kolmogorov-Smirnov test (normality) and Levene’s test (homoscedas-
ticity). The differences between groups regarding water and sediment physico-chemical
characteristics, structure, leaf litter, necromass, and below-ground root biomass, arranged
spatially (sites), were assessed with Tukey’s one-way ANOVA, considering a 5% signifi-
cance level [40].

3. Results
3.1. Water Physico-Chemical Characteristics

The pH did not show significant differences between surface and interstitial water;
maximum values were recorded at San Ignacio Site 2, with 7.6 ± 0.02 in surface water,
and the lowest at El Dátil Site 4, with 6.3 ± 0.01 in interstitial water, with a low range of
variation at both levels. Surface water temperature showed significant differences (F = 11.2,
p = 0.04, N = 18), with low mean values in San Ignacio (20.2 ± 0.09 ◦C) and higher values
in El Dátil (22.4 ± 0.14 ◦C). Interstitial water temperature ranged from 21.2 ◦C to 25.3 ◦C.
Conductivity showed similar values in surface and interstitial water, ranging from 55.4
mS/cm to 67.4 mS/cm, with no significant differences (Tables 2 and 3).

Table 2. Physico-chemical characteristics of surface water at each monitoring site.

San Ignacio El Dátil

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 F p-Value

pH 7.5 ± 0.02 7.6 ± 0.02 7.1 ± 0.09 6.6 ± 0.01 6.9 ± 0.1 6.5 ± 0.11 9.8 0.24
Temperature (◦C) 20.1 ± 0.08 20.1 ± 0.1 20.4 ± 0.1 22.3 ± 0.07 22.6 ± 0.27 22.3 ± 0.08 11.2 0.04

Conductivity
(mS/cm) 57 ± 1.3 58 ± 0.1 67 ± 4.6 59 ± 0.2 55 ± 0.2 57 ± 0.3 5.1 0.55

Salinity (PSU) 38 ± 1 38 ± 0.2 46 ± 3.6 40 ± 0.1 36 ± 0.2 38 ± 0.2 6.4 0.65
Redox potential (mV) −133 ± 2 −122 ± 3 −121 ± 3 −290 ± 1.4 −263 ± 4.4 −191 ± 4.2 7.4 0.62

PSU = practical salinity units, mV = millivolts, p < 0.05.

Table 3. Physico-chemical characteristics of interstitial water at each monitoring site.

San Ignacio El Dátil

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 F p-Value

pH 6.5 ± 0.08 7 ± 0.08 6.9 ± 0.05 6.3.4 ± 0.1 6.5 ± 0.02 7.2 ± 0.14 14.1 0.43
Temperature (◦C) 21 ± 0.1 22 ± 0.6 24 ± 1 25 ± 1 23 ± 0.3 21 ± 0.5 5.8 0.38

Conductivity
(mS/cm) 58 ± 1.9 56 ± 1.3 54 ± 1.1 55 ± 0.1 56 ± 0.2 67 ± 2.5 3.8 0.08

Salinity (PSU) 38 ± 1.4 38 ± 1 36 ± 0.8 37 ± 0.1 37 ± 0.1 46 ± 2.3 4.2 0.06
Redox potential (mV) −134 ± 5.6 −133 ± 2.2 −130 ± 1.6 −416 ± 9.7 −338 ± 66 −112 ± 4.1 6.5 0.49

PSU = practical salinity units, mV = millivolts, p < 0.05.

The mean salinity was similar in the two lagoons in surface water, with 39.4 ± 0.9 on
average, and in interstitial water, with 38.6 ± 1.1. Peak values were recorded at El Dátil Site
6, with 46.1 ± 2.3. The oxide reduction potential showed that the surface water of Lagoon
San Ignacio had more oxidative conditions, with values of −125 ± 2.7 mV, and was more
reductive in El Dátil, with values of −248 ± 3.3 mV. In interstitial water, more reductive
values were recorded at El Dátil Sites 4 and 5 (−416 ± 9.7 and −338 ± 6.1 mV, respectively)
(Table 3).
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3.2. Sediment Physico-Chemical Characteristics

Soil pH showed minor variations in the study lagoons, from 6.5 to 7.2, with significant
differences relative to restored sites, which recorded high values of 9.1 ± 0.11 on average.
Soil bulk density was similar at Sites 1 to 5, with 1.01 ± 0.06 g/cm3, except for Site 6, which
recorded a minimum value of 0.4 ± 0.02 g/cm3 with a high moisture content of 62 ± 0.9%.
Control sites showed high soil bulk density (1.5 ± 0.02 g/cm3) and low moisture content
(18 ± 0.4%) (Table 4).

Table 4. Physico-chemical characteristics of sediment in each monitoring site.

El Dátil San
Ignacio

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
Control

San
Ignacio

Control El
Dátil F p-Value

pH 7 ± 0.26 6 ± 0.24 7 ± 0.07 7 ± 0.06 7 ± 0.05 7 ± 0.11 9 ± 0.05 9 ± 0.17 24 <0.05
Humidity 0.37 ± 0.02 0.29 ± 0.01 0.29 ± 0.01 0.31 ± 0.03 0.35 ± 0.01 0.62 ± 0.01 0.16 ± 0.01 0.2 ± 0.02 22 <0.05

BD 0.9 ± 0.07 1.1 ± 0.06 1 ± 0.08 1.1 ± 0.07 1 ± 0.04 0.4 ± 0.02 1.1 ± 0.03 1.2 ± 0.01 16 0.06
OM 2.7 ± 0.5 1.5 ± 0.5 2.1 ± 0.3 3.1 ± 0.4 2.2 ± 0.3 14.8 ± 1.34 0.08 0.05 61 <0.05

Te
xt

ur
e Sand 90 ± 1.1 88 ± 1.3 90 ± 0.5 82 ± 0.8 85 ± 0.8 85 ± 1.1 92 ± 0.9 93 ± 0.6 17 0.6

Silt 4 ± 0.8 4 ± 0.9 1 ± 0.5 6 ± 2.2 6 ± 0.5 3 ± 0.6 2 ± 0.4 1 ± 0.7 4.2 0.06
Clay 6 ± 0.5 8 ± 1.3 8 ± 0.5 12 ± 1.5 9 ± 1.1 12 ± 0.7 7 ± 0.7 6 ± 0.6 7.1 0.16

BD: bulk density; OM: organic matter; Rest: proposed sites for restoration.

Organic matter content in control sites was low, from 1.5 ± 0.5 to 3.1 ± 0.4%, except
for Site 6, which recorded a high organic matter content with a mean of 14.8 ± 1.34%; in
addition, control sites showed very low contents of 0.06%. With regard to the soil textural
classification, high sand contents were observed in all mangrove sites, with mean values of
86.8 ± 0.9%, and in the control sites, with 92.4 ± 0.7% of sand (Table 4).

3.3. Mangrove Structural Attributes

Less structural development was recorded in El Datil than in San Ignacio (DS of
4.9 ± 0.4 cm vs. 6.5 ± 0.4 cm, respectively); this difference was significant (F = 4.4, p = 0.01,
N = 244). As a result, basal areas were higher in San Ignacio, with 9.5 ± 1.3 cm; differences
between sites were statistically significant (F = 3.1, p < 0.009, N = 244). Tree height showed
an irregular variation between sites, with a mean height of 1.33 ± 0.01 m; the highest tree
height was recorded in San Ignacio Site 6, with 1.71 ± 0.11 m (F = 7.3; p < 0.05, N = 244)
(Table 5). Separately, tree coverage was higher in San Ignacio Sites 4 and 6 (2.6 ± 0.032
and 2.7 ± 0.033 m, respectively). Only two mangrove species were identified, namely,
Rhizophora mangle and Laguncularia racemosa; R. mangle was more abundant in almost all
sites. The highest mangrove densities were found at El Dátil Sites 1 and 3 (5800 and
5000 trees/ha, respectively). R. mangle showed the highest density in the two lagoons,
except at El Dátil Site 3, where L. racemosa showed a higher density, with 3300 trees/ha
(Table 5).
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Table 5. Structural attributes by species and site.

Site Species
Density Height

DS (cm) Baseline Area (ha) Cover (%/ha)
(Ind/ha) (m)

El Dátil

Site 1 Rm 4200 1.1 ± 0.04 4.4 ± 0.27 4.5 ± 0.7 55 ± 10.8
Lr 1600 1.4 ± 0.1 8.1 ± 0.7 14 ± 2.3 43 ± 8.1

Site 2 Rm 2300 0.8 ± 0.05 4.1 ± 0.27 3.7 ± 0.4 15 ± 0.9
Lr 1500 1.2 ± 0.1 4.3 ± 0.5 4 ± 0.9 10 ± 1

Site 3 Rm 1700 0.6 ± 0.03 1.9 ± 0.2 0.8 ± 0.2 1 ± 0.4
Lr 3300 1.9 ± 0.1 6.9 ± 0.6 11 ± 1.4 40 ± 5.4

San Ignacio

Site 4 Rm 2200 0.7 ± 0.07 5.2 ± 0.37 5.9 ± 0.9 8 ± 1.5
Lr 1100 2.1 ± 0.1 8 ± 1.3 16 ± 2.7 76 ± 15.7

Site 5 Rm 2800 1.2 ± 0.08 5.8 ± 0.5 7.8 ± 1.5 28 ± 4.8
Lr 1200 2.3 ± 0.1 7.9 ± 0.6 13 ± 1.9 35 ± 5.4

Site 6 Rm 1800 1.6 ± 0.14 7.7 ± 0.33 12 ± 1 36 ± 5.9
Lr 700 2 ± 0.02 4.9 ± 0.3 5 ± 0.6 31 ± 1.1

DS: diameter of the stem; Rm: R. mangle; Lr: L. racemosa.

3.4. Soil Leaf Litter

Leaf litter deposited on the ground recorded a considerable variation, with significant
differences (F = 17.8, p = 0.01, N = 48). Peak values were observed at San Ignacio Site 6,
with 124.5 ± 18.3 g/m2, and the lowest at Site 5, with 22.9 ± 4.6 g/m2 (Figure 2).
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3.5. Below-Ground Root Biomass

Fine root biomass was high at Site 1 (El Datil) and Site 6 (San Ignacio) (6175 ± 979
and 4398 ± 920 g/m2, respectively). The fine-diameter class was also identified as the
one with the greatest contribution to total root biomass, except at Site 4, where large roots
represented higher biomass. Medium roots recorded their highest contribution at Site
3, with 2081 ± 297 g/m2, while other sites showed similar values, with an average of
833 ± 191.5 g/m2. Medium roots were also the diameter class with the lowest contribution
to the below-ground biomass. Large roots showed minor variations, with a mean value of
2998 ± 644 g/m2 (Table 6).

The analysis by depth stratum reveals that fine roots attained their highest biomass in
the upper 15 cm at most sites. Medium roots were irregularly distributed in the three depth
layers, while large roots, similar to fine roots, presented the highest biomass in the upper
depth layer. Regarding total biomass, Site 1 (El Datil) and Site 6 (San Ignacio) showed the
highest biomass, with 11,862 ± 2024 g/m2 and 8299 ± 1905 g/m2, respectively (Table 6).
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Table 6. Root biomass by diameter class and depth stratum.

El Datil San Ignacio
Root
Class Stratum Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 F p-Value

Fine

0–15 1297 ± 329 1257 ± 276 1073 ± 367 867 ± 173 535 ± 130 1988 ± 264 1.5 0.24
15–30 2169 ± 257 1133 ± 302 937 ± 174 301 ± 57 618 ± 92 1476 ± 380 1.9 0.15
30–45 2708 ± 394 a 1038 ± 240 b 613 ± 83 b 517 ± 301 b 396 ± 75 b 934 ± 279 b 6.1 0.01
Sum 6174 ± 980 3428 ± 818 2623 ± 624 1685 ± 531 1549 ± 297 4398 ± 923

Medium

0–15 266 ± 60 217 ± 105 1187 ± 107 275 ± 91 237 ± 28 459 ± 106 9.9 0.16
15–30 237 ± 44 a 320 ± 265 ab 538 ± 128 b 432 ± 135 ab 331 ± 36 ab 293 ± 88 ab 1.6 0.01
30–45 293 ± 51 190 ± 52 356 ± 62 313 ± 76 147 ± 31 157 ± 42 1.1 0.46
sum 796 ± 155 727 ± 422 2081 ± 297 1020 ± 302 715 ± 95 909 ± 236

Large

0–15 1902 ± 339 1247 ± 362 885 ± 191 536 ± 116 720 ± 136 1195 ± 294 3.5 0.11
15–30 1142 ± 307 938 ± 306 880 ± 123 1622 ± 341 365 ± 73 1140 ± 256 1.3 0.12
30–45 1848 ± 243 738 ± 307 535 ± 204 1341 ± 325 300 ± 161 657 ± 196 1.9 0.13
Sum 4892 ± 889 2923 ± 975 2300 ± 518 3499 ± 782 1385 ± 370 2992 ± 746

TOTAL 11,862 ± 2024 7078 ± 2215 7004 ± 1439 6204 ± 1615 3649 ± 762 8299 ± 1905
Biomass in grams and letters show significant differences between sites.

The soil necromass contents showed peak values in the upper depth stratum in all
sites (except for Site 1), with mean total necromass values of 711 ± 242 g/m2 in the upper
stratum, 462 ± 130 g/m2 in the medium stratum, and 434.5 ± 90.1 g/m2 in the bottom
stratum. The total mean necromass was 1607.7 ± 462 g/m2 (Figure 3).
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3.6. Carbon Stock Related to Mangrove Biomass

The sites with the highest carbon stock derived from mangrove biomass were El
Datil Site 1 and San Ignacio Site 6, with 87.3 ± 14.5 MgC ha−1 and 62.7 ± 13.2 MgC ha−1,
respectively, where the highest contents corresponded to roots, with a mean value of
28.7 ± 6.5 MgC ha−1. Above-ground biomass (leaf litter and trees) recorded a mean value
of 22.5 ± 4.9 MgC ha−1, while below-ground biomass (roots and necromass) showed a
mean of 36.7 ± 15.3 MgC ha−1. The below-ground/above-ground (root/shoot) carbon ratio
recorded high values at Site 2, with below-ground values being 3.3 times higher than above-
ground carbon. The lowest root/shoot ratio was recorded at Site 5, with below-ground
carbon being 0.7 times the amount of above-ground carbon (Table 7).
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Table 7. Biomass carbon by mangrove components (MgC ha−1).

Above-Ground Below-Ground

Site Structure Leaf Litter Roots Necromass Total

El Dátil

1 29.8 ± 3.6 0.15 ± 0.04 46.3 ± 7.9 11 ± 3 87.3 ± 14.5

2 11.4 ± 1.1 0.29 ± 0.09 27.6 ± 8.6 10.6 ± 2.4 49.9 ± 12.12

3 25.8 ± 3.7 0.45 ± 0.07 27.3 ± 5.6 5.9 ± 3.1 59.5 ± 12.5

San Ignacio
4 21.7 ± 3.7 0.47 ± 0.1 24.2 ± 6.3 5.2 ± 1.6 51.6 ± 11.7

5 26.2 ± 3.1 0.1 ± 0.02 14.2 ± 3 4.2 ± 0.6 44.7 ± 6.7

6 18.3 ± 1.6 0.56 ± 0.08 32.4 ± 7.4 11.4 ± 4.1 62.7 ± 13.2

3.7. Carbon in the Soil

The estimated amount of carbon stored in soil averaged 34.9 MgC ha−1 in El Dátil and
47.1 MgC ha−1 in San Ignacio, with a peak of 96.9 MgC ha−1 at Site 6. The sites proposed
for restoration showed low carbon contents: 0 in San Ignacio and 7.3 MgC ha−1 in El Dátil
(Table 8).

Table 8. Total carbon in soil and percentage recorded at sampling sites.

El Dátil San Ignacio

Site 1 Site 2 Site 3 Control El Dátil Site 4 Site 5 Site 6 Control San Ignacio

Corg (%) 1.2 0.76 0.09 0.07 0.28 0.35 1.7 0

Corg (MgC ha−1) 75.6 31.13 5.7 7.3 28.9 16.2 96.9 0

Control = control sites for restoration.

The total carbon stock (biomass plus soil) recorded mean values of 103 MgC ha−1 in
El Dátil and 100.3 MgC ha−1 in San Ignacio. The above- and below-ground carbon biomass
represented 36.1%, respectively, while the carbon stored in soil was 63.9%. The AGC/BGC
ratio in relation to biomass was higher than 1 (except at Site 5), with a maximum ratio of
3.3 at El Dátil Site 2. The total AGC/BGC ratio showed a high variation, from 1.5 at El Dátil
Site 3 to 7.5 at San Ignacio Site 6 (Table 9).

Table 9. Comparison of above- and below-ground carbon content (MgC ha−1).

Site AGC BGC Total Corg Root/Shoot 1 Root/Shoot 2

El Dátil

Site 1 29.95 132.9 162.9 1.9 4.4

Site 2 11.69 69.33 81.1 3.3 5.9

Site 3 26.25 38.9 65.2 1.3 1.5

San Ignacio
Site 4 22.17 58.3 80.5 1.3 2.6

Site 5 26.3 34.6 60.9 0.7 1.3

Site 6 18.86 140.7 159.6 2.3 7.5
1 Carbon ratio in above- and below-ground biomass. 2 Carbon ratio in above- and below-ground biomass,
including carbon in underground soil.

4. Discussion

Mangrove forests in arid zones face high salinity and nutrient scarcity, growing at their
physiological limits. This results in low productivity and slow growth [41], as observed in
the mangroves of northwestern Mexico [42]. The present study found low organic matter
contents (4.4% on average), similar to those reported by Torres et al. [9] for the Gulf of
California (6.4% on average). The high value of organic matter content in Site 6 (14.8%) was
due to a basin-type microtopography that led to the accumulation of litter in the soil. The
study sites have high tree densities characteristic of dwarf mangroves (<2 m) located in
the high-intertidal zone in arid climates, classified as scrub mangroves [43]. Mangrove tree
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height was similar to that reported by Adame et al. [44] for arid areas of America, Africa,
and Australia, with high tree densities averaging 5775 trees ha−1.

This study confirmed the hypothesis (i) of low carbon stocks compared to mangrove
forests growing in tropical areas since the average total carbon content recorded herein
was 101.7 MgC ha−1, contrasting with values of 264.6 MgC ha−1 in the Gulf of Mex-
ico, 258.5 MgC ha−1 in the southern Pacific of Mexico [43], 432.3 MgC ha−1 in Brazil,
507.7 MgC ha−1 in Ecuador, and 648.2 MgC ha−1 in Colombia [18]. Arid zones produce
physiological stress in mangrove trees as low freshwater availability and low humidity
reduce photosynthetic carbon gain [45]. As a result, these mangroves have relatively low
productivity compared to mangroves in humid regions [44].

Corg storage in blue carbon ecosystems mainly depends on community structural char-
acteristics and extension [19]. Organic carbon stocks are low in arid zones due to the limited
structural development and low sediment accumulation, as shown by Adame et al. [44]
and reported for hyper-arid areas in the Red Sea and Arabian Gulf [46,47] and semi-arid
Senegal [48], showing low soil carbon stocks compared to mangroves in humid regions.
In addition, control sites (devoid of vegetation) adjacent to the mangrove had carbon
stocks of 7.3 MgC ha−1, representing 14% of the values for mangrove areas. These findings
support the recommendations for the conservation and restoration of degraded areas.
Adame et al. [44] mentions that the low productivity of arid mangrove forests is 10 to
60 times higher compared to adjacent terrestrial ecosystems (6.5 MgC ha−1 in Southern
Baja California and 18.7 MgC ha−1 in Baja California).

The study also confirmed hypothesis (ii) about the relationship between high BGC con-
tent and high root biomass since an inverse relationship between above-ground structural
development and below-ground biomass was observed in the scrub mangrove studied,
consistent with the findings reported by Virgulino-Júnior et al. [14] for the Ajuruteua
Peninsula, Brazil, and Torres et al. [9] for the Gulf of California. Above-ground carbon
recorded values of up to 29.95 and 26.3 MgC ha−1 (El Dátil and San Ignacio, respec-
tively) and below-ground values of 79.1 MgC ha−1; these values are similar to those
reported by Herrera-Silveira et al. [49] for above-ground (42.09 MgC ha−1) and below-
ground (92.3 MgC ha−1) carbon in the north Pacific. Below-ground carbon in the study sites
accounted for 74% of the total, similar to the value reported by Herrera Silveira et al. [19]
of 77% for mangroves in Mexico.

Below-ground biomass is considered one of the five primary carbon reserves in
forested areas [50]. This study estimated an average below-ground root biomass of
73.9 ± 16.6 Mg ha−1, similar to the figure reported by Torres et al. [9] for the Gulf of
California (74.05 ± 15.2 Mg ha−1) and also within the range reported by Adame et al. [8]
of 6.1 to 85.4 MgC ha−1. In addition, fine roots made the greatest contribution to the total
root biomass, distributed mainly in the surface layer (upper 15 cm). Therefore, fine roots
are a major component of below-ground Corg sequestration due to their high productiv-
ity and decomposition rates [51,52]. Root biomass decreased with depth, as reported by
Castañeda-Moya et al. [32] for Florida, USA, Torres et al. [9] for the Gulf of California, and
Torres et al. [16] for the Gulf of Mexico.

Above-ground biomass is an important parameter to estimate carbon accumulation in
a forest, and updated information is required to assess the importance of forest distribution
on total biomass [53]. However, root biomass and its carbon content are higher than the
above-ground biomass in scrub mangroves. For this reason, roots are highly important in
carbon capture and storage in these arid regions due to their high rates of below-ground
carbon rotation and fixation. In fact, higher below-ground carbon values relative to biomass
have been reported in several studies of mangroves [54,55]. As forests age, forest biomass
and C stocks increase. Our data indicate that mangrove Corg levels increase in the soil
as roots grow, die, and accumulate [18]. Carbon in plant biomass is stored for years or
decades, while carbon in soil can remain sequestered for millennia [56].

The total carbon values of the present study are similar to those recorded in other arid
zone regions; for example, Kauffman et al. [57] recorded values of 217 Mg C/ha on average
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in hyperarid and hypersaline regions of the Middle East mangroves; Schile et al. [47]
identified total carbon stores of 218.4 Mg C/ha in mangroves in arid areas of the United
Arab Emirates; Kauffman and Bhomia [48] in 2017 recorded carbon stores of 463 Mg C ha−1

for mangroves in arid environments in Senegal. It must be considered that these studies
include values for the mass of dead and downed wood. Arid zone mangroves have
low carbon stores relative to mangroves in tropical temperate regions, as identified in
Central/West Africa mangroves with 801 Mg C/ha and those of Central/North America
and Southeast Asia with 949 and 1017 Mg C/ha, respectively.

Separating dead from live roots is necessary for estimating below-ground carbon
stocks [8]. Chalermchatwilai et al. [58] reported 28% of dead roots in relation to live roots
for Rhizophora forests, similar to the percentage observed in the present study (21.8%).
Moreover, dead root contents do not decrease with depth, similar to the findings observed
by Torres et al. [9] for the Gulf of California. This can be attributed to different root
decomposition rates according to mangrove species, forest age, and soil composition [8,59].

Mangrove blue carbon stocks are the sum of carbon stored in tree shoots, roots, downed
wood, and soil [56]; their dynamics are based on long periods of gradual biomass buildup
(a sink) [60]. The present study did not consider carbon associated with the downed wood
stock; this component represents up to 12% of the Corg above-ground reservoir [19].

5. Conclusions

The present study provides valuable information on carbon in mangrove biomass
and carbon stored in the soil. We identified that below-ground biomass (roots) is in-
versely related to above-ground structural development, with an average carbon stock
of 101.7 MgC ha−1. The below-ground carbon content estimated (roots, necromass, and
soil) was 2.8 times higher than the above-ground carbon content (trees and leaf litter). The
control sites (devoid of vegetation) adjacent to the mangrove recorded carbon stocks of 14%
relative to the mangrove forest, supporting the recommendations to conserve and restore
degraded areas aiming to build carbon stocks. Managing coastal ecosystems for carbon
sequestration services in arid environments requires identifying the factors that account for
their relatively small soil carbon pools [47]. The methods for studying scrub mangroves
growing in arid zones should be standardized. Moreover, it is recommended to carry out
studies that contemplate the variation of carbon flows (leaf litter) over time and include
dead wood and detritus carbon to better understand the distribution of carbon stocks in
the mangrove ecosystem.
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