Effect of Herbicides on Forage Dry Matter Yield and Plant Density in the Old Arable Lands in Communal Area of the Eastern Cape Province, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Procedure
2.3. Herbicide Treatments
2.4. Data Collection
2.4.1. Plant Density
2.4.2. Dry Matter Yield
2.5. Data Analysis
3. Results
3.1. Dry Matter Yield in Response to Herbicide Application
3.2. Plant Density in Response to Herbicide Application
4. Discussion
4.1. Dry Matter Yield Response to Herbicide Application
4.2. Plant Density in Response to Herbicide Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pretty, J.; Sutherland, W.J.; Ashby, J.; Auburn, J.; Baulcombe, D.; Bell, M.; Bentley, J.; Bickersteth, S.; Brown, K.; Burke, J. The Top 100 Questions of Importance to the Future of Global Agriculture. Int. J. Agric. Sustain. 2010, 8, 219–236. [Google Scholar] [CrossRef]
- Cusworth, G.; Garnett, T.; Lorimer, J. Legume Dreams: The Contested Futures of Sustainable Plant-Based Food Systems in Europe. Glob. Environ. Chang. 2021, 69, 102321. [Google Scholar] [CrossRef] [PubMed]
- Nyambali, A.; Mndela, M.; Tjelele, T.J.; Mapiye, C.; Strydom, P.E.; Raffrenato, E.; Dzama, K.; Muchenje, V.; Mkhize, N.R. Growth Performance, Carcass Characteristics and Economic Viability of Nguni Cattle Fed Diets Containing Graded Levels of Opuntia Ficus-Indica. Agriculture 2022, 12, 1023. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for Agriculture: Maintaining Food Security under Growing Scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- Renwick, A.; Jansson, T.; Verburg, P.H.; Revoredo-Giha, C.; Britz, W.; Gocht, A.; Mccracken, D. Policy Reform and Agricultural Land Abandonment in the EU. Land Use Policy 2013, 30, 446–457. [Google Scholar] [CrossRef]
- Grau, H.R.; Aide, T.M.; Zimmerman, J.K.; Thomlinson, J.R.; Helmer, E.; Zou, X. The Ecological Consequences of Socioeconomic and Land-Use Changes in Postagriculture Puerto Rico. BioScience 2003, 53, 1159–1168. [Google Scholar] [CrossRef]
- Bakker, M.M.; Hatna, E.; Kuhlman, T.; Mücher, C.A. Changing Environmental Characteristics of European Cropland. Agric. Syst. 2011, 104, 522–532. [Google Scholar] [CrossRef]
- Jansen, L.J.; Gregorio, D. Obtaining Land-Use Information from a Remotely Sensed Land Cover Map: Results from a Case Study in Lebanon. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 141–157. [Google Scholar] [CrossRef]
- Windle, M.C.; Walker, N.; Kung, L. Effects of an Exogenous Protease on the Fermentation and Nutritive Value of Corn Silage Harvested at Different Dry Matter Contents and Ensiled for Various Lengths of Time. J. Dairy Sci. 2014, 97, 3053–3060. [Google Scholar] [CrossRef]
- Atis, I.; Konuskan, O.; Duru, M.; Gozubenli, H.; Yilmaz, S. Effect of Harvesting Time on Yield, Composition and Forage Quality of Some Forage Sorghum Cultivars. Int. J. Agric. Biol. 2012, 14, 6. [Google Scholar]
- Pittman, K.B.; Cahoon, C.W.; Bamber, K.W.; Rector, L.S.; Flessner, M.L. Herbicide Selection to Terminate Grass, Legume, and Brassica Cover Crop Species. Weed Technol. 2020, 34, 48–54. [Google Scholar] [CrossRef]
- McCalmont, J.P.; Hastings, A.; McNamara, N.P.; Richter, G.M.; Robson, P.; Donnison, I.S.; Clifton-Brown, J. Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB Bioenergy 2017, 9, 489–507. [Google Scholar] [CrossRef] [PubMed]
- Wibawa, W.; Mohamad, R.B.; Puteh, A.B.; Omar, D.; Juraimi, A.S.; Abdullah, S.A. Residual Phytotoxicity Effects of Paraquat, Glyphosate, and Glufosinate-Ammonium Herbicides in Soils from Field-Treated Plots. Int. J. Agric. Biol 2009, 11, 214–216. [Google Scholar]
- Cedergreen, N.; Streibig, J.C. The Toxicity of Herbicides to Non-Target Aquatic Plants and Algae: Assessment of Predictive Factors and Hazard. Pest Manag. Sci. 2005, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Senem, G.; Kizil, U.; Ataoglu, N. Effects of Some Plant Growth Regulators on the Quality of Perennial Ryegrass (Lolium perenne L.) under Different Cutting Regimes. J. Environ. Biol. 2009, 30, 831–836. [Google Scholar]
- Cedergreen, N. Herbicides Can Stimulate Plant Growth. Weed Res. 2008, 48, 429–438. [Google Scholar] [CrossRef]
- Greenfield, L.G.; Langesse, B.J. Effect of Bendioxide Herbicide on Early Growth and Leaf Development of Three Soybean (Glycine max (L.) Merr.) Cultivars and Control of Morning Glory. Weed Sci. 2013, 1, 56–62. [Google Scholar]
- Anjum, S.A.; Xue, L.; Wang, L.; Saleem, M.F.; Huang, C.J. Exogenous Benzoic Acid (BZA) Treatment Can Induce Drought Tolerance in Soybean Plants by Improving Gas-Exchange and Chlorophyll Contents. Aust. J. Crop Sci. 2013, 7, 555–560. [Google Scholar]
- Hassanpour-Bourkheili, S.; Gherekhloo, J.; Kamkar, B.; Ramezanpour, S.S. Comparing Fitness Cost Associated with Haloxyfop-R Methyl Ester Resistance in Winter Wild Oat Biotypes. Planta Daninha 2020, 38, e020213759. [Google Scholar] [CrossRef]
- Kidston, J.; Ferguson, N.; Scott, M. Weed Control in Pastures and Lucerne. In Industry & Investment NSW; Government of New South Wales: Sydney, Australia, 2010. [Google Scholar]
- Grulke, N.E.; Heath, R.L. Ozone Effects on Plants in Natural Ecosystems. Plant Biol. 2020, 22, 12–37. [Google Scholar] [CrossRef]
- Hood, E.E.; Teoh, K.; Devaiah, S.P.; Requesens, D.V. Biomass Crops for Biofuels and Bio-Based Products. In Sustainable Food Production; Springer: New York, NY, USA, 2013; pp. 250–279. [Google Scholar]
- Loeser, M.R.R.; Sisk, T.D.; Crews, T.E. Impact of Grazing Intensity during Drought in an Arizona Grassland. Conserv. Biol. 2007, 21, 87–97. [Google Scholar] [CrossRef]
- Nardi, D.; Marini, L. Role of Abandoned Grasslands in the Conservation of Spider Communities across Heterogeneous Mountain Landscapes. Agriculture. Ecosyst. Environ. 2021, 319, 107526. [Google Scholar] [CrossRef]
- Chauhan, B.S. Integrated Management of Wild Oat (Avena fatua) and Feather Fingergrass (Chloris virgata) Using Simulated Grazing and Herbicides. Agronomy 2022, 12, 2586. [Google Scholar] [CrossRef]
- Damgaard, C.; Strandberg, B.; Mathiassen, S.K.; Kudsk, P. The Effect of Glyphosate on the Growth and Competitive Effect of Perennial Grass Species in Semi-Natural Grasslands. J. Environ. Sci. Health B 2014, 49, 897–908. [Google Scholar] [CrossRef]
- Hulet, A.; Roundy, B.A.; Jessop, B. Crested Wheatgrass Control and Native Plant Establishment in Utah. Rangel. Ecol. Manag. 2010, 63, 450–460. [Google Scholar] [CrossRef]
- Singh, V.P.; Singh, S.P.; Kumar, A.; Tripathi, N.; Nainwal, R.C. Efficacy of Haloxyfop, a Post-Emergence Herbicide on Weeds and Yield of Soybean. Indian J. Weed Sci. 2010, 42, 83–86. [Google Scholar]
- Powles, S.B.; Yu, Q. Evolution in Action: Plants Resistant to Herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.G.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of Evolved Herbicide Resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef]
- Lenormand, T.; Harmand, N.; Gallet, R. Cost of Resistance: An Unreasonably Expensive Concept. Rethink. Ecol. 2018, 3, 51–70. [Google Scholar] [CrossRef]
- Renz, M.J. Establishment of Forage Grasses and Legumes after Fall Herbicide Applications. Forage Grazinglands 2010, 8, 1–8. [Google Scholar] [CrossRef]
- Liebman, M.; Helmers, M.J.; Schulte, L.A.; Chase, C.A. Using Biodiversity to Link Agricultural Productivity with Environmental Quality: Results from Three Field Experiments in Iowa. Renew. Agric. Food Syst. 2013, 28, 115–128. [Google Scholar] [CrossRef]
- Fraser, J.; Moyer, J.R.; Topinka, A.K.; McCartney, D. Tolerance of Annual Forage Legumes to Herbicides in Alberta. Can. J. Plant Sci. 2003, 83, 649–652. [Google Scholar] [CrossRef]
- Martinez, D.A.; Loening, U.E.; Graham, M.C. Impacts of Glyphosate-Based Herbicides on Disease Resistance and Health of Crops: A Review. Environ. Sci. Eur. 2018, 30, 2. [Google Scholar] [CrossRef] [PubMed]
- Morales, C.L.; Traveset, A. Interspecific Pollen Transfer: Magnitude, Prevalence and Consequences for Plant Fitness. CRC Crit. Rev. Plant Sci. 2008, 27, 221–238. [Google Scholar] [CrossRef]
- Rodney, S. Effects of Glyphosate on Flower Production in Three Entomophilous Herbaceous Plant Species (Rudbeckia hirta L. Centaurea cyanus L. and Trifolium pratense L.). Master’s Thesis, University of Ottawa, Ottawa, ON, Canada, 2018. [Google Scholar]
- Wang, M.; Rautmann, D. A Simple Probabilistic Estimation of Spray Drift Factors Determining Spray Drift and Development of a Model Environ. Environ. Toxicol. Chem. Int. J. 2008, 27, 2617–2626. [Google Scholar] [CrossRef]
Treatment No. | Treatments | Description | RR Rate as per Label | Rate/ha in 300 L Water/ha | Expected Effect |
---|---|---|---|---|---|
1 | Control | No Herbicide | No RR | No water | Control treatment |
2 | Round up LD | Glyphosate | 6 L/ha | 3 L/ha (50% recommended rate) | Retard growth of grasses and broadleaved plants |
3 | Gallant Super RR | Haloxyfop-R methyl | 1 L/ha | 1 L/ha (recommended rate) | Control of grasses |
4 | Bassagran LD | Bendioxide | 3 L/ha | 1.5 L/ha (low dosage) | Retard growth of broadleaved plants |
5 | Gramoxone LD | Paraquat | 4 L/ha | 2 L/ha (50% recommended rate) | Retard growth of grasses and broadleaved plants |
6 | Basagran RR | Bendioxide | 3 L/ha | 3 L/ha (recommended rate) | Control of broadleaved plants |
7 | Gramoxone RR | Paraquat | 4 L/ha | 4 L/ha (recommended rate) | Control of grasses and broadleaved plants |
8 | Gallant Super RR and Basagran LD | Haloxyfop-R methyl & Bendioxide. | 4 L/ha | 1 L/ha+ 1.5 L/ha (low dosage) | Control of grasses & retard the growth of broadleaved plants |
Treatments | Mean DM (kg/ha) | |
---|---|---|
Year 1 (2017) | Year 2 (2018) | |
GLY | 2497 a | 10,191 a |
HAL | 4259 b | 10,010 a |
KHC | 4123 b | 9755 a |
BEN | 4309 b | 11,391 a |
PAR | 4029 b | 10,061 a |
BRR | 3646 ab | 9294 a |
PRR | 3833 b | 11,297 a |
HBE | 3282 ab | 9870 a |
LSD | 1276 | 2993 |
Treatment | Grass | Forbs | Legumes | Total |
---|---|---|---|---|
GLY | 72 a | 35 a | 19 ab | 126 ab |
HAL | 62 a | 37 ab | 15 a | 114 a |
KHC | 75 a | 38 ab | 24 bc | 137 b |
BEN | 74 a | 46 b | 19 ab | 139 b |
PAR | 69 a | 33 a | 27 bc | 129 ab |
BRR | 73 a | 39 ab | 15 a | 128 ab |
PRR | 68 a | 37 ab | 18 ab | 123 ab |
HBE | 66 a | 36 a | 22 abc | 124 ab |
LSD | 9.8 | 9.6 | 7.6 | 17.3 |
Treatment | MAY 2017 | NOV 2017 | MAY 2018 | NOV 2018 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grass | Forbs | Legumes | Total | Grass | Forbs | Legumes | Total | Grass | Forbs | Legumes | Total | Grass | Forbs | Legumes | Total | |
GLY | 66 a | 35 a | 7 ab | 108 a | 64 a | 27 a | 9 a | 101 ab | 64 a | 23 a | 17 ab | 105 a | 62 a | 69 a | 10 a | 140 a |
HAL | 80 b | 28 a | 7 ab | 115 ab | 61 a | 29 a | 7 a | 97 a | 71 a | 23 a | 18 ab | 113 a | 70 abc | 75 a | 12 ab | 157 ab |
KHC | 87 b | 33 a | 10 b | 129 b | 70 ab | 30 a | 19 a | 119 ab | 78 a | 23 a | 22 b | 123 a | 80 c | 68 a | 25 b | 173 b |
BEN | 87b | 34 a | 9 ab | 130 b | 59 a | 31 a | 12 a | 102 ab | 71 a | 28 a | 25 b | 124 a | 68 abc | 73 a | 16 ab | 157 ab |
PAR | 87 b | 34 a | 8 ab | 129 b | 65 a | 25 a | 11 a | 101 ab | 78 a | 24 a | 17 ab | 119 a | 72 abc | 72 a | 17 ab | 161 ab |
BRR | 83 b | 33 a | 3 a | 119 ab | 82 b | 25 a | 15 a | 122 b | 81 a | 31 a | 12 a | 124 a | 79 bc | 83 a | 19 ab | 180 b |
PRR | 83 b | 36 a | 8 ab | 128 b | 71 ab | 30 a | 12 a | 113 ab | 74 a | 25 a | 22 b | 121 a | 67 ab | 65 a | 22 ab | 154 ab |
HBE | 73 a | 31 a | 10 b | 115 ab | 68 ab | 25 a | 14 a | 108 ab | 80 a | 27 a | 17 ab | 124 a | 76 bc | 71 a | 18 ab | 165 ab |
LSD | 13.7 | 12.5 | 6.7 | 16.7 | 13.5 | 9.9 | 6.4 | 22.8 | 18.6 | 8.6 | 10.2 | 23.5 | 11.7 | 19.9 | 13.0 | 26.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashece, W.; Beyene, S.T.; Mndela, M.; Jordaan, G.; Gulwa, U.; Tokozwayo, S. Effect of Herbicides on Forage Dry Matter Yield and Plant Density in the Old Arable Lands in Communal Area of the Eastern Cape Province, South Africa. Int. J. Plant Biol. 2024, 15, 110-121. https://doi.org/10.3390/ijpb15010010
Mashece W, Beyene ST, Mndela M, Jordaan G, Gulwa U, Tokozwayo S. Effect of Herbicides on Forage Dry Matter Yield and Plant Density in the Old Arable Lands in Communal Area of the Eastern Cape Province, South Africa. International Journal of Plant Biology. 2024; 15(1):110-121. https://doi.org/10.3390/ijpb15010010
Chicago/Turabian StyleMashece, Wandile, Solomon Tefera Beyene, Mthunzi Mndela, Gideon Jordaan, Unathi Gulwa, and Sive Tokozwayo. 2024. "Effect of Herbicides on Forage Dry Matter Yield and Plant Density in the Old Arable Lands in Communal Area of the Eastern Cape Province, South Africa" International Journal of Plant Biology 15, no. 1: 110-121. https://doi.org/10.3390/ijpb15010010
APA StyleMashece, W., Beyene, S. T., Mndela, M., Jordaan, G., Gulwa, U., & Tokozwayo, S. (2024). Effect of Herbicides on Forage Dry Matter Yield and Plant Density in the Old Arable Lands in Communal Area of the Eastern Cape Province, South Africa. International Journal of Plant Biology, 15(1), 110-121. https://doi.org/10.3390/ijpb15010010