Eggplant Little Leaf-Associated Phytoplasma Detection in Seedlings under Insect-Proof Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Collection and Germination
2.2. DNA Extraction
2.3. Amplification Conditions
2.4. Phytoplasma Identification by RFLP Analyses and Phylogeny
3. Results
Seed Germination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. 2021. Available online: http://www.faostat.fao.org (accessed on 4 March 2024).
- Glance, H. Horticulture Statistics Division Department of Agriculture. Cooperation & Farmers ‘Welfare Ministry of Agriculture and Farmers’ Welfare Government of India. 2018. Available online: https://www.nhb.gov.in (accessed on 15 December 2023).
- Rao, G.P.; Chaturvedi, Y.; Priya, M.; Mall, S. Association of a 16SrII group phytoplasma with dieback disease of papaya in India. Bull. Insect. 2011, 64, S105–S106. [Google Scholar]
- Satta, E. Studies on Phytoplasma Seed Transmission in Different Biological Systems. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2017. [Google Scholar]
- Satta, E.; Paltrinieri, S.; Bertaccini, A. Phytoplasma transmission by seed. In Phytoplasmas: Plant Pathogenic Bacteria-II Transmission and Management of Phytoplasma-Associated Diseases; Bertaccini, A., Weintraub, P.G., Rao, G.P., Mori, N., Eds.; Springer: Singapore, 2019; Volume 2, pp. 131–147. [Google Scholar] [CrossRef]
- Lee, I.-M.; Gundersen-Rindal, D.E.; Davis, R.E.; Bartoszyk, I.M. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Evol. Microbiol. 1998, 48, 1153–1169. [Google Scholar] [CrossRef]
- Bertaccini, A.; Arocha-Rosete, Y.; Contaldo, N.; Duduk, B.; Fiore, N.; Guglielmi Montano, H.; Kube, M.; Kuo, C.-H.; Martini, M.; Oshima, K.; et al. Revision of the ‘Candidatus Phytoplasma’ species description guidelines. Int. J. Syst. Evol. Microbiol. 2022, 72, 005353. [Google Scholar] [CrossRef] [PubMed]
- Bertaccini, A. Plants and phytoplasmas: When bacteria modify plants. Plants 2022, 11, 1425. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Das, B.K. Studies on little leaf of brinjal and morphotaxonomy of the leafhopper species associated from Bengal. J. Entomol. Zool. 2020, 8, 514–521. [Google Scholar]
- Kumar, M.; Rao, G.P. Molecular characterization, vector identification and sources of phytoplasmas associated with brinjal little leaf disease in India. 3 Biotech 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chung, B.N.; Jeong, M.I. Identification of “stolbur” phytoplasmas in Petunia hybrida seedlings. Phytopath. Moll. 2014, 4, 5–8. [Google Scholar] [CrossRef]
- Mateeti, S.T.; Checchi, G.; Messina, N.A.; Feduzi, G.; Bertaccini, A.; Contaldo, N. Presence and seed transmission of phytoplasmas in tomato fields in Italy. Phytopath. Moll. 2022, 12, 1–6. [Google Scholar] [CrossRef]
- Satta, E.; Carminati, G.; Bertaccini, A. Phytoplasma presence in carrot seedlings. Australas. Plant Dis. Notes 2020, 15, 11. [Google Scholar] [CrossRef]
- Angelini, E.; Clair, D.; Borgo, M.; Bertaccini, A.; Boudon-Padieu, E. “Flavescence dorée” in France and Italy-occurrence of closely related phytoplasma isolates and their near relationships to Palatinate grapevine yellows and an alder yellows phytoplasma. Vitis 2001, 40, 79–86. [Google Scholar]
- Lee, I.-M.; Bertaccini, A.; Vibio, M.; Gundersen, D.E. Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology 1995, 85, 728–735. [Google Scholar] [CrossRef]
- Lee, I.-M.; Gundersen, D.E.; Hammond, R.W.; Davis, R.E. Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology 1994, 84, 559–566. [Google Scholar] [CrossRef]
- Lorenz, K.H.; Schneider, B.; Ahrens, U.; Seemüller, E. Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. Phytopathology 1995, 85, 771–776. [Google Scholar] [CrossRef]
- Gibb, K.S.; Padovan, A.C.; Mogen, B.D. Studies on sweet potato little-leaf phytoplasma detected in sweet potato and other plant species growing in Northern Australia. Phytopathology 1995, 85, 169–174. [Google Scholar] [CrossRef]
- Jukes, T.H.; Cantor, C.R. Evolution of protein molecules. In Mammalian Protein Metabolism; Munro, H.N., Ed.; Academic Press: New York, NY, USA, 1969; pp. 21–132. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Hodgetts, J.; Boonham, N.; Mumford, R.; Harrison, N.; Dickinson, M. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. Int. J. Syst. Evol. Microbiol. 2008, 58, 1826–1837. [Google Scholar] [CrossRef] [PubMed]
- Abeysinghe, S.; Abeysinghe, P.; Kanatiwela de Silva, C.; Udagama, P.V.; Warawichanee, K.; Aljafar, N.; Kawicha, P.; Dickinson, M. Refinement of the taxonomic structure of 16SrXI and 16SrXIV phytoplasmas of gramineous plants using multilocus sequence typing. Plant Dis. 2016, 100, 2001–2010. [Google Scholar] [CrossRef] [PubMed]
- Okuda, S.; Prince, J.P.; Davis, R.E.; Dally, E.L.; Lee, I.-M.; Mogen, B.; Kato, S. Two groups of phytoplasmas from Japan distinguished on the basis of amplification and restriction analysis of 16S rDNA. Plant Dis. 1997, 81, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.L.; Arocha-Rosete, Y.; Dider, S.Z. First report of a 16SrI ‘Candidatus Phytoplasma asteris’ isolate affecting eggplant and Mikania sp. in Bangladesh. Plant Pathol. 2009, 58, 789. [Google Scholar] [CrossRef]
- Kumar, J.; Gunapati, S.; Singh, S.P.; Lalit, A.; Sharma, N.C.; Tuli, R. First report of a ‘Candidatus Phytoplasma asteris’(16SrI group) associated with little leaf disease of Solanum melongena (brinjal) in India. New Dis. Rep. 2012, 26, 21. [Google Scholar] [CrossRef]
- Al-Subhi, A.M.; Al-Saady, N.A.; Khan, A.J.; Deadman, M.L. First report of a group 16SrII phytoplasma associated with witches’ broom of eggplant in Oman. Plant Dis. 2011, 95, 360. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.F.; Foissac, X. Occurrence and incidence of phytoplasmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt. Eur. J. Plant Pathol. 2012, 133, 353–360. [Google Scholar] [CrossRef]
- Kumar, M. Genetic Diversity and Natural Spread Sources of Brinjal Little Leaf Phytoplasma. Doctoral Dissertation, Master’s Thesis, IARI, New Delhi, India, 2015. [Google Scholar]
- Yadav, V.; Mahadevakumar, S.; Tejaswini, G.S.; Shilpa, N.; Sreenivasa, M.Y.; Amruthavalli, C.; Janardhana, G.R. First report of 16SrII-D phytoplasma associated with eggplant big bud (Solanum melongena L.) in India. Plant Dis. 2016, 100, 517. [Google Scholar] [CrossRef]
- Barros, T.S.L.; Kitajima, E.W.; Resende, R.O. Diversidade de isolados brasileiros de fitoplasmas através da análise do 16S rDNA. Fitopat. Brasil. 1998, 23, 459–465. [Google Scholar]
- Mello, A.; Eckstein, B.; Flores, D.; Kreyci, P.F.; Bedendo, I.P. Identification by computer-simulated RFLP of phytoplasmas associated with eggplant giant calyx representative of two subgroups, a lineage of 16SrIII-J and the new subgroup 16SrIII-U. Int. J. Syst. Evol. Microbiol. 2011, 61, 1454–1461. [Google Scholar] [CrossRef] [PubMed]
- Sertkaya, G.; Martini, M.; Musetti, R.; Osler, R. Detection and molecular characterization of phytoplasmas infecting sesame and solanaceous crops in Turkey. Bull. Insectol. 2007, 60, 141–142. [Google Scholar]
- Azadvar, M.; Baranwal, V.K. Multilocus sequence analysis of phytoplasma associated with brinjal little leaf disease and its detection in Hishimonus phycitis in India. Phytopath. Moll. 2012, 2, 15–21. [Google Scholar] [CrossRef]
- Tohidi, Z.; Salehi, M.; Ghasemi, S.; Khanchezar, A.; Shahamiri, S.M. Association of a 16SrIX-C phytoplasma with eggplant phyllody in Iran. J. Crop Prot. 2015, 4, 247–256. [Google Scholar]
- Ember, I.; Acs, Z.; Munyaneza, J.E.; Crosslin, J.M.; Kolber, M. Survey and molecular detection of phytoplasmas associated with potato in Romania and southern Russia. Eur. J. Plant Pathol. 2011, 130, 367–377. [Google Scholar] [CrossRef]
- Usta, M.; Güller, A.; Sipahioğlu, H.M. Detection, in silico analysis and molecular diversity of phytoplasmas from solanaceous crops in Turkey. Plant Protect. Sci. 2022, 58, 31–39. [Google Scholar] [CrossRef]
- Venkataravanappa, V.; Kodandaram, M.H.; Manjunath, M.; Chauhan, N.S.; Nagendran, K.; Tiwari, S.K.; Sarkar, B.; Rao, G.P. Molecular characterization of phytoplasma strains associated with brinjal little leaf and screening of cultivated and wild relatives of eggplant cultivars for disease resistance. Eur. J. Plant Pathol. 2021, 162, 433–453. [Google Scholar] [CrossRef]
- Naik, D.V.K.; Reddy, B.B.; Rani, J.S.; Jayalakshmi Devi, R.S.; Prasad, K.H. Molecular characterization of phytoplasma associated with crops, weeds and forest trees in Andhra Pradesh, India. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 781–791. [Google Scholar] [CrossRef]
- Gawande, P.Y.; Karthikeyan, M.; Johnson, I.; Swarnapriya, R.; Boopathi, N.M. Overview of little leaf disease in eggplant in Tamil Nadu. Pharma Innov. J. 2022, SP-11, 2178–2182. [Google Scholar]
- Kalaria, R.K.; Ghanghas, S.; Patel, A.I. Molecular detection of ‘Candidatus Phytoplasma’ associated with little leaf disease in Brinjal from Southern Gujarat region of India. J. Entomol. Zool. Stud. 2019, 7, 794–797. [Google Scholar]
- Maheshwari, M.; Kumar, M.; Rao, G.P. Identification and characterization of phytoplasma associated with brinjal little leaf, phyllody and witches’ broom disease in India. Ind. Phytopath. 2017, 70, 258–261. [Google Scholar] [CrossRef]
- Vandana, Y.; Mahadevakumar, S.; Janardhana, G.R.; Amruthavalli, C.; Sreenivasa, M.Y. Molecular detection of ‘Candidatus Phytoplasma trifolii’ associated with little leaf of brinjal from Kerala state of Southern India. Int. J. Life Sci. 2015, 9, 109–112. [Google Scholar] [CrossRef]
- Srilatha, V.; Reddy, P.K.; Priya, P.R.; Reddy, M.G. Molecular identification of phytoplasmas associated with little leaf disease of brinjal in Andhra Pradesh and Telangana states of India. Phytopath. Moll. 2021, 11, 31–35. [Google Scholar] [CrossRef]
- Snehi, S.K.; Parihar, S.S.; Jain, B. First report of a jujube witches’ broom phytoplasma (16SrV) strain associated with witches’ broom and little leaf disease of Solanum melongena in India. New Dis. Rep. 2021, 43, e120. [Google Scholar] [CrossRef]
- Dutta, D.S.; Kalita, M.K.; Nath, P.D. Detection, characterization and management of brinjal little leaf disease in Assam. J. Environ. Biol. 2022, 43, 460–467. [Google Scholar] [CrossRef]
- Mateeti, S.; Darabakula, M.; Contaldo, N.; Pacini, F.; Bertaccini, A. Seed transmission of phytoplasmas infecting eggplants in India. Phytopath. Moll. 2023, 13, 57–58. [Google Scholar] [CrossRef]
- Menon, K.P.V.; Pandalai, K.M. The Coconut Palm, A Monograph 133; Indian Central Coconut Committee: Ernakulam, India, 1960. [Google Scholar]
- Cordova, I.; Jones, P.; Harrison, N.A.; Oropeza, C. In situ PCR detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Mol. Plant Pathol. 2003, 4, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Nipah, J.O.; Jones, P.; Hodgetts, J.; Dickinson, M. Detection of phytoplasma DNA in embryos from coconut palms in Ghana, and kernels from maize in Peru. Bull. Insect. 2007, 60, 385–386. [Google Scholar]
- Nečas, T.; Mašková, V.; Krška, B. The possibility of ESFY phytoplasma transmission through flowers and seeds. Acta Hortic. 2005, 781, 443–448. [Google Scholar] [CrossRef]
- Seruga-Music, M.; Vrek, I.; Skoric, D. Dianthus croaticus Borb.—A new host for phytoplasma from ribosomal groups 16SrI and 16SrIII. In Proceedings of the 15th Congress of the International Organization for Mycoplasmology (IOM), Athens, GA, USA, 11–16 July 2004; pp. 122–123. [Google Scholar]
- Zwolinska, A.; Krawczyk, K.; Pospieszny, H. First report of “stolbur” phytoplasma infecting pea plants. In Proceedings of the 18th Congress of the International Organization for Mycoplasmology (IOM), Chianciano Terme, Italy, 11–16 July 2010; Volume 11, p. 16. [Google Scholar]
- Çağlar, B.K.; Satar, S.; Bertaccini, A.; Elbeaino, T. Detection and seed transmission of Bermudagrass phytoplasma in maize in Turkey. J. Phytopath. 2019, 167, 248–255. [Google Scholar] [CrossRef]
- Vijay Kumar, N.D.; Bhaskara, R.B.V.; Sailaja, R.J.; Sarada Jayalakshmi, D.R.; Hari Prasa, K.V. ‘Candidatus Phytoplasma trifolii’ associated with little leaf disease of Solanum melongena (brinjal) in Andhra Pradesh, India. J. Pharmacogn. Phytochem. 2018, 7, 3695–3697. [Google Scholar]
- Salehi, M.; Esmaeilzadeh-Hosseini, S.A.; Salehi, E.; Bertaccini, A. Molecular diversity of phytoplasmas associated with eggplant phyllody disease in Iran. Eur. J. Plant Pathol. 2021, 161, 195–205. [Google Scholar] [CrossRef]
- Bogoutdinov, D.Z.; Valiunas, D.; Navalinskene, M.; Samuitene, M. About specific identification of phytoplasmas in Solanaceae crops. Agricult. Biol. 2008, 1, 77–80. [Google Scholar]
- Rao, G.P.; Kumar, M. World status of phytoplasma diseases associated with eggplant. Crop Protect. 2017, 96, 22–29. [Google Scholar] [CrossRef]
Seed Batches | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Average |
---|---|---|---|---|---|---|---|---|---|
Germinated seeds (%) | 92 | 92 | 93 | 89 | 93 | 81 | 95 | 98 | 91.63% |
Transplanted seedlings (%) | 97 | 90 | 93 | 90 | 97 | 90 | 87 | 80 | 91.00% |
Seedling Batch | Phytoplasma | Second-Generation Seedling Batch | Phytoplasma |
---|---|---|---|
M1.B | 16SrI | M1.B(N/G), M1.B(SM), M1.B(SM) | 16SrI |
M3.D, M2.5, M8.18 | 16SrII | M1.A (N/G) | 16SrI |
M2-M20 | 16SrV | M1.C(G) | 16SrI |
M3.B | 16SrVI | M3.D(G) | 16SrXII |
M1.D, M2.A | 16SrXII | M5.A(G) | 16SrXII |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darabakula, M.; Mateeti, S.T.; Pacini, F.; Bertaccini, A.; Contaldo, N. Eggplant Little Leaf-Associated Phytoplasma Detection in Seedlings under Insect-Proof Conditions. Int. J. Plant Biol. 2024, 15, 217-229. https://doi.org/10.3390/ijpb15020018
Darabakula M, Mateeti ST, Pacini F, Bertaccini A, Contaldo N. Eggplant Little Leaf-Associated Phytoplasma Detection in Seedlings under Insect-Proof Conditions. International Journal of Plant Biology. 2024; 15(2):217-229. https://doi.org/10.3390/ijpb15020018
Chicago/Turabian StyleDarabakula, Mukesh, Sri Tej Mateeti, Francesco Pacini, Assunta Bertaccini, and Nicoletta Contaldo. 2024. "Eggplant Little Leaf-Associated Phytoplasma Detection in Seedlings under Insect-Proof Conditions" International Journal of Plant Biology 15, no. 2: 217-229. https://doi.org/10.3390/ijpb15020018
APA StyleDarabakula, M., Mateeti, S. T., Pacini, F., Bertaccini, A., & Contaldo, N. (2024). Eggplant Little Leaf-Associated Phytoplasma Detection in Seedlings under Insect-Proof Conditions. International Journal of Plant Biology, 15(2), 217-229. https://doi.org/10.3390/ijpb15020018