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Abstract: The plant adaptation response to a changing environment depends on the genetic diversity
level it possesses. Genetic diversity and a thorough understanding of population indices are pivotal
for decoding plant adaptation to dynamic environmental stressors. The development of polymerase
chain reaction (PCR)-based molecular markers enables comprehensive population analyses and
the precise detection of individuals and groups with unique genetic variations. Various molecular
markers have been employed to assess genetic diversity, examine population structure, and delineate
cluster patterns within and among populations. DNA markers revolutionize plant diversity studies by
allowing detailed analyses of genetic variations, including economically significant trait-influencing
genes. Despite their simplicity, they offer high reproducibility, ensuring accurate estimations of
plant variation. Integrating multiple marker systems with advanced high-throughput sequencing
techniques is poised to enhance the understanding and management of depleting plant genetic
resources by providing a comprehensive picture of diversity at the genome-wide level. This review
explores diverse molecular markers, elucidating their advantages and limitations, and highlights
their impact on evaluating the genetic diversity and population structure of plants.

Keywords: genetic diversity; DNA marker; dominant markers; polymorphism; population structure;
germplasm; conservation

1. Introduction

Molecular markers have been widely used for plant genetic diversity and population
genetics studies, essential for breeding and crop improvement, conservation, protection,
introduction, and reintroduction of endangered and valuable plants [1–3]. They also
enable the identification of new plant varieties and detect genetic changes from the known
ones, providing valuable insights into the existing genetic variations within and between
plant populations [4]. Genetic diversity is vital for adapting and adjusting plants to
environmental changes [5]. The responses of plants and their adaptive abilities to climatic
change depend on their genetic diversity levels [6]. Molecular markers offer essential
insights into the variation in plant genetic composition and population structures, thereby
playing vital roles in optimizing plant utilization and ensuring effective management [7].
They also assist in quickly identifying the wild relatives of cultivated plants, thereby
providing the possibility of improving crop varieties with increased resistance to diseases
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and environmental stress [8]. With the recent increase in the understanding of plant genome
sequences and the varied molecular roles of plant genes, the field of plant molecular genetics
has been revolutionized, increasing its efficacy in the application of plant genetic variety
study and breeding programs [9].

The morphological characters and cytological and ethnological parameters tradition-
ally employed to estimate genetic diversity levels are not reliable and effective, as only
a small part of the plant genome is represented by these traits, and they are easily af-
fected by environmental factors [10]. They provide an incomplete picture of the complex
genetic structure variation within and between species, genera, and plant groups [11].
Enhancements in biochemistry and molecular biology have led to the development of
more powerful biochemical and molecular markers, overcoming the inherent limitations of
traditional weak markers [12]. The novel invention of polymerase chain reaction (PCR) by
Kary Mullis in 1983 has dramatically simplified plant genetic variation analyses by devel-
oping sophisticated DNA markers with high reproducibility [13]. Biochemical isozyme and
DNA markers have been employed to determine genetic diversity, population structures,
and phylogenetic relationships, identify cultivars, and construct genetic linkage maps in
several plant species [14–16]. However, DNA markers are more effective and favorable
than isozymes due to their abundance, dominant and co-dominant inheritances, and in-
volvement of both express and non-express sequences specific to their gene locus [17]. They
are also less dependent on environmental factors and can provide more detailed infor-
mation about the underlying genomic variation in an organism. Recently, plant diversity
studies with single marker types have not been considered complete without applying
other markers [18]. The cumulative application of multiple markers imparts more accurate
and reliable genetic diversity information, population structure, and cluster determination
than using a single marker type [19,20]. The genetic variability within various plants has
been effectively assessed by employing a combination of diverse markers [4,21,22]. The
recent advancements in DNA sequencing techniques have further bolstered the efficacy
of DNA markers in diversity studies, genome mapping, and crop improvement [23]. The
present review aims to provide a comprehensive overview of different DNA markers,
their advantages, limitations, and applications in genetic diversity, cluster resolution, and
population structure studies of plants.

2. DNA Markers

DNA markers are fragments of DNA that reveal variation among organisms [24,25].
They may even be used to detect polymorphisms between different genotypes within a
population based on the divergence in a particular DNA sequence [26,27]. DNA marker
development may be based on either the coding or non-coding regions of the genes, and
this may or may not necessitate prior sequence information [9]. Researchers continue to
strive to establish more reliable and accurate markers such as AFLP, ISSR, SCoT, iPBS, DArT,
ITS, SNP, and others, which are more efficient for estimating diversity than morphological
and biochemical markers [28]. However, an ideal DNA marker should possess properties
such as high polymorphism, dominant or co-dominant inheritance, frequent occurrence,
independence from environmental and developmental conditions, high reproducibility,
easy accessibility, and fast and cost-effective assays [10,17,29]. DNA markers may broadly
be classified as hybridization- and PCR-based markers (Figure 1).
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Figure 1. The broad classification of DNA markers.

3. Application of Markers for Genetic Diversity and Population Structure Studies

The enormous utility of molecular markers in plant research is excellent. After their
development, these markers can be used for DNA fingerprinting, genotype characterization,
the construction of genetic linkage maps, quantitative trait locus (QTL) mapping, genetic
homogeneity testing, and population and genetic diversity studies [30,31]. Earlier, a single
marker system was employed to evaluate plant genetic variation. However, multiple
markers have been recommended to obtain more reliable, accurate, and comprehensive
information about the diversity level, genetic population structure, and cluster resolution of
the investigated plant species [32–35]. The combined utilization of different marker systems
ensures the validation of the results from plant genetic investigations derived from the
analysis of each marker system [4]. The following flowchart depicts the basic steps of gel-
based molecular markers explicitly designed for plant genetic diversity studies (Figure 2).
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studies in plants.

3.1. Utilisation of Single Molecular Marker Systems

Exploring plant genetic diversity is crucial for understanding their evolutionary his-
tory, adaptation, and potential for future breeding programs. Among the various ap-
proaches to ascertain genetic diversity and population structure is using a single marker
system, which involves the utilization of only specific molecular markers.

3.1.1. Random Amplification of Polymorphic DNA (RAPD)

RAPDs are popular first-generation DNA markers based on the amplification of ran-
dom DNA fragments in different loci of a DNA template with short, arbitrary primers
and detect polymorphisms through amplified DNA fragments analyses after electrophore-
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sis [36]. They are simple, quick, and cost-effective and have proven effective for evaluating
genetic variations in both wild and domesticated plants [37]. Bibi [38] used seven selected
RAPD primers out of fifteen to detect the best linseed variety, generating precise poly-
morphic bands. Dhakshanamoorthy [39] also utilized 20 polymorphic RAPD primers to
identify mutants in Jatropha curcas treated with gamma rays and ethyl methane sulphonate
(EMS). Fu [40] demonstrated their usefulness by resolving the genetic relationships among
populations of the rare, endemic species of Changium smyrnioides through a genetic diversity
evaluation. Zhang [41] applied 14 RAPD primers, generating 98 polymorphic bands to
genetically characterize Coptis omeiensis. RAPD markers have been widely employed in elu-
cidating plant variability and interconnections, deciphering population genetic structures,
advancing crop development, and supporting conservation initiatives [42,43]. However,
the markers have limitations arising from a short primer length, lower polymorphism
levels and non-reproducible PCR outcomes, and the dominant mode of inheritance, ren-
dering them less reliable and unsuitable for marker-assisted selection (MAS) and accurate
diversity studies [44].

3.1.2. Restriction Fragment Length Polymorphism (RFLP)

The RFLP is a hybridization-based marker that employs restriction enzymes for DNA
fragment generation and subsequent hybridization to target fragments using specific
radio-labeled probes. The marker detects differences between individual genomes due
to point mutation, insertion/deletion, translocation, inversion, and duplication by gen-
erating different-sized DNA fragments through restriction digestion [45,46]. RFLPs are
locus-specific markers showing high reproducibility and reliability with co-dominant in-
heritance and offering easy data exchange between laboratories [47]. However, the main
shortcomings of the markers include the necessity of a substantial amount of high-quality
DNA, costly radioactive probes with prior sequence knowledge for their development, and
the requirement for long and tedious Southern blotting techniques [10]. RFLPs have been
used widely in genome mapping to select desirable genes, analyze polygenic characters,
and determine genetic relationships and diversity between crop plants [48,49]. Chang [50]
applied RFLP markers to design a linkage map for the nuclear genome of Arabidopsis
thaliana, associating it with clones of the unknown gene function exhibiting the mutant
phenotype and vice versa. Benchimol [51] demonstrated the effectiveness of RFLPs in
assessing genetic diversity and allocating the genotypes from tropical maize populations
into heterotic groups. However, they could not determine the line crosses from genetically
diverse heterotic groups. The markers also proved to be efficient in revealing the differences
among wild wheat relatives from regions separated by natural barriers [52]. The RFLP
method has also been employed to construct genome maps for tomatoes, potatoes, and
chili peppers [53,54].

3.1.3. Amplified Fragment Length Polymorphism (AFLP)

The AFLP markers developed by Vos [55] have been used widely for genetic diver-
sity studies of closely related plant species. Applying the markers does not require an
introductory sequence, making them a powerful tool for detecting polymorphisms at the
DNA level [56]. AFLPs have shown higher reproducibility and sensitivity than RAPD and
RFLP markers [24]. They have emerged as the markers of preference for several investi-
gations due to the non-necessity of previous sequence information, greater abundance,
and genome-wide, high polymorphism flexibility when used for molecular assays, with
the potential for automation [57]. Al-Nadabi [58] identified six distinct citrus cultivars out
of thirty-three by employing an AFLP fingerprint, providing phylogenetic information
on citrus cultivars and their diversity in Oman. AFLPs revealed high genetic diversity
between 26 different populations of Eupatorium adenophorum from China, suggesting the
plant diversification rate was dependent on the invasion time and the geographical lo-
cation [59]. Murariu [60] employed AFLP markers to assess wide genetic diversity in
60 maize landrace accessions from Romania, offering the potential for incorporation into
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the breeding programs. Bhattacharrya [61] highlighted the utility of AFLP markers in
estimating diversity for effective conservation strategies, as demonstrated in Dendrobium
thyrsiflorum, which exhibited high antioxidant activity without prior genetic information on
linkage maps and QTL. AFLP markers provided efficient information on genome coverage,
genetic variation, and phylogenetic relationships in the Origanum and Thymus species [62].

Furthermore, their application yielded insights into eco-geographic factors and ge-
netic differentiation patterns influencing the variation and population structure of Elymus
tangutorum in Western China [63]. AFLP markers were also instrumental in the genetic
restoration and conservation efforts for Panicum turgidum in Saudi Arabia [64], identifying
the optimal niche for Rhodiola rosea at an altitude of 3150–3250 m [65] and facilitating
effective germplasm conservation of Rhododendron concinnum [66]. Despite numerous ad-
vantages, AFLP markers have limitations, including challenges in interpreting banding
profiles, their dominant nature, and the potential occurrence of co-migrating bands during
homology identification [67].

3.1.4. CAAT Box-Derived Polymorphism (CBDP)

CBDPs utilize the nucleotide sequence of the CAAT box of plant promoters, character-
ized by a consensus GGCCAATCT sequence, and play a vital role in transcription [68]. The
marker is valuable for cultivar identification, distinguishing indigenous from introduced
varieties, marker-assisted selection, and construction of linkage maps [69]. Moreover, CB-
DPs are easy to develop and provide reproducible profiles. The marker can be applied
singly or combined with other markers to accurately determine population structure and
specify the genetic relationships among plant species [70,71]. The efficiency of the markers
was demonstrated in analyzing the genetic diversity of wheat and lentil germplasms [72,73].
CBDP markers also exhibited tremendous potential for the effective genetic diversity evalu-
ation of the Salvia species, which is necessary for crop improvement programs involving
hybridization and QTL mapping [74]. They unveiled a high level of genetic variation
in Iranian Aegilops, providing vital information for potential valuable genes for wheat
breeding programs [75]. However, these markers are also associated with limitations,
as the reproducibility of the assay depends on the DNA sample quality and the PCR
conditions used [68]. Additionally, the transferability of CBDP markers across species
can be limited [74]. Furthermore, the CBDP markers have relatively low discriminatory
power, making them less suitable for complex genetic relationship studies in some plant
species [72].

3.1.5. Sequence-Related Amplified Polymorphism (SRAP)

SRAP markers are a valuable tool in molecular genetics research, amplifying coding
regions of DNA using primers that target open reading frames [76]. These markers have
demonstrated high variability and robustness, comparable to the commonly used AFLP
markers, with the added benefit of being less technically demanding [77]. A significant
advantage of using an SRAP marker is that one SRAP primer can combine with an unlimited
number of other primers [78]. SRAP markers have primarily been used in agronomic and
horticultural research, including developing quantitative trait loci in advanced hybrids
and assessing genetic diversity in extensive germplasm collections [79]. Additionally, they
were utilized to better understand the genetic diversity, molecular characteristics, and
population structure of prairie grass (Bromus catharticus) and Bermuda grass (Cynodon
dactylon) [80,81]. The investigation of gene flow between populations using SRAP markers
provided valuable insights into the conservation and breeding efforts of Simao pine and
Coloneaster shantungensis [82,83].

Furthermore, the high discriminatory power and ability to amplify gene-rich regions of
the genome have made SRAP markers a promising tool for genetic mapping studies aimed
at marker-assisted introgression in sugarcane [84]. They have also been applied in Morus
macroura genetic differentiation studies, where primer E was found to distinguish between
male and female PCR bands [85]. Although SRAP markers have been predominantly used
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in the investigation of plant genetic diversity, their applications in taxonomic studies could
be influenced by anthropogenic or different types of selection pressures [77].

3.1.6. Start Codon-Targeted Polymorphism (SCoT)

SCoT markers are based on short, conserved regions flanking the ATG start codon in
plant genes [86]. They are more reproducible and effective than arbitrary RAPD and ISSR
markers in assessing the diversity and population structures of many plant varieties [19].
In the bottle gourd germplasm, 20 SCoT markers produced 161 amplicons and generated
82.61% polymorphisms, demonstrating the efficacy of SCoT markers in identifying and
characterizing genetic diversity [87]. They have been applied to identify and analyze
the genetic diversity of mango cultivars, enhancing breeding strategies and facilitating
germplasm management [88]. Furthermore, they were utilized to identify inter-varietal dis-
tinctions among eight cereal grass varieties [89]. SCoT markers have also been instrumental
in investigating the genetic foundation of Elymus sibiricus and Boehmeria nivea, which are
cross-pollinated heterozygous species [90,91]. The markers were also deployed to differenti-
ate selected Glycine max cultivars and to study rose genotypes’ genetic backgrounds [92,93].
The detection of induced allelic variations within Fusarium yellow tolerant/resistant lines
of ginger was also performed using SCoT markers [94]. SCoT markers are rarely used
directly for species identification, though they have been prominently employed for genetic
diversity and population structure studies of several plants [95].

3.1.7. Cleaved Amplified Polymorphism Sequence (CAPS)

The CAPS, also known as PCR-restriction fragment length polymorphism (PCR-RFLP)
markers, are designed by first performing the PCR amplification of DNA fragments gener-
ated via restriction enzyme digestion using specific primers, and the resulting products
are separated using an agarose gel [96]. They present several advantages, including the
co-dominance of alleles, the ability to utilize a small amount of template DNA, locus speci-
ficity, and high reproducibility. Unlike RFLP markers, CAPS markers eliminate the need
for technically demanding procedures such as Southern blot hybridization and radioactive
detection [97]. However, the size of amplified fragments and the need for sequence data
for designing the marker are significant shortcomings of the marker [98].

CAPS markers are primarily applied in gene mapping investigations [97] and serve as
a valuable tool for detecting SNPs within watermelon genomes [99] and for the identifica-
tion of distinct Glycyrrhiza glabra genotypes [100]. These markers have been harnessed
to differentiate fiber quality in two cultivated cotton varieties, Gossypium hirsutum and
G. barbadense. This distinction facilitates marker-assisted selection initiatives, aiding in
incorporating phytochrome and/or HY5 genes between these species [99]. CAPS markers
have also been used for genetic diversity and population structure analyses and to manage
emerging button mushroom genetic resources [101].

3.1.8. Inter-Primer Binding Site (iPBS)

The iPBS marker system has emerged as a robust DNA fingerprinting technique that
operates effectively without requiring sequence information. This system has become the
favored universal marker for discerning genetic distinctions within and between various
eukaryotic organisms, spanning both intra-specific and inter-specific levels [102,103]. iPBS
was described by Kalendar [104] as a universal DNA labeling method used in plants based
on the primer binding site for the reverse transcription enzyme of the LTR retrotranspo-
son. This marker system has been successfully applied for genetic diversity investigations
related to breeding and conserving rare and economic plants like Allium ledebourianum,
Juglans regia, and cotton germplasm [105–107]. Similarly, iPBS markers have identified
an extensive diversity of scarlet eggplant, forming the genetic base resource of a spe-
cific breeding program in African indigenous vegetables [108]. The first-ever safflower
(Carthamus tinctorius) plant-breeding parents were successfully determined using iPBS
markers [109]. These markers exhibit genome-inherent plasticity, enabling them to uncover
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variations within Turkish okra germplasm [110] effectively. Furthermore, iPBS markers
have been employed to distinguish well-defined genetic relationships among various tree
peony germplasm, accurately classifying the varieties [111]. The markers have also been
utilized for the DNA fingerprinting of natural hybrids that share morphological similarities
with their parents, determination of phylogenies, and taxonomic discrimination in species
belonging to Fagaceae [112].

3.1.9. Simple Sequence Repeats (SSRs)

SSRs, also known as microsatellites, are DNA markers based on short tandem repeated
motifs, the number of which varies at a specific locus [113]. SSR markers offer several
advantages over other marker systems. Firstly, they are highly reproducible, making them
valuable for genetic analysis. Additionally, ultra-pure DNA templates are not required for
their use. Secondly, SSR markers are highly polymorphic, allowing for the detection of
allelic variations even among closely related varieties [10]. Thirdly, SSR polymorphisms
are co-dominant, allowing for the easy interpretation of results. Finally, SSR markers are
abundant and well-distributed throughout eukaryotic genomes [114]. They have been
successfully used in various genetic applications, such as evaluating the genetic diversity
and relationships among Chrysanthemum morifolium cultivars [115], mutation detection in
pineapple [116], cultivar and germplasm selection and differentiation, genetic improve-
ments, population structure determination and marker-assisted selection breeding of new
varieties [117,118]. SSR markers have also been applied for the genotype identification of
Tunisian citrus species [119], linkage mapping for Curculigo latifolia, Chrysanthemum indicum,
and Capsicum frutescens [120–123], and genetic diversity evaluation of Lathyrus species and
Lactuca indica [124,125]. Bhardwaj et al. [126] analyzed the genetic diversity of 353 Solanum
tuberosum accessions using 25 SSR markers and found a high level of allelic polymorphisms
among the accessions. However, SSR marker development is complex and costly, requiring
sequence information to design primer sets for a specific species. Alternative approaches,
such as next-generation sequencing, EST libraries, and enriched genome library searches,
have been designed to substantially increase the production of SSR loci [127].

3.1.10. Inter-Retrotransposon Amplified Polymorphism (IRAP)

IRAP markers are retrotransposon-based markers that identify the insertion sequence
between two retrotransposons with outward-facing long terminal repeats (LTRs) [128].
Retrotransposons are abundant in plant genomes and occur irreversibly in high copy
numbers, making them particularly useful for phylogenetic and gene mapping studies [129].
IRAP markers were applied to determine the genetic diversity of 29 citrus genotypes and
confirm Pommelo and Mandarin as true citrus species [130]. Additionally, they have been
widely used to differentiate among hybrids and assess inter-species variations in different
plants [131]. The first species-specific LTR retrotransposons cloned from five rare relic
species of drugs plants, namely Adenophora lilifolia, Adonis sibirica, Adonis vernalis, Digitalis
grandiflora, and Paeonia anomala, revealed the genetic diversity among the six populations
of A. vernalis [132].

Many variations of retrotransposon-based markers are in existence, which include
the sequence-specific amplified polymorphism (S-SAP), retrotransposon-microsatellite
amplified polymorphism (REMAP), and retrotransposon-based insertional polymorphism
(RBIP). S-SAP constitutes a multiplex marker system explicitly designed to detect variations
in DNA flanking retrotransposon insertion sites [133]. In contrast, REMAP employs a single
primer system grounded in the LTR target sequence and a simple sequence repeat motif
to amplify regions exhibiting polymorphisms [128]. RBIP, on the other hand, operates as
a co-dominant marker system utilizing PCR primers designed from the retrotransposon
and flanking DNA to examine the insertional polymorphisms related to individual retro-
transposons [134]. The primary historical limitation associated with retrotransposon-based
marker systems has been the necessity for sequence data [129].
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3.1.11. Conserved DNA-Derived Polymorphism (CDDP)

CDDP markers have been derived from extensively characterized plant genes respon-
sive to biotic and abiotic stresses and developmental processes [135]. This approach results
in the creation of functional markers that are directly associated with particular plant phe-
notypes. The markers produced detectable length polymorphisms with conserved DNA
regions that share the same priming site but differ in genomic distribution [136]. Investiga-
tions of plants employing CDDP markers have revealed that genetic diversity is influenced
by geographical distances and the level of gene exchange among groups and sexes of plants
under different environmental conditions [137]. These markers have been successfully
applied in evaluating genetic diversity in various plant species, aiding in genetic rescue, in
situ and ex situ conservation efforts, and cultivar identification [67,138]. CDDP markers
have many advantages, including convenience, lower cost, and rich polymorphisms, which
can be utilized to produce targeted trait markers [24].

3.1.12. Diversity Array Technique (DArT)

The DArT was developed as a sequence-independent, hybridization-based marker
performed on a microarray platform to capture the allelic diversity inherent to the target
organism [139]. They offer the advantage of concurrently assessing numerous polymor-
phisms based on restriction sites across genotypes without necessitating the availability
of DNA sequence information or site-specific oligonucleotides [140]. The polymorphism
observed through DArT markers primarily arises from validated restriction site variations,
a characteristic substantiated through investigations involving the model plant Arabidopsis
thaliana [140].

They have become promising markers in genomic discovery, comparative mapping,
directed breeding of superior oat varieties, and generating consensus maps of rye and
oat [141]. Sánchez-Sevilla [142] showed that a comprehensive set of 603 DArT markers was
highly efficient for classifying 62 strawberry cultivars based on historical, geographical, and
pedigree-based cues. DArT markers have also demonstrated robustness among different
mapping plant populations, allowing for map alignment [143]. In addition, they have
proven highly efficient and cost-effective for genetic mapping in apples, providing moderate
genome coverage [144]. DArT markers also have the potential to provide comprehensive
genetic diversity analysis, whole-genome profiling, and high-density mapping of complex
traits essential for marker-assisted breeding. Consequently, molecular analyses using DArT
markers have significantly improved various crop species [145].

However, applying DArT markers in plant research poses significant technical chal-
lenges, characterized by intricate and time-consuming procedures requiring trained per-
sonnel. Moreover, this microarray-based technique demands substantial investments in
physical energy, costs, and access to advanced laboratory facilities. These factors collectively
constrain the widespread utilization of DArT markers in plant diversity studies [10].

3.1.13. Internal Transcribed Spacer (ITS)

ITS markers are indispensable for accurate species identification and play a pivotal
role in DNA barcoding, focusing on the spacer DNA located within repetitive ribosomal
RNA gene sequences [146]. The nuclear ribosomal DNA ITS region exhibits significant
divergence across species while maintaining a higher level of conservation within a specific
species, making them the preferred genetic markers for species-level identification [147].
Eukaryotic ITS regions possess several advantageous attributes, including their compact
size, highly conserved flanking sequences, and ease of detection, even when working with
limited DNA quantities due to the abundance of rRNA gene clusters [148].

Furthermore, they exhibit substantial variation, even among closely related species,
and undergo rapid concerted evolution driven by unequal crossing over and gene conver-
sion [149]. ITS1 has been successfully used to distinguish medicinal herbs, such as Amomum
villosum (Zingiberaceae), and to differentiate Boerhavia diffusa (Punarnava) from Boerhavia
erecta [150,151]. ITS1 has also been exploited for the reliable authentication of medicinal
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plants, detecting adulterants and substitutes of Gmelina arborea (Gambhari) [152]. Combin-
ing the ITS rDNA marker and cytogenetic analysis has helped resolve many taxonomic
riddles, including citrus species and subspecies [153]. The main concern with this marker
is its weak discrimination power for lower taxa and lack of species resolution, so carefully
selecting the ITS marker is of utmost importance to avoid negative results [154].

3.1.14. Directed Amplification of Minisatellite DNA (DAMD)

DAMD markers were elucidated by Heath [155] and have found varied applications
in plant diversity research in Cucumis sativus [156], Capsicum [157], and more recently, in
citrus [158] and Musa cavendishii [159]. Numerous DAMD primers have been successfully
harnessed to assess genetic diversity among distinct plant genotypes, as evidenced by
the works of Ince and Karaca [160], Jain [161], and Saleh [162]. The DAMD markers
have the advantages of not requiring prior sequence information, inheriting through
Mendelian fashion, and behaving as dominant markers, although they may have limitations
in reproducibility and the non-homology of generated fragments [155].

A concise overview, including examples, of applying a single marker system in genetic
diversity studies of some plant species is illustrated in Table 1.

3.2. Utilization of Combined Molecular Markers

Using a single marker system in plant genetic diversity studies has limitations, neces-
sitating the adoption of a multi-marker approach [19]. These arise because the conclusions
drawn from analyzing a specific marker type can be effectively supported and validated
by the findings derived from another marker. The simultaneous use of multiple markers
can yield more precise outcomes with enhanced reliability and accuracy, thereby aiding in
developing effective plant conservation strategies and improving crop varieties [6].

3.2.1. Cumulative Applications of Dominant Markers

Goswami [163] utilized RAPD and SCoT markers to investigate genetic variation in
Lasiurus sindicus, revealing high percentages of polymorphic bands from both markers.
The study emphasized substantial within-population genetic variation (90%) compared to
among-population variation (10%) and provided valuable insights into the plant’s genetic
diversity and potential for conservation and enhancement. Hromadova [164] assessed
the effectiveness of 10 RAPD and 10 SCoT markers in detecting genetic diversity among
33 common bean genotypes. The SCoT markers (MI = 7.474, DI = 2.265) proved more
effective than the RAPD ones (MI = 5.323, DDI = 1.612) with higher diversity detection index
(DDI) and marker index (MI) values. Dendrograms and PCoA plots from both markers
confirmed the distinct separation of bean genotypes, with the SCoT markers outperforming
the RAPD markers in detecting genetic diversity.

Mansoory [165] employed ISSR and SCoT markers to evaluate the genetic diversity
of 57 Diospyros genotypes from Iran. A cluster analysis grouped the genotypes into four
clusters, with D. kaki in groups one and two, D. lotus in group three, and D. virginiana in
group four. Combining both markers enhanced genotype separation, indicating Iran’s rich
Diospyros germplasm and the utility of multiple markers for accurate diversity assessment.
Alzahrani [166] examined genetic divergence in sixteen Medicago sativa (Alfalfa) cultivars
(twelve from Saudi Arabia and four from Egypt) using ISSR and SCoT markers. ISSR
generated 163 bands (60% polymorphism), while SCoT produced 150 bands (77% polymor-
phism), with the cultivars clustering into two populations in the dendrogram, aiding alfalfa
breeding for drought tolerance and high yield. SCoT and IRAP markers have also proven
helpful for assessing inter- and intra-specific genetic diversity in Diospyros germplasms
for genotype identification and the adoption of effective conservation efforts [167]. Bhat-
tacharyya [168] deployed ISSR and DAMD markers cumulatively to accurately assess the
genetic relationships among distinct Dendrobium nobile germplasms. Khodaee [169] studied
the genetic diversity of 48 Aegilops triuncialis accessions in Iran using SCoT, CBDP, and ISSR
markers. A total of 359 DNA fragments were generated, with ISSR showing the highest



Int. J. Plant Biol. 2024, 15 617

diversity (PIC = 0.3, MI, Rp) among the multiple markers applied. Genetic diversity was
greater in the Alborz population, with the UPGMA classification of accessions aligned with
the geographical distribution. Combined markers offer more significant insights for future
wheat breeding programs.

Arya [170] explored the genetic diversity of 20 Morinda tomentosa genotypes using
131 SCoT, 97 RAPD, and 70 ISSR markers. The SCoT markers exhibited the highest poly-
morphism (70.23%), Nei’s gene diversity (0.20), and geographic clustering, followed by
ISSR and RAPD. The efficacy of SCoT and ISSR markers for genetic diversity analysis and
geographic patterning of M. tomentosa was emphasized, enabling potential strategies for
conservation and collection across regions and globally. EL-Mansy [171] also investigated
the divergence aspects of six tomato lines (G1, G2, G3, G4, G5, and G6) using RAPD, ISSR,
and SCoT markers. The marker analysis highlighted ISSR primers 49A, HB-14, 49A, 49B,
and 89B as the most informative, with ISSR providing the highest unique specific markers
(six), followed by RAPD (four) and SCoT (three). The cluster analysis showed the grouping
of G1, G2, and G3 together and separated other lines. Apana [6] conducted an investiga-
tion into the genetic diversity and population structure of Clerodendrum serratum utilizing
diverse molecular markers, including CBDP, iPBS, ISSR, and SCoT. The findings revealed
that SCoT markers exhibited more efficacy in detecting polymorphisms and distinguishing
genotypes than the remaining markers in the study. The multiple marker analysis revealed
moderate gene flow and low genetic differentiation among the populations, with no sig-
nificant correlation between the geographic and genetic distances. Three genetic clusters
were determined using individual markers, while five genetic groups with high admixture
were observed using pooled marker data, aiding in the conservation and management of
C. serratum. The combined use of 15 ISSR, 11 SCoT, and 10 iPBS primers by Amom [4] in the
genetic diversity and population structure study of endemic Dendrocalamus manipureanus
showed significant genetic differentiation among the populations due to low gene flow, as
indicated by the GST (0.684) and Nm (0.230) values. The BARRIER analysis identified nine
genetic barriers, suggesting hindrances to gene flow. The findings from the cumulative
analyses hold significant implications for effectively managing and enhancing the genetic
characteristics of indigenous bamboo.

Tahir [20] applied ISSR, CDDP, and SCoT markers to explore genetic diversity in
59 barley accessions, generating 391 bands (255 ISSR, 35 CDDP, and 101 SCoT). SCoT
displayed superior allelic diversity assessment with gene diversity averages at 0.77 (ISSR),
0.67 (CDDP), and 0.81 (SCoT), and the PIC recorded at 0.74 (ISSR), 0.63 (CDDP), and
0.80 (SCoT). Barley was grouped into two main clusters, with 15%, 9%, and 14% variability
among the populations. Tiwari [172] utilized two sets of markers for the analysis of genetic
diversity in 39 Andrographis paniculata specimens. They employed gene-targeted markers,
specifically twenty-two SCoT and nineteen CBDP primers, alongside arbitrary amplified
markers comprising eighteen RAPD and five ISSR primers. Notably, gene-targeted markers
yielded more amplified amplicons, with 132 and 97 for SCoT and CBDP, respectively,
compared to 124 and 32 for the RAPD and ISSR markers. Furthermore, it was observed
that the polymorphic information content (PIC) values ranged from 0.09 to 0.48, with an
average value of 0.34 and 0.41 per primer for the SCoT and CBDP markers, respectively.
The resolving power ranged from 2.36 to 10.54, averaging 1.39 to 13.15 per primer for
the SCoT and CBDP markers, respectively. Both the PIC and resolving power exhibited
high values in the gene-targeted markers, whereas for the RAPD and ISSR markers, the
PIC values extended from 0.32 to 0.45, and the resolving power ranged from 2.13 to 10.03.
These findings underscore the clear applicability and reliability of gene-targeted markers
for assessing genetic diversity in A. paniculata.
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Table 1. Plant genetic diversity studies using a single marker system.

Molecular Markers Applications Plants
Investigated References

AFLP
Amplified fragment length polymorphism: uses
restriction enzymes and primers specific to genomic
DNA to amplify DNA fragments of different sizes.

Detects genetic variation within and among
populations, linkage mapping, discrimination of
cultivars, and association analyses.

Tectona grandis; Brassica oleracea; Glehnia
littoralis; Solanum tuberosum; Daucus carota [173–177]

ISSR
Inter-simple sequence repeat: uses primers specific to
inter-microsatellite regions to amplify DNA fragments
of different sizes.

Evaluates genetic variation within and among
populations, linkage mapping, and
association analyses.

Lepidium sativum; Balanites aegyptiaca; Prunus
armeniaca; Vigra unguiculata; Camellia
yuhsienensis; Clitaria ternatea

[178–183]

RAPD Random amplified polymorphic DNA: uses arbitrary
primers to amplify DNA fragments of different sizes.

Detects genetic variation within and among
populations and genetic similarity.

Carica papaya; Coffee canephora; Allium sativum;
Dendrobium species; Nigella sativa [184–188]

SSR
Simple sequence repeat: uses primers specific to
microsatellite regions to amplify DNA fragments of
different sizes.

Ascertains genetic variation within and among
populations, linkage mapping, association
analyses, and plant breeding.

Solanum tuberosum; Cajanus cajan; Vicia amoena;
Allium sativum; Curcuma longa [119,126,189–191]

RFLP

Restriction fragment length polymorphism: uses
restriction enzymes to cut DNA at specific sites, and
the resulting fragments are separated via
gel electrophoresis.

Detects genetic variation within and among
populations and DNA fingerprinting. Oryza sativa; Fragaria x Ananassa; Brassica juncea [192–194]

DArT
Diversity array technology: a high-throughput marker
technology that uses a combination of restriction
enzymes and a microarray platform.

Determines genetic variation within and among
populations and marker-assisted selection.

Lesquerella species; Glycine max; Vigna
unguiculata; Camellia sinensis [195–198]

SCAR
Sequence-characterized amplified region: uses primers
specific to a known DNA sequence to amplify a
fragment of a specific size.

Detects specific genes or alleles in a population
and marker-assisted selection.

Calanthe species;
Poa pratensis; Dendrobium officinale; Musa species;
Moringa oleifera

[199–203]

CAPS
Cleaved amplified polymorphic sequence: uses
restriction enzymes and primers specific to a known
DNA sequence to amplify a fragment of a specific size.

Detects specific genes or alleles in a population,
identification of cultivars, and
marker-assisted selection.

Glycyrrhiza species; Lathyrus sativum; Citrullus
lanatus; Zingiber officinale; Capsicum annum [100,204–207]

IRAP
Inter retrotransposon amplified polymorphism: uses
primers specific to transposable elements to amplify
DNA fragments of different sizes.

Evaluates genetic variation within and
among populations.

Sorghum bicolor; Piper nigrum; Hordeum vulgare;
Pinus sylvestris; Sakura species [208–212]

CDDP
Conserved DNA-derived polymorphism: uses a single
primer constructed with a conserved area of
functional genes.

Ascertains genetic variation within and
among populations.

Salix taishanensis; Pistacia vera; Musa species;
Arachis hypogaea; Amomum tsao-kosaleh [138,213–216]
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Table 1. Cont.

Molecular Markers Applications Plants
Investigated References

DAMD
Directed amplification of minisatellite-region DNA:
uses a single primer specific to
inter-microsatellite regions.

Assesses genetic variation within and
among populations.

Capsicum; Origanum syriacum; Salvia officinalis;
Ficus sycomorus [157,217–219]

SRAP
Sequence-related amplified polymorphism: uses
arbitrary forward and reverse primer combinations
targeting ORFs to amplify a coding region.

Detects genetic variation within and among
populations, mapping and tagging genes,
germplasm identification, and sex determination.

Cuminum cyminum; Pinus yunnanensis;
Lavandula angustifolia; Aspergillus flavus;
Zea mays

[220–224]

SCoT

Start codon-targeted polymorphism: uses a
short-conserved region flanking the start codon,
producing highly reproducible amplification of
targeted DNA fragments of different sizes.

Detects genetic variation within and among
populations, determines population structures,
identifies cultivars, QTL mapping, and
DNA fingerprinting.

Ardisia crenata; Avena nuda; Scutellaria
baicalensis; Trigonella species; Triticum aestivum;
Crataegus monogyna

[225–230]

ITS2

Internal transcribed spacer 2: a segment of the internal
transcribed spacer (ITS) region, utilized as an
alternative for species differentiation, involves the
spacer DNA located within the tandem repeats
separating the small and large subunits of ribosomal
RNA (rRNA). ITS primers are designed to amplify the
gene sequence containing the fastest-evolving region
of the rRNA gene, resulting in fragments of varying
sizes for differentiating species.

Evaluates genetic variation within and among
populations, intraspecific variation, species
identification, authentication of plant variety, and
detection of adulterants.

Dendrobium species; Physalis species;
Astragalus species; [231–233]

iPBS

Inter-primer binding site: uses the primer binding site
for the reverse transcription enzyme of the LTR
retrotransposon. No prior sequence information to
amplify DNA fragments of different sizes, a preferred
universal marker system.

Detects genetic differentiation at both the
intra-specific and inter-specific levels,
marker-assisted selection, and breeding.

Abelmoschus esculentus; Alfalfa; Phaseolus
vulgaris; Triticum species; Brassica species;
Castanea sativa

[234–239]

CBDP

CAAT-box derived polymorphism: Uses the CAAT
box consensus sequence of the plant promoter
upstream of the start codon to amplify DNA fragments
of different sizes.

Detects genetic diversity among and within
species/populations, cultivar identification,
linkage map construction, and
marker-assisted selection.

Triticum durum; Salvia species; Lens culinaris [73,74,240]

STS
Sequence-tagged site: Short DNA sequences of known
locations that are easily detectable using PCR and
serve as landmarks in the physical map of the genome.

Variation analysis, gene expression, genome
mapping, and gene silencing.

Cenchrus species; Triticum aestivum; Oryza sativa;
Agropyron cristatum; Secale cereale;
Thinopyrum intermedium

[241–246]
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Amom [19] applied four markers (RAPD, ISSR, iPBS, and SCoT) to analyze 50 geno-
types of native bamboo in North-East India. Forty primers of four marker systems gener-
ated varying polymorphic bands, with SCoT being the most informative and discriminatory.
The Mantel test revealed a highly positive correlation between the markers, ranging from
0.60 (SCoT and RAPD) to 0.83 (iPBS and ISSR), indicating their effectiveness. The genetic
clustering of bamboo genotypes is based on DNA markers aligned with their geographical
origins. The multiple markers analysis produced precise genetic relationship determination
among the native bamboo. Gene-targeted markers like SCoT and CBDP, used in conjunc-
tion with other molecular markers such as DAMD, CDDP, and IRAPs, have significantly
contributed to the analysis of genetic relationships, gene mapping, conservation, breeding,
and conservation of many medicinal and food crops [247,248].

3.2.2. Cumulative Application of Dominant and Co-Dominant Markers

Using both dominant and co-dominant markers in plant genetic diversity studies
offers several advantages, as these markers provide good genome coverage and more
accurate genetic data [249]. Additionally, they compensate for each other’s limitations. The
studies conducted on Maize [250], Shorea curtisii [251], and Stenotaphrum secundatum [252]
using AFLP and SSR markers facilitated the identification of quantitative trait loci (QTL) on
specific chromosome regions. Applying AFLP and SSR markers has also been instrumental
in explaining the high phenotypic variance observed between rice varieties [253]. Basu [254]
assessed genetic diversity in jute cultivars (Corchorus olitorius and C. capsularis) using SSR
and AFLP markers. The study revealed high variation between the two jute species,
indicating distant maternal and possible different origins. However, some prominent
Indian cultivars were closely related to wild accessions with unique genotypes from India
and Kenyan accessions.

The genetic relatedness of 82 walnut genotypes from the Himalayan region was exam-
ined using 13 SSR and 20 RAPD primers [255]. High genetic diversity was evident within
populations, with SSR primers displaying one to five alleles per locus and RAPD primers
showing two to six alleles. Polymorphic loci were at 100%, and the average similarity was
49% (12% to 79%). The dendrogram analysis using these two markers revealed four sub-
clusters, significantly affecting walnut breeding and conservation strategies. Zargar [256]
employed 15 RAPD and 23 SSR markers to assess diversity among 51 common bean geno-
types exhibiting high polymorphism, generating 171 polymorphic RAPD and 268 SSR
bands. SSRs demonstrated a greater PIC value (0.300) and resolving power (5.241) than
RAPDs, while RAPDs had a higher marker index (2.69). Hierarchical clustering accurately
grouped genotypes based on cultivation area, and STRUCTURE analysis revealed three
subpopulations aligned with distance-based groupings, indicating significant genetic diver-
sity. Dar [257] explored genetic diversity among 47 sesame accessions using 22 RAPD and
18 SSR primers, with RAPD primers yielding 191 polymorphic bands while SSR primers
produced only polymorphic fragments. SSRs exhibited higher polymorphic information
content (0.194), while RAPDs showed a greater marker index (1.426) and resolving power
(4.012). The genetic information derived from the cumulative application of markers em-
phasized their potential applications in DNA fingerprinting, germplasm conservation, and
crop enhancement for Sesamum indicum.

Nascimento [258] observed high polymorphisms (95% for SSR and 75.8% for ISSR)
while assessing the genetic diversity of 53 Dioscorea trifida accessions using eight SSR and
sixteen ISSR markers. The dendrogram analysis of both markers showed the accessions
clustering into three main groups, with the Bayesian and principal coordinate analyses
supporting the grouping. While high variation was observed within groups (66.5% for
SSR and 60.6% for SSR), the genetic and geographic distances showed slight correlations
(r = 0.08, p = 0.0007 for SSR; r = 0.16, p = 0.0002 for ISSR). Hammami [259] demonstrated
significant differences among populations (67%) but lower variation within populations
(24%) in wild Brachypodium using SSR and ISSR markers. SSR and ISSR analyses revealed
higher polymorphic fragments in B. hybridum than in B. distachyon with species-specific
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clustering. The principal component analysis linked genetic traits, climate, and geography,
separating the two species. Ramzan [260] investigated the genetic diversity in twenty-one
Tamarix samples using ten ISSR and six SSR primers, with significant polymorphisms
(88.5% for ISSR and 80.28% for SSR) and high mean PIC values of 0.34 (ISSR) and 0.35 (SSR).
The genetic variability among ecotypes was high, with dissimilarity indexes ranging from
0.00 to 0.77, and the Kalurkot and Bhakkar specimens showed the highest dissimilarity.
Nazir [261] showed that using SSR markers in a study on 63 buckwheat genotypes, includ-
ing local variants from India’s northwestern Himalayas, produced effective polymorphisms.
ISSRs exhibited higher resolving power (4.38) than SSRs (1.42), while SSRs showed a greater
average PIC value (0.43) than ISSRs (0.36). Geographical clustering using the two marker
systems was accurate, and the STRUCTURE analysis unveiled substantial genetic diver-
sity within the population, benefiting buckwheat breeding and conservation endeavors.
Papaioannou [262] examined the genetic diversity of 27 garlic accessions using SSR and
ISSR markers, revealing 26 distinct alleles for SSR and 84 for ISSR. SSR markers exhibited
a higher redundancy level than ISSRs, potentially indicating duplicated accessions. An
AMOVA highlighted that most molecular diversity originated from within-accession differ-
ences while clustering analyses using UPGMA, STRUCTURE, and PCoA based on SSRs
showed consistent results.

The comparative analysis of gene diversity using dominant DArT and co-dominant
SSR and SNP markers in Lolium perenne revealed that the DArT marker exhibited the highest
consistency and reproducibility [263]. Additionally, genome SSR and CAPS markers
were proven effective in identifying suitable candidates for breeding salt-tolerant rice
(Oryza sativa L.) and locating high sodium transport-associated genes for mapping [264].
Shahnazari [265] employed SSR and CAPS-SSR markers to genetically fingerprint 13 sweet
orange cultivars using SSR markers, which enabled hybrid prediction in orange cultivars,
showing high diversity among sweet orange trees. The cultivars exhibited high genetic
variability (with an average polymorphism of 98.46%), with Behshahr and Jadeh Ghadim 2
genotypes showing the highest and lowest genetic diversity values. Additionally, K-means
clustering divided the cultivars into two main groups, while genetic similarity suggested
potential cases of homonymy or synonymy. The applications of combined markers in the
genetic diversity studies of different plants are briefly described in Table 2.
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Table 2. Genetic diversity studies in plants using multiple marker systems.

Marker Combination Marker Types Number
of Marker Systems Plant Species References

SCoT + ISSR Dominant Two

Dendrobium crysotoxum (SCoT = nine primers; ISSR = twenty primers; genetic
diversity within population: ISSR = 86%; SCoT = 74% and between
population: ISSR = 14%, SCoT = 26%)
Diospyros species (ISSR = seven primers; SCoT = ten primers; average PIC:
ISSR = 0.30, SCoT = 0.36; average marker index (MI): ISSR = 1.81; SCoT = 1.79)
Cucurbita pepo (seven SCoT primers produced forty-nine polymorphic bands
and six ISSR primers generated forty-two bands)

[33,165,266]

CBDP + SCoT Dominant Two

Bauhinia racemose (out of 25 CBDP primers, 21 produced 97 scorable bands,
and for SCoT, 18 out of 36 primers produced 88 scorable bands)
Triticum aestivum, Aegilops cylindrical, and A. crassa (CBDP = 15 primers; SCoT
= 15 primers; PIC for SCoT: 0.31–0.39, CBDP: 0.28–0.36; cluster analysis: all
samples were grouped based on their genomic constitution)

[267,268]

SCoT + ISSR + RAPD Dominant Three

Kalanchoe genotype (ScoT, ISSR, and RAPD = 10 primers each; polymorphism
percentage: SCoT = 57%; ISSR = 15%, RAPD = 60.25%)
Lathyrus species (SCoT = eight primers; ISSR = eight primers; RAPD = six
primers; polymorphism: SCoT = 96%; ISSR = 96.81%; RAPD = 94.2%)

[269,270]

SSR + AFLP Co-dominant and dominant Two

Jatropha curcas (seven AFLP primer combinations produced seventy
amplified polymorphic loci; thirty SSR primers were used, out of which
seventeen were amplified in an appropriate size range)
Pyrus pyrifolia (SSR; AFLP = 10 primers each; average PIC for SSR = 0.7585;
polymorphism percentage for AFLP = 86.46%; genetic diversity: rich and
highly representative)

[271,272]

ISSR + DAMD Dominant Two Rosa species (ISSR = ten primers; DAMD = eight primers; genetic variation
within population = 86%, between populations = 14%) [273]

DArT + SNP Dominant and
co-dominant Two

Manihot esculenta (DArT = 10,521 markers; SNP = 10,808 markers; average
PIC for DArT = 0.36; SNP = 0.28)
Glycine max (DArT = 16,116 markers; SNP = 19,505 markers; genetic variance:
DArT = 98%; SNP = 97%)

[274,275]

DArT + SNP + SSR Dominant and co-ominant Three Lolium perenne (DArT = 1384 markers; SNP = 182 markers; SSR = 48 markers;
Genetic diversity: DArT = 0.26; SNP = 0.32; SSR = 0.45) [263]
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Table 2. Cont.

Marker Combination Marker Types Number
of Marker Systems Plant Species References

SCAR + RAPD Co-dominant and dominant Two Nicotiana tabacum (two out of eight SCAR markers; seven out of two hundred
RAPD markers efficiently discriminated a large number of Tobacco cultivars) [276]

CAPS + SSR Co-dominant Two

Oryza sativa (a set of twenty-eight genome-wide SSR markers; eleven
salt-responsive genic SSR markers; eight salt QT-linked SSR markers; CAPS
markers: OsHKT1; 5v395)
Citrus sinensis (a total of five markers; average genetic
polymorphism = 98.46%; CAPs-SSR indicated more genetic variability)

[264,265]

CAPS + SSR + SNP Co-dominant Three Citrullus lanatus (CAPS = fifteen markers; SSR = six markers; SNP = two
markers; mapping confirmation of BSA-seq: yellow skin) [277]

SSR + ISSR Co-dominant and dominant Two

A total of 28 accessions of Curcubita pepo were compared utilizing ISSR
markers, detecting 90 polymorphic bands. Additionally, SSR markers were
proposed to further elucidate infra-specific relationships within C. pepo.
Gossypium herbaceum (SSR = thirteen markers; ISSR = five markers; average
coefficient similarity = 0.32; low correlation and high variation)

[278,279]

SCoT + DAMD Dominant and co-dominant Two
Mosses (the inaugural genetic diversity study of three moss species
incorporated the utilization of SCoT and DAMD markers to enhance the
discriminatory power and precision within the species)

[280]

CDDP+ ISSR Dominant Two Quercus infectoria (ISSR = twelve primers; CDDP = nine primers; population
variance within: ISSR = 92.97%; CDDP = 94.17%) [281]

ISSR + SRAP Dominant Two Musa species (ISSR = eight primers; SRAP = seven primers; polymorphic
bands: ISSR = 81.6%; SRAP = 87.7%) [282]

STS + CAPS Co-dominant Two
Camelia sinensis (STS = two primers; CAPS = thirty-seven primers; high
genetic diversity between the two varieties: C. sinensis var. sinensis and C.
sinensis var. assamica)

[283]

SCoT + IRAP Dominant Three Bletilla striata (SCoT = twenty primers; IRAP = eight primers; polymorphic
bands: SCoT = 96.17%; IRAP = 94%) [284]
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4. Drawbacks and Recent Developments in DNA Marker Technology

The applicability of DNA markers is enormous, but they are endowed with many
drawbacks that limit their uses in plant research. One of the main disadvantages is the
high cost of marker technology, which may require expensive equipment like PCR and
DNA sequencers, commercial kits, reagents, etc. [285,286]. The high expenses may restrict
access to this technology for a smaller group of researchers with limited funds [23]. Other
weaknesses of molecular markers include longer time consumption, especially for large-
scale investigations, and potential environmental effects on the results of molecular marker
studies due to factors such as temperature, light, moisture, etc. [24]. Specific markers must
be selected for certain investigations, as the choice of marker may influence the outcome
of the study [287]. Hussain and Nisar [2] also emphasized the significance of selecting
suitable markers for plant genetic diversity studies, as some may not work for other
species. However, markers specifically designed for a particular species are not readily
available and are difficult to establish, as the available reference genomes or markers
influence the development of new markers [288]. Many markers cannot represent the
entire genome, as they cannot provide complete coverage of the whole plant genome,
resulting in an inaccurate evaluation of genetic diversity and relationships. Guo [289]
highlighted the importance of combining molecular markers and other techniques to
acquire a more comprehensive and accurate picture of genetic variation. Jagtap [290] also
stressed the validation of the results of molecular marker analysis with other methods,
as they are associated with a high false positive rate. Another drawback of molecular
markers is the difficulty in interpreting and analyzing complex data. The interpretation of
extensive molecular data requires experts with good knowledge of biology and population
genetics [13]. Furthermore, managing and analyzing large datasets generated from high-
throughput genotyping by sequencing platforms is a daunting task that involves advanced
software and expertise. Using these markers requires technical personnel with specialized
skills and knowledge in genetics and molecular biology [9].

Despite several limitations, molecular markers remain vital tools for understanding
genetic diversity and the evolution of plant species for the last three decades. However,
the necessity to develop more efficient and novel markers for assessing genetic variation,
species identification, and molecular systematic studies is becoming increasingly apparent.
The advancement of marker technology in recent times has partly addressed some limi-
tations and challenges in using markers in plant research. One significant advancement
was the emergence of SNPs, representing a third-generation molecular marker technology
succeeding RFLPs and SSRs, among others. SNPs, which determine variation within a sin-
gle nucleotide of DNA, can be easily detected with recent advancements in genomics [291].
Coined by Eric S. Lander in 1996, SNPs originated from sequence polymorphisms resulting
from single nucleotide mutations at specific loci within DNA sequences [292] (Figure 3).
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SNPs have yielded profound insights into genetic diversity, facilitating the elucidation
of relationships between distinct varieties and empowering cultivators to enhance crop
yields and safeguard germplasm integrity [293]. Notably, SNP markers have effectively
delineated Gossypium hirsutum from other Gossypium species and have further demarcated
wild from cultivated G. hirsutum [294]. Similarly, they have facilitated discrimination within
the notably diverse Ethiopian sorghum population [295]. Employing SNP sequences from
nuclear and chloroplast gene regions has proven advantageous in diverse applications,
including phylogenetic analysis, evolutionary studies, and inheritance determination [296].
Remarkable genetic diversity within maize inbred lines and heterotic groups has been
revealed through SNP genotyping [296]. Furthermore, genome-wide SNPs within various
Camellia sinensis varieties have been identified through genotyping-by-sequencing [297].
SNPs are preferred over conventional SSR markers as they are economical, reliable, effective,
stable, and amenable to automation [298,299]. However, developing SNPs in plants is tough
with the unavailability of many sequenced model plants and the possibility of duplication
of complex genomes with rich repeat sequences [300].

The rapid progression of next-generation sequencing (NGS) technology, cost reduc-
tion, and the development of new bioinformatics pipelines have enabled the discovery
of SNPs on a large scale in several plants [300]. Genotyping-by-sequencing (GBS) is a
rapid, high-throughput, and affordable NGS-based approach for SNP identification in
a combined one-step marker detection and genotyping process without requiring the
reference genome [301,302]. A simplified representation of experimental steps involved
in GBS technology is shown in Figure 4. SNPs generated through GBS application are
extremely helpful for genetic diversity analysis, genome-wide association studies (GWAS),
QTL mapping, genomic selection, and breeding improvement without known markers in
several non-model plant species prevailing across the globe [303,304]. Tomar [305] used
a total of 14,563 high-quality SNPs identified using GBS to genotype and illustrate the
population structure and genetic variation within and between subgroups of 141 elite
advanced breeding lines of spring wheat from CIMMYT (Mexico). The determination of
low heterozygosity between advanced wheat breeding lines within subgroups and the
moderate variation among subgroups revealed the possibility of applying the elite wheat
breeding lines for further GWAS studies. Diaz [306] utilized the SNPs from GBS to analyze
the genetic diversity and population structure of the Acrocomia genus, consisting of 172 sam-
ples from seven species. The study affirmed the classical taxonomy of the genus, showing
specific groups and the genetic differentiation of A. aculeata, A. totai, A. intumescens, and
A. crispa. Dang [307] also employed 92,719 high-quality SNPs originating from restriction-
site-associated DNA sequencing (RADseq/GBS) technology to determine low genetic
diversity (HO = 0.249 and HE = 0.208) and population differentiation in Reaumuria trigyna.

They also observed the positioning of 353 outlier SNPs in 243 gene coding sequences
in the R. trigyna transcriptome with potential sites of diversifying selection in the genes
related to secondary metabolite synthesis and hormone regulation. The SNPs identified
through GBS proved to be highly efficient markers that have been applied for genetic
diversity studies of several plants, such as Cenchrus americanus [308], maize [309], and
Ipomea batata [310]. A systematic investigation of 128 maize inbred lines by Dube [311] using
11,450 SNP markers revealed significant genetic diversity (p < 0.001) in key phenotypic
traits. The mean gene diversity (GD) and polymorphic information content (PIC) were
0.40 and 0.31, indicating substantial variation. The population structure analysis identified
three subpopulations consistent with the phylogenetic analysis. These findings from
SNP marker analysis highlighted considerable genetic diversity in maize inbred lines,
providing a foundation for selecting lines with favorable alleles and suggesting potential
applications of marker-assisted selection for key agronomic traits. Haung [312] proposed
constructing a broccoli fingerprint using SNPs for cultivar identification, understanding
global broccoli diversity, and providing insights for advancing breeding programs. They
analyzed 161 broccoli cultivars using 10 selected pairs of SNP primers, generating 78 alleles.
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The polymorphic information content (PIC) ranged from 0.64 to 0.90, revealing genetic
similarities and distinctions between domestic and foreign cultivars.
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SNP microarrays are another high-throughput genotyping platform that relies on
hybridization and fluorescence principles and can genotype thousands to millions of SNPs
across the genome in a single experiment [313]. These microarrays are extensively used in
plant genetic research due to their efficiency, accuracy, and ability to provide comprehensive
insights into the genetic makeup of plant populations [313]. The SNP array is a specialized
type of DNA microarray that includes carefully designed probes, each carrying information
about specific SNP positions. In the hybridization process, these probes interact with
fragmented DNA to determine the distinct alleles of all SNPs present on the array for a
specific DNA sample [314]. The exhaustive scrutiny of SNP data yields insights into genetic
variations and structural modifications within the genome, allowing for a meticulous
characterization of genomic abnormalities [315]. Several SNP arrays have demonstrated
successful applications in genotyping diploid plants. Notable examples include the Apple
480 K SNP array, the Maize 600 K SNP array, and the Rice 700 K SNP array [316]. Each
array provided a comprehensive platform for genotyping, offering insights into the genetic
variations within their respective plant species [317]. Creating and fine-tuning SNP arrays
involves a significant investment of time and effort and a notable challenge in this process
is the occurrence of ascertainment bias [318]. This bias often arises from non-random
polymorphism sampling or limited SNP discovery panels [319]. Various strategies are
employed to address and minimize such bias. High-coverage whole-genome sequencing
is one approach that aims to provide a more comprehensive and unbiased representation
of genetic variation [320]. Additionally, updates to SNP array markers are implemented
to incorporate discoveries and enhance the accuracy of genotyping information. Another
tactic involves the integration of markers from multiple arrays, offering a more inclusive
perspective on genetic diversity [321].

The development of DNA barcode techniques also facilitates plant diversity research
by correctly identifying plant samples in a repeatable and reliable manner and determining
the consistency of species definition across plant lineages with a measure of genetic vari-
ability based on the DNA barcode sequence data [321]. The efficiency of DNA barcodes
relies on combining the strengths of molecular genetics, sequencing technologies, and
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bioinformatics [321]. Ribulose bisphosphate carboxylase large chain (rbcL) and maturase K
(matK) genes are used as core DNA barcodes for seed plants, while the psbA-trnH inter-
genic spacer (psbA-trnH) and internal transcribed spacer (ITS) sequences are employed
as supplementary DNA barcodes [322]. DNA barcode technology is utilized for accurate
identification, genetic differentiation, and phylogenetic and species discrimination studies
on several plants [323,324]. Enhancements in the field of epigenetics may also play a
significant role in diversity study as epigenetic modification, like DNA methylation, can
alter gene expression, influencing different adaptation responses of plants to environmental
changes [17]. Massicote [325] mentioned the dependence of epigenetic processes on genetic
variation. Wang [326] stated that epigenetic variation is the absolute downstream effect of
genetic changes, while some considered it an independent phenomenon [327]. The assimi-
lation of marker data with epigenetic information may potentially provide new insights
into plant genetic diversity studies. The recent development of many improved bioin-
formatics tools also enabled the integration of molecular marker data with other sources
of genetic information like genomic sequences, making it more efficient in plant genetic
diversity analysis [328]. Advancements in molecular genetics, next-generation sequencing
technologies, and bioinformatics have accelerated the development of more efficient and
advanced molecular markers, which help address the challenges and limitations of using
molecular markers in plant research.

5. Conclusions

Various molecular markers have been employed over the past three decades to study
varied aspects of genetic diversity, including assessing the gene flow, population structure,
and cluster analysis of several plants. The development of more advanced gene-targeted
markers through rapid progression in molecular genetics has enabled the generation of
high-resolution genetic data to make accurate decisions about appropriate conservation
strategies for many important plants. Despite their many useful characteristics, the markers
are also associated with several limitations that must be resolved. Developing efficient
and cost-effective markers that can offer more precise and complete information on plant
diversity level, population genetic structure, and cluster assignment is highly essential. The
combination of multiple markers and genomic data generated through high throughput
sequencing technologies will immensely help accelerate the understanding of plant genetic
structure by providing a more comprehensive picture of diversity at the genome-wide
level. With the continuously evolving technology, the prospect of molecular markers in the
genetic analysis of plants is promising and bright, offering great potential in expanding our
knowledge in properly preserving and utilizing increasingly depleting plant resources.
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