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Abstract: This study presents a pioneering investigation into the use of Light Emitting
Diodes (LEDs) for in vitro rooting of ‘Marubakaido’ apple tree rootstocks, marking the
first report of this approach in the literature. The research evaluates the effects of four
distinct light sources: blue LED (450 nm), red LED (660 nm), a combination of red and
blue LEDs, and traditional fluorescent lamps as a control. Mini-cuttings were inoculated in
Murashige and Skoog (MS) medium with reduced nutrient concentrations, supplemented
with indoleacetic acid (IAA) and sucrose. The explants were incubated under controlled
conditions for 30 days, enabling a comprehensive assessment of the impact of different
light sources on various growth metrics. The results revealed that blue LEDs significantly
enhanced dry mass accumulation in seedlings compared to both red LEDs and fluorescent
lamps, demonstrating their superior effectiveness in promoting plant growth. The use
of LEDs not only improves seedling development but also offers economic advantages
over fluorescent lamps. LEDs are characterized by high luminous efficiency, low energy
consumption, and a long operational lifespan, which collectively reduce costs in plant
production systems. This research advances the understanding of light-mediated effects
on plant tissue culture and highlights the potential of combining blue and red LEDs as a
viable alternative to fluorescent lighting. These findings could revolutionize practices in
horticulture and plant propagation, providing a more efficient and sustainable approach to
in vitro cultivation.

Keywords: Malus domestica Borkh; Marubakaido; plants tissue culture; wavelength; LEDs

1. Introduction
Apples are the most widely cultivated fruit in temperate climates, leading in both

planted areas and consumption volume worldwide [1]. Brazil is a significant player in the
global apple industry, producing approximately 1.38 million tons of apples annually, of
which 6.9% is exported [2,3]. Apple cultivation ranks among the top six fruit crops in the
country, primarily concentrated in the southern regions, particularly in municipalities such
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as Vacaria (Rio Grande do Sul), Fraiburgo and São Joaquim (Santa Catarina), and Palmas
(Paraná) [4,5].

Rootstocks play an essential role in apple cultivation [6]. They are utilized for various
purposes, including reducing plant vigor, providing resistance to pests and diseases, adapt-
ing to diverse soil conditions, inducing early fruiting, and enhancing orchard productivity.
In recent decades, advances in clonal rootstocks developed through genetic improvement
have transformed the apple production chain [7–10].

In Brazil, the predominant rootstock is ‘Marubakaido’ [11]. Known for its vigor and
resistance to crown rot and wooly aphid, ‘Marubakaido’ is a widely used choice for apple
growers [12]. Traditionally, apple rootstocks are propagated through stool layering, a
method that, while effective, has significant limitations [13,14]. It is time-consuming, labor-
intensive, yields low output, and requires extensive physical space [13–15]. Additionally,
this propagation method carries the risk of perpetuating materials with phytosanitary
issues, potentially affecting orchard health [16,17].

In vitro vegetative propagation has been extensively studied for the production of
apple propagules [14], aiming at the mass multiplication of cultivars and the generation of
pathogen-free plants [15,18]. Also referred to as micropropagation, this technique facilitates
the true-to-type reproduction of genetically valuable plants by cultivating plant segments
in an artificial medium under aseptic conditions [19–22].

A common challenge in in vitro propagation systems is the high mortality rate of
seedlings during the acclimatization phase [19–22]. This highlights the need for strategies
that modify the environment, particularly during the final stages of micropropagation, to
produce more robust seedlings and enhance their survival in subsequent stages [23–25].
To improve the efficiency of in vitro propagation, environmental factors such as temper-
ature, humidity, ventilation, and light must be carefully optimized [26]. Among these,
light is the most critical factor, playing a significant role in regulating plant growth and
development [27].

Typically, in vitro plant growth rooms are equipped with artificial light sources, pre-
dominantly fluorescent lamps [28]. However, fluorescent lamps exhibit several drawbacks,
including high energy consumption, excessive heat generation, and wavelength peaks that
are not essential for seedling development [27].

Light-emitting diodes (LEDs) were introduced in the 1960s for plant production in
controlled environments. Since then, substantial advancements have been made in their
architecture, construction, and functionality. In 1961, the first infrared LEDs were patented,
paving the way for a broad spectrum of applications. LEDs are characterized by their high
efficiency, luminous intensity, low discharge of far-red and red light, and broad wavelength
range, encompassing ultraviolet (250–380 nm), visible light (380–760 nm), and infrared
light (760–1000 nm) [29].

LEDs have demonstrated promising results in plant tissue culture applications [27,30].
They offer specific peaks within the wavelength range most beneficial for plant growth [31]
and enable precise control over light quality by allowing the selection of specific wave-
lengths [32]. Additional advantages include high luminous efficiency with minimal heat
emission, long lifespan, absence of heavy metals, and low energy consumption [27,33].

Numerous studies have investigated the effects of monochromatic light, either indi-
vidually or in combination (e.g., two or more colors), on the growth and morphogenesis of
various in vitro-cultivated plant species [27]. These studies have shown that LED lighting
influences several plant characteristics, including vegetative growth [34], the formation of
photosynthetic pigments [26,35], and stomatal development, among others [36,37].

Ptak et al. [38] demonstrated that LED light significantly influenced various physio-
logical and biochemical parameters in stevia shoots, including stomatal appearance and
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density, photosynthetic pigment levels, soluble sugar content, and antioxidant enzyme
activities. Similarly, Saeedi et al. [39] reported that a combination of blue and red LED
spectra was particularly effective in promoting the growth and vegetative characteristics of
walnut explants in vitro, while also enhancing carotenoid production.

This study aimed to evaluate the effects of LED light sources on the in vitro rooting of
apple rootstocks from the ‘Marubakaido’ cultivar.

2. Materials and Methods
Mini-cuttings approximately 15 mm in length, derived from in vitro pre-established

seedlings of the ‘Marubakaido’ apple rootstock cultivar, were used as explants. These
explants were obtained from in vitro culture stocks, representing five generations of clonal
rootstock propagation originating from a living collection.

The experiments followed a completely randomized design with four treatments,
corresponding to four light sources: blue LED (450 nm), red LED (660 nm), a combination
of red and blue LEDs (10 diodes of 660 nm and 4 diodes of 450 nm), and fluorescent
lamps (control). Variables evaluated in the ‘Marubakaido’ seedlings included plant height,
number of leaves and roots, fresh and dry mass of shoots and roots, and chlorophyll
and carotenoid content. Five replicates, each consisting of four seedlings, were used for
the analysis.

The culture medium consisted of Murashige and Skoog (MS) medium [40], modified
to half the concentration of macronutrients and micronutrients, supplemented with iron
chelate (FeEDTA), ethylenediaminetetraacetic acid (EDTA), 1.0 mg/L indoleacetic acid
(IAA), and 30.0 g/L sucrose. The test tubes, with a capacity of 50 cm3, were sealed
using 7.0 × 7.0 cm pieces of aluminum foil and sterilized in an autoclave at 121 ◦C under
1.05 kg/cm2 pressure for 15 min. Following sterilization, 6.0 mL aliquots of the medium
were dispensed into the test tubes.

Prior to inoculation, the Laminar Flow Hood was disinfected with 70% ethanol and
sterilized with UV light (100–280 nm) for 20 min. Using sterilized tweezers and scissors,
mini-cuttings were isolated and vertically inoculated into the culture medium, with one
explant per tube.

The growth room was equipped with shelves featuring distinct light sources. Each
shelf was fitted with two tubular lamps:

Blue LEDs: Tecnal®, Tec-Lamp (450 nm, 14 diodes, 28 W, 99.6 ± 20.4 µmol m−2 s−1,
900 mm).

Red LEDs: Tecnal®, Tec-Lamp (660 nm, 14 diodes, 28 W, 82.2 ± 13.0 µmol m−2 s−1,
900 mm).

Red and Blue LEDs: Tecnal®, Tec-Lamp (10 diodes of 660 nm and 4 diodes of 450 nm,
28 W, 81.8 ± 14.3 µmol m−2 s−1, 900 mm).

Fluorescent Lamps (control): Osram®, T8 FO 32W/640 (24.4 ± 4.4 µmol m−2 s−1,
1200 mm).

Light-blocking curtains (Blackout®) were installed at the ends of the shelves to prevent
light interference from adjacent treatments.

The inoculated tubes were transferred to the growth room, where they were main-
tained for 30 days under controlled conditions: temperature of 25 ± 2 ◦C, 16 h photoperiod,
and specific lighting treatments. Environmental factors were monitored throughout the
rooting period.

At the end of the 30-day period, plant material was carefully removed from the test
tubes for evaluation. The parameters assessed included the following:

Height: Measured with a caliper, recording the distance between the collar region and
the insertion of the last leaf.
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Number of Leaves and Roots: Counted manually.
Fresh and Dry Mass: Shoots and roots were separated and weighed for fresh mass. They

were then dried in paper bags at 60 ◦C for 96 h, after which the dry mass was measured.
For pigment analysis, approximately 150 mg of fresh plant material was randomly

collected and ground in a mortar with a pestle. The macerate was filtered, and ethanol (95%,
NEON®) was added to a final volume of 50 mL in a volumetric flask wrapped in aluminum
foil. The extract was analyzed using a UV–VIS spectrophotometer (Varian Cary 50) with
absorbance readings at the following:

664 nm for chlorophyll a.
648 nm for chlorophyll b.
470 nm for carotenoids.
The absorbance values were substituted into Lichtenthaler’s equations (to calculate

the concentrations of pigments, which were expressed in milligrams per gram of fresh mass
(mg/g) [41–43].

Statistical Analysis

The data obtained from the four independent treatments were assessed for normality
and homogeneity using a Shapiro–Wilk test and Bartlett’s test, respectively. When the
data met the assumptions of normality and homogeneity, the treatments were compared
using a one-way ANOVA (parametric test). If the data were not normally distributed, a
Kruskal–Wallis test (nonparametric test) was applied [44].

Hypothesis testing, including the one-way ANOVA and Kruskal–Wallis, was per-
formed at a 95% confidence level (p < 0.05). For post hoc analysis, a Tukey test was used
following the one-way ANOVA, while the Dwass–Steel–Critchlow–Fligner pairwise com-
parisons were employed after the Kruskal–Wallis test. All post hoc tests were conducted
with a 95% confidence interval.

Data analysis was performed using JAMOVI (version 2.3.28) [45]. Visual represen-
tation of the data was achieved through boxplots with violin plots, created using JASP
(version 0.18.3.0) [46–48]. Principal component analysis (PCA) was conducted using the
MEDA plugin in JAMOVI [48,49].

3. Results and Discussion
The vegetative growth parameters measured for Marubakaido apple rootstock

seedlings, which were grown using LEDs and a florescent lamp, were provided in Table 1.
Figure 1 shows the seedlings of the Marubakaido apple rootstock cultivar obtained using
LEDs and a fluorescent lamp (control).

Table 1. Vegetative growth of seedlings of ‘Marubakaido’ apple tree rootstocks rooted in vitro under
different sources of light. IQR is the interquartile range.

Mean Std. Deviation IQR

Dry mass of aerial part (mg) Blue 27.400 7.287 12.750
Dry mass of aerial part (mg) Red 19.583 6.494 6.000
Dry mass of aerial part (mg) Red + Blue 23.563 7.668 4.500
Dry mass of aerial part (mg) Fluorescent 13.150 5.060 7.250
Height (cm) Blue 1.540 0.224 0.300
Height (cm) Red 1.656 0.624 0.475
Height (cm) Red + Blue 1.459 0.215 0.313
Height (cm) Fluorescent 1.632 0.264 0.287
Number of Leaves Blue 12.500 3.663 3.500
Number of Leaves Red 11.208 1.933 2.000
Number of Leaves Red + Blue 12.375 3.594 2.500
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Table 1. Cont.

Mean Std. Deviation IQR

Number of Leaves Fluorescent 10.550 2.395 3.250
Number of Roots Blue 7.450 3.268 5.000
Number of Roots Red 6.250 3.193 4.250
Number of Roots Red + Blue 5.188 3.209 5.000
Number of Roots Fluorescent 7.500 3.269 4.250
Fresh mass of aerial part (mg) Blue 118.250 34.865 47.500
Fresh mass of aerial part (mg) Red 85.833 27.998 27.500
Fresh mass of aerial part (mg) Red + Blue 101.813 34.083 40.500
Fresh mass of aerial part (mg) Fluorescent 63.850 27.017 40.250
Roots dry mass (mg) Blue 141.800 55.981 71.000
Roots dry mass (mg) Red 98.500 31.903 52.000
Roots dry mass (mg) Red + Blue 129.000 61.449 58.500
Roots dry mass (mg) Fluorescent 103.500 36.182 74.000
Roots fresh mass (mg) Blue 15.200 5.281 6.000
Roots fresh mass (mg) Red 14.944 5.620 6.250
Roots fresh mass (mg) Red + Blue 15.091 3.885 5.000
Roots fresh mass (mg) Fluorescent 16.600 5.604 10.000
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Figure 1. Seedlings of the Marubakaido apple rootstock cultivar obtained after 30 days of in vitro
rooting under different light sources.

3.1. Height

No significant differences were observed in the height of Marubakaido apple rootstock
seedlings among the four treatments, as all provided equivalent results (Figure 2). The
Shapiro–Wilk test indicated that the data were not normally distributed (p-value < 0.001).
Consequently, the Kruskal–Wallis test was used and confirmed that the heights obtained
from the four treatments were statistically equivalent (p-value = 0.304).

3.2. Dry and Fresh Mass of the Aerial Parts

Treatments with blue LED and the combination of red + blue LED significantly in-
creased both the fresh and dry mass of the aerial parts compared to the fluorescent lamp
treatment (Table 1).

Seedlings exposed to LEDs exhibited notably higher fresh mass in the aerial parts
compared to those under the control (fluorescent lamp) (Figure 3). The Shapiro–Wilk
test confirmed that the data were normally distributed (p = 0.600), and the Bartlett’s test
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indicated equivalent variances (p = 0.904). The one-way ANOVA revealed significant
differences in fresh mass among the four treatments (p < 0.001).
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Figure 3. Boxplot of fresh mass of aerial part of Marubakaido apple rootstock seedlings obtained
using four independent treatments.

Post hoc analysis using Tukey’s test (Table 2) indicated that the red LED and red + blue
LED treatments produced statistically similar dry masses in the aerial parts (p = 0.255).
However, the blue LED treatment resulted in a significantly greater dry mass compared to
the red LED treatment (p = 0.319).

The dry mass of the aerial parts was significantly higher in seedlings treated with
LEDs compared to those under the control treatment (fluorescent lamp) (Figure 4). The
Shapiro–Wilk test confirmed that the data followed a normal distribution (p = 0.615), and
the Bartlett’s test indicated homogeneity of variances (p = 0.432). The one-way ANOVA
identified significant differences in dry mass among the four treatments (p < 0.001).
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Table 2. Tukey post hoc test for the fresh mass of aerial part (mg) obtained for the four treatments.

Treatment Treatment Mean Difference SE t ptukey

Blue Red 7.817 2.009 3.890 0.001
(Red + Blue) 3.838 2.226 1.724 0.319
Fluorescent 14.250 2.099 6.790 <0.001

Red (Red + Blue) −3.979 2.142 −1.858 0.255
Fluorescent 6.433 2.009 3.202 0.011

(Red + Blue) Fluorescent 10.413 2.226 4.678 <0.001

Int. J. Plant Biol. 2025, 16, x FOR PEER REVIEW 7 of 18 
 

 

Table 2. Tukey post hoc test for the fresh mass of aerial part (mg) obtained for the four treatments. 

Treatment Treatment Mean Difference SE t ptukey  
Blue Red 7.817 2.009 3.890 0.001 
 (Red + Blue) 3.838 2.226 1.724 0.319 
  Fluorescent 14.250 2.099 6.790 <0.001 
Red (Red + Blue) −3.979 2.142 −1.858 0.255 
  Fluorescent 6.433 2.009 3.202 0.011 
(Red + Blue) Fluorescent 10.413 2.226 4.678 <0.001 

The dry mass of the aerial parts was significantly higher in seedlings treated with 
LEDs compared to those under the control treatment (fluorescent lamp) (Figure 4). The 
Shapiro–Wilk test confirmed that the data followed a normal distribution (p = 0.615), and 
the Bartlett’s test indicated homogeneity of variances (p = 0.432). The one-way ANOVA 
identified significant differences in dry mass among the four treatments (p < 0.001). 

The post hoc analysis with the Tukey’s test (Table 3) revealed that the red LED and 
red + blue LED treatments produced statistically equivalent dry masses (p = 0.255). How-
ever, all LED treatments yielded significantly higher dry masses compared to the control. 

 

Figure 4. Boxplots of dry mass of aerial part (mg) of Marubakaido apple rootstock seedlings ob-
tained using four independent treatments. 

Table 3. Tukey post hoc test for the dry mass of aerial part (mg) obtained for the four treatments. 

   Mean Difference SE  ptukey  
Blue Red 7.817 2.009 3.890 0.001 
 (Red + Blue) 3.838 2.226 1.724 0.319 
  Fluorescent 14.250 2.099 6.790 <0.001 
Red (Red + Blue) −3.979 2.142 −1.858 0.255 
  Fluorescent 6.433 2.009 3.202 0.011 
(Red + Blue) Fluorescent 10.413 2.226 4.678 <0.001 

Figure 4. Boxplots of dry mass of aerial part (mg) of Marubakaido apple rootstock seedlings obtained
using four independent treatments.

The post hoc analysis with the Tukey’s test (Table 3) revealed that the red LED and
red + blue LED treatments produced statistically equivalent dry masses (p = 0.255). How-
ever, all LED treatments yielded significantly higher dry masses compared to the control.

Table 3. Tukey post hoc test for the dry mass of aerial part (mg) obtained for the four treatments.

Mean Difference SE ptukey

Blue Red 7.817 2.009 3.890 0.001
(Red + Blue) 3.838 2.226 1.724 0.319
Fluorescent 14.250 2.099 6.790 <0.001

Red (Red + Blue) −3.979 2.142 −1.858 0.255
Fluorescent 6.433 2.009 3.202 0.011

(Red + Blue) Fluorescent 10.413 2.226 4.678 <0.001

The emission peaks of blue and red light coincide with the maximum absorption wave-
lengths of chlorophyll, enabling photosynthesis to occur with maximum efficiency [50,51].
This phenomenon likely explains the greater accumulation of dry mass observed in
seedlings exposed to blue LEDs and red + blue LEDs compared to those grown under
fluorescent lamps.

The results of this experiment demonstrate that blue light (450 nm wavelength) pos-
itively influences the development of the aerial parts of ‘Marubakaido’ apple rootstock
seedlings. In addition to its role in photosynthesis, light is essential for regulating growth
and morphogenesis processes. Plant responses to blue light are mediated by pigments such
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as phytochromes, cryptochromes, and phototropins. When stimulated, these pigments
regulate various physiological processes, including gene expression, stomatal opening, and
flowering [52].

Blue-light-induced stomatal opening enhances gas exchange during photosynthesis,
which has a direct impact on plant growth and crop productivity [51].

A similar effect was observed by Shin et al. [52] in their study on in vitro orchid
cultivation. They reported that seedlings grown under a combination of red and blue LEDs
exhibited higher fresh and dry leaf masses compared to those grown under fluorescent
lamps. Similarly, Li et al. [53] found that the combination of red and blue light resulted in
greater fresh and dry seedling masses in Gossypium hirsutum L. compared to fluorescent
lamps. This increase in fresh and dry mass can enhance the survival of seedlings during
the acclimatization phase, which is the most critical stage in micropropagation systems due
to the high mortality rates typically observed [54].

When used alone, red LED light (660 nm) produced results inferior to blue light but
comparable to fluorescent lamps and the red + blue LED combination in terms of fresh and
dry aerial mass. This suggests that red LEDs at 660 nm can also be effectively used for the
in vitro cultivation of ‘Marubakaido’ apple rootstock.

Similarly, Lin et al. [35] demonstrated that fluorescent lamps and red LEDs were less
efficient than blue LEDs, resulting in lower shoot formation and dry mass in Dendrobium
officinale explants cultivated in vitro. Liu et al. [55] also observed that Platycodon gran-
diflorum seedlings exhibited greater increases in dry mass under blue LEDs compared to
red LEDs.

The reduced effectiveness of red light may be explained by its impact on starch accumu-
lation in chloroplasts, which can inhibit photosynthesis [37]. According to Sæbø et al. [56],
red light exposure can induce a reduction in the translocation of photoassimilates from
leaves to other parts of the plant, leading to starch accumulation in chloroplasts. This accu-
mulation can indirectly reduce the photosynthetic rate, potentially explaining the lower
dry mass production observed in seedlings exposed to red light compared to blue light.

3.3. Roots Dry and Fresh Mass

The root dry mass obtained using LED treatments was statistically equivalent to that
obtained with the control (fluorescent lamp) (Figure 5). The Shapiro–Wilk test indicated
that the data were not normally distributed (p = 0.001), and the Bartlett’s test revealed
that variances were not homogeneous (p = 0.01). As a result, the Kruskal–Wallis test was
applied, showing a significant difference among treatments (p < 0.014). However, the
post hoc analysis using Dwass–Steel–Critchlow–Fligner pairwise comparisons (Table 4)
confirmed that the root dry mass results from LED treatments were statistically comparable
to those of the control.

The fresh mass of roots obtained under LED treatments was comparable to that
obtained with the control (fluorescent lamp) (Figure 6). The Shapiro–Wilk test confirmed
the normality of the data (p-value = 0.501), and Bartlett’s test indicated homogeneity
of variances (p-value = 0.629). One-way ANOVA further revealed that there were no
significant differences in root fresh mass among the four treatments (p-value = 0.835).

3.4. Number of Leaves and Roots

The number of leaves obtained using LED treatments was comparable to that obtained
using the control (Figure 7). The Shapiro–Wilk test indicated that the data were not
normally distributed (p-value = 0.001), and the Bartlett’s test revealed unequal variances
(p-value = 0.012). However, the Kruskal–Wallis test demonstrated that the four treatments
yielded equivalent results (p-value < 0.213).
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four independent treatments.

The number of roots obtained using LED treatments was equivalent to that obtained
using the control (Figure 8). The Shapiro–Wilk test indicated that the data were normally
distributed (p-value = 0.134), and the Bartlett’s test confirmed homogeneity of variances
(p-value = 0.999). One-way ANOVA demonstrated that the four treatments yielded equiva-
lent results (p-value < 0.127).
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Plant height (Figure 2), number of leaves (Figure 7), number of roots (Figure 8), and
fresh (Figure 5) and dry root mass (Figure 6) were not significantly affected by the different
light sources. According to Moon et al. [26], light quality can influence plant morphology.
For instance, plant height may be promoted or inhibited depending on the interactions
between blue and red light receptors and phytochromes [57]
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A similar outcome was observed by Li et al. [53] who cultivated Brassica napus L.
in vitro. Their study showed that the stem length of seedlings treated with LEDs was
comparable to those treated with fluorescent lamps.

The wavelength of light can influence the rooting of in vitro seedlings, with effects
varying depending on the species [26]. For example, a study by Chée [58] demonstrated that
blue LEDs had a more pronounced effect on the rooting of grapevine seedlings compared to
red LEDs. Conversely, Moon et al. [26] observed that the number of roots in Tripterospermum
japonicum was promoted by fluorescent lamps and the red + blue LED combination but
inhibited by individual red or blue LEDs. Similarly, Shin et al. [52] reported that fresh
and dry root masses of in vitro orchids increased under the red + blue LED combination.
However, Jao et al. [59] found that Zantedeschia jucunda seedlings grown under fluorescent
lamps exhibited greater dry root mass formation compared to those treated with LEDs.

3.5. Principal Component Analysis (PCA)

A principal component analysis (PCA) was performed on the normalized data to
identify patterns in vegetative growth [60,61]. The score plot (Figure 9) was used to observe
correlations and trends within the data [44,62–64]. It illustrates that the number of roots,
root fresh mass, and plant height were positively correlated, with samples located in the
top-right quadrant exhibiting higher values for these parameters. Similarly, the fresh mass
of aerial parts, dry mass of aerial parts, and root dry mass were correlated, with samples
positioned in the bottom-left quadrant showing higher values for these variables.
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The loading plot (Figure 10) highlights that Marubakaido apple rootstock samples
with greater vegetative growth were primarily situated on the right side of the plot. Most
of these samples were grown under blue LED light, indicating that this light source pro-
moted the best vegetative growth. In contrast, samples with less vegetative growth were
predominantly located on the left side of the plot, corresponding to control samples grown
under fluorescent lamps. These findings demonstrate that LED lights, particularly blue
LEDs, were more effective than fluorescent lamps in enhancing vegetative growth.

Int. J. Plant Biol. 2025, 16, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 10. Score plot of the vegetative growth of seedlings of ‘Marubakaido’ apple tree rootstocks 
rooted in vitro under different sources of light. 

3.6. Chlorophyll a, b, Total (a + b), and Carotenoids Content 

Treatment with fluorescent lamps resulted in higher concentrations of chlorophylls 
a, b, total chlorophyll (a + b), and carotenoids in leaf samples compared to LED treatments. 
The different LED wavelengths did not show significant differences among themselves 
for pigment formation (Table 5). Jao et al. [59] cultivated Zantedeschia jucunda in vitro 
and reported that fluorescent lamps yielded more promising results for chlorophyll for-
mation than LED treatments. Another study by Moon et al. [26] showed that chlorophyll 
content in Tripterospermum japonicum was higher when seedlings were treated with fluo-
rescent lamps and red + blue LED combinations but inhibited under isolated red and blue 
LEDs. However, Shin et al. [52] observed that in vitro-cultivated Doritaenopsis plants un-
der the red + blue LED combination had higher chlorophyll and carotenoid content than 
those grown under fluorescent lamps. These studies indicate that the synthesis of chloro-
phylls and carotenoids in plants exposed to different light sources may vary depending 
on the species. 

Figure 10. Score plot of the vegetative growth of seedlings of ‘Marubakaido’ apple tree rootstocks
rooted in vitro under different sources of light.

3.6. Chlorophyll a, b, Total (a + b), and Carotenoids Content

Treatment with fluorescent lamps resulted in higher concentrations of chlorophylls a,
b, total chlorophyll (a + b), and carotenoids in leaf samples compared to LED treatments.
The different LED wavelengths did not show significant differences among themselves for
pigment formation (Table 5). Jao et al. [59] cultivated Zantedeschia jucunda in vitro and
reported that fluorescent lamps yielded more promising results for chlorophyll formation
than LED treatments. Another study by Moon et al. [26] showed that chlorophyll content in
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Tripterospermum japonicum was higher when seedlings were treated with fluorescent lamps
and red + blue LED combinations but inhibited under isolated red and blue LEDs. However,
Shin et al. [52] observed that in vitro-cultivated Doritaenopsis plants under the red + blue
LED combination had higher chlorophyll and carotenoid content than those grown under
fluorescent lamps. These studies indicate that the synthesis of chlorophylls and carotenoids
in plants exposed to different light sources may vary depending on the species.

Table 5. Chlorophyll a, b, total (a + b), and carotenoids content in leaf samples of ‘Marubakaido’
apple tree rootstock seedlings rooted in vitro under different light sources.

Treatments Chlorophyll a
(mg g−1)

Chlorophyll b
(mg g−1)

Total Chlorophyll (a + b)
(mg g−1)

Carotenoids
(mg g−1)

Blue LED 2.37 b 0.54 b 2.9 b 0.74 b

RED LED 2.49 b 0.63 b 3.12 b 0.78 b

Red+ Blue LED
vermelho + azul 2.59 b 0.62 b 3.21 b 0.79 b

Control 3.17 a 0.83 a 3.99 a 0.94 a

RSD (%) 7.7 8.1 7.7 6.9
Means followed by the same letter in the column do not differ statistically according to Tukey’s test at 5%.

Although carotenoids are known for their important role in protecting organisms
from light-induced damage [65,66], both carotenoids and chlorophylls are involved in
energy capture by plants [67–69]. Light wavelengths play a crucial role in regulating
photosynthesis, with blue and red LEDs being the most used for seedling growth. Their
wavelengths, approximately 460 nm and 660 nm, respectively, represent the ranges of
highest photosynthetic efficiency [27].

Fluorescent lamps have wavelength peaks ranging from 350 to 750 nm in the electro-
magnetic spectrum, emitting light in a broad range of colors, many of which are unnecessary
for seedling development [27]. Plants exposed to white light preferentially absorb light in
the blue, red, and part of the green spectra [70].

Alvarenga et al. [71] showed that green LEDs induced greater synthesis of chlorophylls
a, b, and total (a + b), and carotenoids in Achillea millefolium seedlings compared to
blue and red LEDs. According to the same authors, the increase in pigment levels in
plants when exposed to green light may be associated with stress in response to a lack of
photosynthetically active light.

4. Conclusions
Blue LEDs and the red + blue LED combination, which resulted in greater fresh and dry

mass of the aerial parts compared to fluorescent lamps, may serve as promising alternatives
for in vitro rooting of Marubakaido apple rootstocks. These light sources promote the
development of more robust seedlings with an increased likelihood of survival during
the acclimatization phase. While red LEDs inhibited dry mass production relative to blue
LEDs, they still produced dry mass levels comparable to those achieved with fluorescent
lamps, making them a viable option.

In addition to their specific spectral peaks favorable for plant growth, LEDs offer
several practical advantages, including high luminous efficiency, minimal heat generation,
long lifespan, absence of heavy metals, and low energy consumption. These features
improve the cost-effectiveness of in vitro plant propagation.

Although fluorescent lamps promote higher accumulation of chlorophylls and
carotenoids compared to LEDs, they yield lower dry mass production than blue LEDs
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and the red + blue LED combination during the in vitro rooting of Marubakaido apple
rootstock seedlings.

Overall, blue LEDs are the most effective light source for enhancing dry mass accu-
mulation in Marubakaido apple rootstock seedlings. However, blue LEDs, red LEDs, and
the red + blue LED combination all represent viable alternatives to fluorescent lamps for
in vitro rooting of these seedlings.
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