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Abstract: Bisphenol A analogs (BPA analogs) are emerging contaminants with a rising production
caused by the replacement of BPA with these compounds. The increased production of BPA analogs
is leading to their increased release into various ecosystems, including marine ones. The aim of
this study was to evaluate the biological effects of BPA analogs on a primary producer, the diatom
Phaeodactylum tricornutum Bohlin. Three different BPA analogs (BPAF, BPF, and BPS) and their mixture
were tested at the environmental relevant concentration of 300 ng/L. Growth, cell size and several
biomarkers of oxidative stress and oxidative damage were measured. Our results indicated that
the tested compounds caused a reduced growth rate and induced oxidative stress, altering many
antioxidant enzymes in P. tricornutum. However, no oxidative damages were observed.
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1. Introduction

Among the emerging contaminants, bisphenols have been the subject of much interest
by researchers. The main bisphenol is bisphenol A (BPA), which is used as a plasticizer in
polycarbonate plastic production (Figure 1).
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Figure 1. Structural formula of bisphenol A.

BPA has many other uses, such as in thermal paper as a color developer, in epoxy
resins, in medical equipment, and in consumer electronics [1]. Recently, BPA has been
restricted in some industrial activities. Indeed, it is known that it can cause oxidative
stress and toxic effects on the reproductive system in both humans and animals [2,3].
The main restrictions regard the ban of BPA in the manufacturing of baby bottles in the
USA, Canada, the EU, and Australia. In addition, the BPA usage was settled to less than
0.02% in thermal paper in the EU [4]. These restrictions have led to the replacement of
BPA with other bisphenols called bisphenol A analogs (BPA analogs). The main BPA
analogs that are currently used are bisphenol F (BPF), bisphenol S (BPS), and bisphenol
AF (BPAF) (Figure 2A–C). These compounds have many uses, such as in food packaging,
water pipes, industrial floors, plastics, adhesives, epoxy glues, thermal receipt papers, and
in common polymer applications [3]. Besides their increasing use, data on the production
of BPA analogs are scarce, even if many studies have shown that it is increasing [5,6].
Indeed, BPS production increased twofold between 2016 and 2017, with a reported annual
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production of 1000–10,000 tons [7,8]. Similarly, the annual production of BPAF significantly
increased between 1986 and 2002 in the USA, and its manufacturing/import in the EU
yields 100–1000 tons per year [9,10].
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Bisphenols reach the aquatic environment from discharges from urban and industrial
areas, as well as by plastic degradation. Indeed, due to their use as plasticizers, they are
released by microplastics that can also transfer these compounds into other environments.
Bisphenols are mainly biodegraded, even if their half-lives in water are highly variable due
to the environmental conditions. However, some bisphenols can be rapidly degraded in
river water, such as BPF, which was completely biodegraded in 37 days, while others (BPAF,
BPE, and BPB) are more persistent [11]. The EU settled guidelines to classify the toxicity
of a compound according to the EC50 value: very toxic to aquatic organisms (<1 mg/L),
toxic to aquatic organisms (1–10 mg/L), harmful to aquatic organisms (10–100 mg/L);
compounds with an associated EC50 value above 100 mg/L are not classified [12]. In many
studies BPS has been classified as harmful for the different microalgal species tested with
an EC50 after 96 h of 85.48 mg/L [13,14], while BPAF was considered as toxic with an EC50
value of 1.78 mg/L and 3 mg/L after 96 and 72 h, respectively [14,15]. However, some
studies on other algae have reported that BPS is more toxic whereas BPAF showed a lower
toxicity [16,17]. Regarding the BPF, its toxic classification varies from toxic to harmful for
aquatic organisms, with reported EC50 values that range from 9.2 mg/L to 12.3 mg/L [18,19].
The environmental concentrations of BPA analogs are often in the range of a few ng/L [20].
However, recent studies have indicated higher concentrations, with levels of hundreds
and thousands of ng/L in both fresh and marine environments [20]. These values exceed
the predicted no-effect concentration (PNEC) of BPA settled by the EU at 1500 ng/L for
freshwater and 150 ng/L in marine water [21]. For instance, BPAF was recorded at a mean
concentration of 140 ng/L in freshwater in China [22], while BPF reached 2850 ng/L and
BPS reached 65,600 ng/L in the freshwater of Japan and China, respectively [23,24]. In
the marine environment, bisphenol analogs have a common concentration from very few
ng/L up to tens of ng/L, even if they reach higher concentrations, as in the case of BPF,
which had maximum concentrations of 282 ng/L and 1470 ng/L in seawater in South
China and in the Tokyo Bay, respectively [24,25]. The high interest and concern regarding
BPA analogs, along with the consequences of their rising production/release, collides
with the limited data available on their toxicity to microalgae and primary producers in
general. In this study, for the first time, we evaluated the effects of single BPAF, BPF, BPS,
and their mixture at environmentally realistic concentrations on the growth, cell size, and
biochemical parameters of the microalga Phaeodactylum tricornutum Bohlin 1897, a diatom
taxon commonly present in seawater as a primary producer.

2. Materials and Methods
2.1. Microalga Exposure

P. tricornutum was purchased from the Culture Collection of Algae at Goettingen
University (SAG) and was grown in the F/2 medium [26]. The stock culture was acclimated
to the experimental conditions in a culture chamber at 16 ◦C, a light intensity of 40.5 µmol
photons m−2s−1, and a photoperiod of 12:12 light/dark. The stock solutions (1 mg/L) of
BPAF and BPF were made in methanol, while the BPS was dissolved in distilled water.
Stocks of microalgal cultures were inoculated in Erlenmeyer flasks containing 200 mL of
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F/2 medium and exposed in triplicate to the bisphenols BPAF, BPF, and BPS, as well as
to their mixture. A concentration of 300 ng/L of each bisphenol or 100 ng/L of each of
them in the mixture treatment was adopted. In addition, a control plus methanol was
tested. Cells from the stock culture (inoculum) were added to obtain an initial concentration
of 5 × 105 cells/mL. The cell concentration was measured through a Scepter™ 2.0 Au-
tomated Cell Counter (Millipore, Berlington, MA, USA); the data had previously been
validated using a Neubauer hemocytometer through a light microscope (Leica, Wetzlar,
Germany). All the biochemical analyses were carried out in two different growth phases:
exponential and at the beginning of the stationary phase, corresponding to 5 and 9 days of
exposure, respectively.

2.2. Growth Curve and Growth Rate

Microalgal growth, diameter, and volume were measured using a Scepter™ 2.0 Auto-
mated Cell Counter (Millipore, Berlington, MA, USA) every day of exposure. Briefly, 20 µL
of cell culture was added to 2 mL of Coulter Isoton II diluent. The diatom concentration
was expressed as the number of cells (105)/mL of the medium, while the diameter and
volume were expressed in µm and picoliters (pL), respectively. In addition, growth rates
were calculated according to the following equation:

µ = ln (N1/N0)/(t1 − t0)

where N1 and N0 represent cell concentrations at t1 and t0 [27].

2.3. Biochemical Assays

Culture cells were centrifuged at 6000 g, and the pellets were frozen in liquid nitrogen
and stored at−80 ◦C. Analyses were performed in triplicate. Prior to the biochemical assays,
the pellets were sonicated in four volumes of 10 mM Tris-HCl buffer, pH 7.5, containing
0.15 M KCl, 0.5 M sucrose, 1 mM EDTA, and protease inhibitor cocktail (1:10 v/v) (Merck,
Milano, Italy). The protein concentration was quantified according to Bradford et al. [28].

The total antioxidant capacity was measured according to the CUPRAC method [29].
Briefly, the reaction produced cupric ions that reacted with a specific indicator, and the
complex was measured at 450 nm using a microplate reader. The results are expressed as
mM of Trolox equivalents.

The total superoxide dismutase (SOD) activity was measured according to the method
proposed by Crapo et al. [30] using the xanthine oxidase/cytochrome c reaction. Enzyme
activity was expressed as U/mg protein, and one unit of SOD was defined as the amount
of sample causing 50% inhibition under the assay conditions.

Catalase (CAT) activity was measured following the method proposed by Aebi [31].
The enzyme activity in a volume of 30 µL of tissue SN was measured at 240 nm and
expressed as U/mg protein; one unit of CAT was defined as the amount of enzyme that
catalyzed the detoxification of 1 µmol of H2O2/min.

Glutathione reductase (GR) activity was evaluated according to Smith et al. [32], by
measuring the (5-thio (2-nitrobenzoic acid)) TNB production at 412 nm. The enzyme activity
was expressed as U/mg protein.

Glutathione S-transferase (GST) activity was measured according to the method de-
scribed by Habig et al. [33], using 1-chloro-2,4-dinitrobenzene (CDNB) and reduced glu-
tathione (GSH) as the substrate. GST activity was expressed as nmol/min/mg protein.

Selenium-dependent glutathione peroxidase (GPX) activity was measured follow-
ing the method of Lawrence and Burk [34], by measuring the decreased absorbance at
340 nm caused by the NADPH oxidation. GPX Se-dependent activity was expressed as
mmoli/min/mg protein.

Ascorbate peroxidase (APX) activity was evaluated according to Nakano and Asada [35]
and modified by Janknegt et al. [36] using the ascorbate and hydrogen peroxide as the
reactives. APX activity was expressed as U/mg protein.
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Oxidative damage was measured in both proteins, using the protein carbonyl con-
tent assay (PCC), and in lipids, measuring the level of peroxidation (LPO). Briefly, PCC
was measured using the method of Mecocci et al. [37], following the reaction with 2,4-
dinitrophenylhydrazide (DNPH). The results were expressed as nmol carbonyl group/mg
protein. The LPO was quantified using the malondialdehyde (MDA) assay, according to the
method of Buege and Aust [38]. Absorbance was read spectrophotometrically at 532 nm,
and the results were expressed as nmoles of thiobarbituric reactive substances (TBARS)/mg
protein. TBARS, considered as “MDA-like peroxide products”, were quantified by reference
to MDA absorbance (ε = 156 × 103 M−1 cm−1) [39].

2.4. Statistical Analysis

The effects of the independent factors, namely “treatment”, “growth phase”, and their
interaction (treatment * growth phase), were evaluated by means of a two-way ANOVA
analysis for each biomarker, using OriginPro software (OriginPro, Version 2022. OriginLab
Corporation, Northampton, MA, USA). The post hoc test (Fisher’s test) was performed for
pairwise comparisons. All results are expressed as the mean ± standard deviation (SD).

3. Results

During the exposure to different bisphenols, the growth curve was altered by the
factors of “growth phase”, “treatment”, and their interaction (p < 0.001) (Table S1 in
Supplementary Materials). The bisphenols caused a general reduction in growth during
the exponential phase (4–6 days); however, the post hoc test revealed that only BPAF
caused a significant decrease in microalgal growth after 7 and 8 days of exposure. In
detail, we recorded growth inhibition percentages of 10.86% and 12.66% caused by BPAF
after 7 and 8 days, respectively, with respect to the control. Moreover, at the stationary
phase (9 days), both BPAF and BPS caused a significant decrease in the growth, with
a growth inhibition percentage of 16.37% and 8.7%, respectively (Figure 3) (Table S2
in Supplementary Materials). Interestingly, the mixture did not have any effect on the
growth. Moreover, we calculated the growth rates of the six different treatments for
each day of exposure (Table S3 in Supplementary Materials), and we also calculated
the growth rates during the exponential phase and the stationary phase (Table S4 in
Supplementary Materials).
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Figure 3. Growth of P. tricornutum, expressed as number of cells × 104/mL, during exposure to
bisphenols BPAF, BPF, and BPS, as well as to their mixture (MIX). Control is reported as CTR; control
+ solvent (methanol) is reported as MeOH. Each point is the mean of three replicates ± SD.

During the exposure, both the mean cell diameter and mean cell volume of the
microalgae were measured daily. Both of the two cellular parameters were affected by
the “growth phase” factor (p < 0.001) and its interaction with “treatment” (p < 0.05 and
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p < 0.01, respectively) (Table S1). The post hoc test revealed that both BPAF and MIX caused
a significant decrease in cell diameter and volume after 6 days of exposure (p < 0.001 and
p < 0.05, respectively) (Tables S5 and S6 in Supplementary Materials; Figures 4 and 5).
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The total antioxidant capacity, measured using the CUPRAC assay, was significantly
altered by the factors “growth phase” and “treatment”, as well as their interaction (p < 0.001)
(Table S7 in Supplementary Materials). In addition, the post hoc test revealed a significant
reduction in the total antioxidant capacity with both BPS and MIX treatment during the
exponential phase (Figure 6A). Similarly, a significant reduction in total antioxidant capacity
was observed in all the bisphenol treatments during the stationary phase, with respect to
the controls (Figure 6A).
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Figure 6. CUPRAC levels, expressed as mM of Trolox equivalents/mg protein (A); SOD activity,
expressed as U SOD/mg protein (B); CAT activity, expressed as U CAT/mg protein (C); GST activity,
expressed as nmol/min/mg protein (D); GPX activity, expressed as U GPX/mg protein (E); and APX
activity, expressed as U APX/mg protein (F) in the exponential (EXP) and stationary (STAT) growth
phases. The values are mean ± SD (n = 3). Different letters indicate statistically significant differences
in comparison with the related control (p < 0.05).

As for SOD and CAT activity, the independent factors (growth phase, treatment, and
their interaction) exerted effects on enzyme activities. In detail, the two-way ANOVA
demonstrated that the factors “growth phase” and “treatment” significantly affected
(p < 0.001) SOD activity, as well as their interaction (p < 0.01) (Table S7 in Supplementary
Materials). CAT activity was influenced by growth phase (p < 0.001), treatment (p < 0.01),
and their interaction (p < 0.05) (Table S7 in Supplementary Materials). In detail, SOD
activity was significantly increased after 5 days of exposure to BPAF, BPF, and MIX, while
no differences in SOD activity were observed after 9 days of exposure (Figure 6B). As for
CAT activity, exposure to MIX increased the enzyme activity during the exponential phase,
whereas no differences were recorded during the stationary phase (Figure 6C).

Regarding the glutathione-related enzymes, GR activity was influenced only by the
factor “growth phase” (Table S7 and Figure S1 in Supplementary Materials), while GST
activity was altered by both “treatment” and its interaction with “growth phase” (p < 0.001)
(Table S7 in Supplementary Materials). Moreover, GST activity was significantly affected
only during the stationary phase, with a marked increase in the BPAF-treated group,
followed by a significant reduction in the BPF-, BPS-, and MIX-treated groups (Figure 6D).
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The two peroxidase enzymes, GPX and APX, were altered by the factors “growth
phase” (p < 0.001 and p < 0.01, respectively) and “treatment” (p < 0.05) (Table S8 in
Supplementary Materials). In detail, the GPX activity was significantly increased in the
stationary phase by exposure to BPF and MIX (Figure 6E), while the ascorbate peroxidase
was increased by exposure to MIX after 9 days of treatment (Figure 6F).

Lastly, statistical analysis indicated that LPO was altered only by the factor “growth
phase” (p < 0.01) (Table S8 and Figure S2A in Supplementary Materials), while the PCC
value was not affected by any of the independent factors (Table S8 and Figure S2B in
Supplementary Materials).

4. Discussion
4.1. Growth and Cell Size

In this study, we tested the effects of three of the main BPA analogs (BPAF, BPF, and
BPS) and their mixture on the diatom P. tricornutum. The growth curves were mainly
affected by BPAF during the last phase of exposure. In addition, the BPS also caused a
reduction in the cell density at day 9. The BPF did not cause any effect, while with the
MIX treatment, a general reduction in growth was observed, even if it was non-significant.
Indeed, the absence of a significant reduction in cell density values and a contemporary
significant effect observed in the BPAF treatment suggest a sort of antagonistic interaction
between the three BPA analogs in the MIX treatment. In addition, we speculated that the
BPAF concentration was too low to induce a significant reduction in cell density. Other
studies indicate that many algal species are very tolerant to BPA exposure in term of cell
growth. Indeed, the EC50 values are in the order of mg/L [40], even if some species can
be more sensitive [41]. Our results are in accordance with those of Ding et al. [16], which
reported no significant effects on the growth rate of Chlorella vulgaris after exposure to
environmentally relevant concentrations (≤0.5 mg/L) of BPS and BPA, even if the growth
decreased at higher concentrations. In other studies, the tested concentrations showed
effects on the growth curve; however, the tested concentrations were higher than the
environmental levels. Indeed, Tišler et al. [15] recorded a value of 50% inhibition of growth
in Desmodesmus subspicatus after 72 h of exposure to both BPA and BPF (22.1 and 19.6 mg/L,
respectively). In that study, BPAF showed a 50% inhibition of growth at 3.0 mg/L, which is
1000 times higher than the concentration tested in the present study. A summary of studies
on the effects of bisphenols on the growth of microalgae is reported in Table 1.

Table 1. Effects of bisphenols on the growth of microalgae. The following information is reported:
compound, species, concentration (reports all the tested concentrations), effects on growth (reports
the concentration used, the time of exposure, and the effect), time (reports the total time of exposure),
and Ref.

Compound Species Concentration Effects on Growth Time Ref.

BPA Chlorella
pyrenoidosa 2, 5, 8, 11, 15 mg/L

2 mg/L (1, 2, 3 d): increased
2 mg/L (4, 5, 6 d): inhibition
5, 8, 11, 15 mg/L: inhibition

6 days [13]

BPS C. pyrenoidosa 5, 10, 15, 20,
40 mg/L

5 mg/L (1, 2, 3, 4 d): inhibition
5 mg/L (5, 6 d): increased

10, 15, 20, 40 mg/L: inhibition
6 days [13]

BPA + BPS C. pyrenoidosa 0.05 P, 0.1 P, 0.2 P,
0.3 P, 0.4 P, 0.5 P

0.05 P (1, 5, 6 d): increased
0.1 P (5, 6 d): inhibition

0.2, 0.3, 0.4, 0.5 P: inhibition
6 days [13]

BPA Tetraselmis sp.
2.34, 4.69, 9.38,

18.75, 37.5, 75, 150,
300 mg/L

Inhibition 24, 48, 72, 96 h [42]
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Table 1. Cont.

Compound Species Concentration Effects on Growth Time Ref.

BPA, BPAF, BPB,
BPE

Tetrahymena
thermophila 2.6–13.0 µM

BPA (13 µM): inhibition
BPAF (13 µM): inhibition

BPB (2.6–13 µM): inhibition
BPE (2.6–13 µM): inhibition

30 h [43]

BPA C. pyrenoidosa 0.1, 1, 10 mg/L
0.1 mg/L (2–5 d): increased

1 mg/ (4–5 d): inhibition
10 mg/L (1–5 d): inhibition

5 days [44]

BPA C. pyrenoidosa 1, 5, 10, 25,
50 mg/L

1, 5 mg/L (96 h): inhibition
10 mg/L (72, 96, 144 h):

inhibition
25 mg/L (48, 72, 96 h):

inhibition
50 mg/L (24, 48, 72, 96 h):

inhibition

144 h [45]

BPA Scenedesmus
obliquus

1, 5, 10, 25,
50 mg/L

10 mg/L (24, 96 h): inhibition
25 mg/L (24, 48, 72, 96 h):

inhibition
50 mg/L (24, 48, 72, 96 h):

inhibition

144 h [45]

BPA C. pyrenoidosa 1, 10, 50 mg/L 1, 50 mg/L (30 d): increased 30 d [45]

BPA Stephanodiscus
hantzschii

0.01, 0.1, 1, 3, 5, 7,
9 mg/L

≤1 mg/L: no effects
3 mg/L (4 d): inhibition

3 mg/L (8, 12, 16 d): increased
5, 7, 9 mg/L: inhibition

16 d [46]

We observed that both the cell diameter and cell volume were altered by the “growth
phase” factor and its interaction with “treatment”. In detail, both diameter and volume
increased during the experiment and reached the highest values after seven days of expo-
sure; then, they decreased. Interestingly, both BPAF and MIX caused a significant decrease
in both cell diameter and volume after 6 days of exposure. Recently, Li et al. [43] observed
that bisphenols caused a decrease in the cell size of Tetrahymena thermophila. Indeed, BPA
(2.6 and 13.0 µM), BPAF (13.0 µM), BPB (13.0 µM), and BPS (13.0 µM) caused a significant
reduction in cell volume after 12 h of exposure in the adaptive growth phase, and this trend
was maintained after 30 h of exposure. Furthermore, after 60 h of exposure in the stable
growth phase, the cell volume was reduced in all the treatments, except for the BPE at
a concentration of 2.6 µM [43]. P. tricornutum was used in another study to evaluate the
effects of six different bisphenols BPA, BPS, BPAP, BPAF, BPFL, and BPC were tested at
various concentrations, namely, 5, 20, 40, 80, 150, and 300 µM [47]. The authors observed
that the growth of this microalga was inhibited by all the concentrations at all times of
exposure, except for bisphenol C at 5 µM and 72 h. The authors ranked the toxicity levels
of the bisphenols to this species as follows: BPC < BPA < BPS < BPFL ≈ BPAF ≈ BPAP after
72 h of exposure. In the same study, the authors also evaluated the effects of bisphenols on
two other species of microalgae: Tetraselmis suecica, which was the most sensitive species,
and Nannochloropsis gaditana, which was the species most resistant to bisphenols, even if
some effects have been observed on this species as well [47]. Interestingly, the authors
observed that almost all of the tested bisphenols caused reductions in the cell volume of
P. tricornutum, apart from BPS, which provoked a significant increase in this parameter
at the highest concentrations, and BPFL, which did not cause any effect. On the contrary,
T. suecica cells showed a significant increase in cell size, mainly at higher concentrations
and after 72 h of incubation, while N. gaditana was less affected than the other two species.
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4.2. Biomarker Responses

In the present study, several biomarkers indicative of oxidative stress were measured
in P. tricornutum treated with bisphenol analogs. Regarding the total antioxidant capacity, a
reduction was observed in the microalga exposed to BPS and MIX for five days. Moreover,
the same effect was also observed in the microalga after nine days of exposure to BPAF,
BPF, BPS, and MIX. The SOD activity was significantly increased by BPAF, BPF, and
MIX exposure during the exponential growth phase. However, in the stationary phase,
all treatments caused effects. Similarly, in the case of CAT activity, it was significantly
increased only by MIX after five days, while during the stationary phase, there were
no alterations. To our knowledge, our study adopted the lowest concentrations which
have been tested in the literature. Indeed, many other studies observed alterations to
the antioxidant system, but with very high concentrations of bisphenols, mainly BPA.
However, our observations of an impairment in the microalgal antioxidant system are in
accordance with the bisphenols’ capacity to produce ROS, which has been reported in
many studies. Indeed, recently, P. tricornutum showed an increase in ROS production for
most of the tested bisphenols (BPC, BPS, BPA, BPAF, BPAP, and BPFL) over 72 h at different
dosages (5, 20, 40, 80, 150 and 300 µM). In detail, BPAP showed the highest ROS production,
followed by BPFL > BPAF > BPA > BPS > BPC [47]. Similarly, in Chlorella pyrenoidosa, BPA
caused ROS increases at concentrations of 5, 8, 11, and 15 mg/L, while BPS caused an
increase in ROS levels at higher concentrations, such as 15, 20, and 40 mg/L. Moreover,
the mixture of the two bisphenols at a ratio of 1:1 caused increased ROS only at the two
lowest concentrations [13]. Recently, the activities of both SOD and CAT were measured
in two freshwater algae, Chlorella vulgaris and Navicula sp., which had been exposed to
BPS [48]. The authors observed that in C. vulgaris, the SOD activity increased significantly
at 1, 5, 10, 20, and 50 mg/L of BPS, while CAT activity increased at 20 and 100 mg/L of
BPS. In an opposite way, in Navicula sp., there was a significant increase in the activity
of these two enzymes at 1 mg/L only [48]. Similarly, after 4 and 8 days of exposure, all
the tested concentrations of BPA (4, 6, 8, 10, and 12 mg/L) increased the SOD activity in
Cyclotella caspia. However, such an increment, with respect to the control, was lower after
12, 16, and 20 days of exposure [49]. Interestingly, all of the tested concentrations caused
an increase in the activity of both SOD and CAT after 96 h of exposure of C. pyrenoidosa
to BPA [45]. In another study with the cyanobacterium Microcystis aeruginosa, the authors
observed that SOD activity was not altered by BPA at a concentration range of 0.1–1.0 µM.
However, higher concentrations (5−50 µM) caused a significant increase in SOD activity.
Moreover, the authors observed that the GSH content was significantly increased by
the BPA-tested concentrations after 3, 9, and 15 days of exposure [50]. The effects of
another bisphenol analog, namely, bisphenol BHPF, were tested in the microalga Chlorella
vulgaris [51]. Contrary to our results, the authors found that SOD activity significantly
decreased at 1, 10, and 20 mg/L of BHPF, while CAT activity remained unchanged after 72 h
of exposure. Alterations in both SOD and CAT activity were also observed during chronic
exposure. Indeed, with long-term exposure, SOD activity increased after 15 days at 1 mg/L
and 10 mg/L of BPA, while after 30 days, only 1 mg/L of BPA had an effect, increasing the
SOD activity in C. pyrenoidosa [45]. In the case of Scenedesmus obliquus, only after 15 days of
exposure to 1 mg/L of BPA was there an increase in SOD activity [45]. Moreover, the two
algae showed increased CAT activity at 50 mg /L of BPA after 15 and 30 days, and, in the
case of S. obliquus, the CAT activity also increased at 10 mg/L after 15 days and at 1 mg/L
and 10 mg/L of BPA after 30 days of exposure [45]. The GST enzyme is an antioxidant
enzyme involved in the detoxification activity of xenobiotics. In our study, GST activity
was increased after exposure to BPAF during the stationary phase, while BPF, BPS, and
MIX caused a significant reduction in enzyme activity. Conversely, the exposure of Navicula
incerta—another marine diatom species—to BPA increased both SOD and GST activity in a
dose-dependent manner, while the peroxidase activity decreased at 5 mg/L of BPA [52]. In
addition, increased activity of both CAT and GST was reported in Picocystis sp. exposed to
25, 50, and 75 mg/L of BPA [53]. As for GR, which is an enzyme involved in the glutathione
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cycle, we did not observe any effects of the tested compounds during exposure. On the
contrary, Jiefeng et al. [54] observed a reduction in SOD, CAT, peroxidase, and GR activity
at all the BPA treatments (1, 5, 20, and 50 mg/L), with a contemporary general increase in
GSH levels. However, much higher concentrations were tested in that study. Moreover,
the authors observed that 20 mg/L and 50 mg/L of BPA caused significant reductions in
the total antioxidant capacity (Jiefeng et al. [54]). Another two important enzymes that
we assessed are glutathione peroxidase (GPX) and ascorbate peroxidase (APX). These two
enzymes are fundamental antioxidant enzymes. Indeed, they detoxify hydrogen peroxide,
an important ROS species, using glutathione or ascorbate, respectively. The GPX activity
was increased after exposure to BPF and MIX during the stationary phase, while APX
increased after nine days of exposure to MIX. Similarly, APX activity was increased by BPA
exposure in the microalga Picocystis sp. when it was treated for 1, 2, 3, 4, and 5 days with
25, 50, and 75 mg/L; in addition, after 4 and 5 days, the APX activity was also increased
by 10 mg/L of BPA. However, at 1 mg/L of BPA, no alterations in APX activity were
recorded [53]. In the latter study, the activity of APX measured in Graesiella sp. showed an
opposite pattern of variation with respect to that of Picocystis sp., with decreased enzyme
activity at higher BPA concentrations [53].

Oxidative damage to macromolecules is caused by an excessive presence of ROS
species that are not efficiently removed by the antioxidant system. The oxidative damage
can be evaluated by measuring the levels of carbonyl groups in proteins using a PCC assay
and the level of lipid peroxidation through an LPO assay. Based on the results of PCC and
LPO assays, we can exclude the notion that bisphenol analogs can induce oxidative damage
in P. tricornutum, at least under the experimental conditions adopted in our study. However,
other studies have reported that bisphenols can cause oxidative damage [40]. For instance,
Yang et al. [50] reported oxidative damage to lipids (increased MDA level) after 3, 9, and
15 days of exposure of the cyanobacterium M. aeruginosa to 0.1, 1, 5, 10, and 50 mg/L of BPA.
However, the MDA levels decreased during the time course [50]. BPA was able to increase
the MDA levels at doses above 5 mg/L in both the green alga Scenedesmus quadricauda
and the cyanobacterium Cylindrospermopsis raciborskii, even if there were decreased MDA
levels in the cyanobacterium at a concentration of 20 mg/L [55]. In addition, in C. vulgaris,
all of the tested concentrations of BPS increased the MDA content, while in Navicula sp.,
there was an increased MDA level only at the two highest tested concentrations (50 mg/L
and 100 mg/L) [48]. In this study, our results on the effects of MIX agree with those of
previous studies [12,15]. Indeed, a higher toxicity of the mixture than that of the single
compounds was recorded, with a synergistic effect between them. This result reveals that
the antioxidant systems of marine microalga can be markedly affected by BPA analogs,
which may be present in aquatic environments either individually or as mixtures. As for
cell growth, we hypothesized that antagonist interactions between the tested BPA analogs
occurred during the MIX treatment. This condition did not cause significant cell density
reduction when compared to the BPAF treatment.

5. Conclusions

In the present study, we observed that bisphenol analogs, at environmentally realistic
concentrations, affected the growth and the cell size of the diatom species P. tricornutum.
In addition, we observed alterations to the antioxidant systems, with some antioxidant
enzyme activities being affected. We observed that the mixture caused higher alterations to
the measured biochemical parameters in comparison to the single bisphenols. In conclusion,
the bisphenol A analogs tested in this survey can be harmful for the microalga P. tricornutum,
as previously observed for BPA. Studies on the molecular interactions of bisphenols and
their impact on the ultrastructures of microalga are needed in order to better determine the
ecotoxicological profiles of these compounds.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jox13030030/s1. Table S1: Results of the two-way ANOVA analysis
performed on cell density, cell diameter and cell volume. Significant values (p < 0.05) are in red;
Table S2: Results obtained from the post-hoc test performed on the cell density values. Each cell
reports the p value of the corresponding treatment in comparison to the control of the same day.
Significant values (p < 0.05) are in red; Table S3: Growth rate (µ) calculated for each of the six
treatments during the nine days of exposure; Table S4: Growth rate of exponential phase (µ EXP)
and stationary phase (µ STAT) calculated for each of the six treatments; Table S5: Results of the
post-hoc test performed on the cell diameter values. Each cell reports the p value of the corresponding
treatment in comparison to the control of the same day. Significant values (p < 0.05) are in red;
Table S6: Results of the post-hoc test performed on the cell volume values. Each cell reports the
p value of the corresponding treatment in comparison to the control of the same day. Significant
values (p < 0.05) are in red; Table S7: Results of the two-way ANOVA analyses performed on the
various biomarkers analyzed, namely the total antioxidant capacity (CUPRAC), superoxide dismutase
(SOD), catalase (CAT), glutathione reductase (GR) and glutathione s-transferase (GST). Significant
values (p < 0.05) are in red; Table S8: Results of the two-way ANOVA analyses performed on the
various biomarkers analyzed, namely glutathione peroxidase (GPX), ascorbate peroxidase (APX),
protein carbonyl content (PCC), and lipid peroxidation (LPO). Significant values (p < 0.05) are in
red; Figure S1: glutathione reductase activity (GR), expressed as U/mg protein; the two growth
phases are indicated as EXP and STAT. The values are mean ± SD (n = 3). Different letters indicate
statistically significant differences in comparison with the related control (p < 0.05); Figure S2: protein
carbonyl content (PCC), expressed as nmol/mg protein (A), and lipid peroxidation (LPO), expressed
as nmol TBARS/mg protein (B); the two growth phases are indicated as EXP and STAT. The values
are mean ± SD (n = 3). Different letters indicate statistically significant differences in comparison
with the related control (p < 0.05).
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