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Abstract: In the recent past, the formulation and development of nanocarriers has been elaborated
into the broader fields and opened various avenues in their preclinical and clinical applications. In
particular, the cellular membrane-based nanoformulations have been formulated to surpass and sur-
mount the limitations and restrictions associated with naïve or free forms of therapeutic compounds
and circumvent various physicochemical and immunological barriers including but not limited to sys-
temic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances—which
are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug
delivery have been overcome through mesenchymal cells membrane-based precision therapeutics,
where these interventions have led to the significant enhancements in therapeutic efficacies. However,
the formulation and development of nanocarriers still focuses on optimization of drug delivery
paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarri-
ers have been engineered in highly diversified fashions, these are being optimized for delivering the
drug payloads in more and better personalized modes, entering the arena of precision as well as per-
sonalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which
have been designed and been utilized in both the non-personalized as well as precision applicability
which can be employed for the improvements in precision nanotherapeutics. In the present report,
authors have focused on various other aspects of the advancements in stem cells membrane-based
nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and
nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to
appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications.
These approaches will also enable the tailored and customized designs of MSC-based nanocarriers
for personalized therapeutic applications, and finally amending the patient outcomes.

Keywords: nanomedicine; drug delivery; cell membrane-based nanocarriers; mesenchymal stem
cells; personalized nanomedicine; precision medicine

1. Introduction

In organisms that are composed of more than one kind of cell, stem cells have been
described as undifferentiated cells in the body which can differentiate into several types
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of functional cellular lineages [1–3]. Stem cells are distinct from other types of cells in
the aspect that they are capable of self-renewal through the process of cell division. The
ability of stem cells in general and mesenchymal stem cells in particular for the self-
regeneration, division and production of differentiated progenies, differentiation, and
replication into new types of cells with equivalent potency are other characteristics that
define their substantive properties [4–6]. Native mesenchymal stem cells, despite being
thought of as extremely rare cells in the past, are rather common in vivo. Mesenchymal
stem cells have been reported in earlier research studies to have rejuvenating and restorative
properties in a variety of diseases [7–9], including but not limited to, repairing of cartilages
in osteoarthritis [10], remodeling and restoration of the performances of the myocardial-
infarcted hearts [11], and chronic atrophic gastritis [12] etc. Furthermore, on the global
scale, clinical trials exploring the effectiveness of mesenchymal stem cells in management of
the ailments have been presently underway, with a focus on autoimmune disorders [13,14],
Crohn’s disease [15], grafts versus host diseases [16,17], multiple sclerosis [18], systemic
lupus erythematosus [19,20], and systemic sclerosis [21,22] etc.

For example, in a study where haploidentical mesenchymal stem cells were trans-
planted in a patient suffering from severe treatment resistant grade IV of acute graft versus
host disorder of the gut and liver, a striking clinical outcome was observed and the patient
was quite well even after some years and clinical outcomes suggested that mesenchymal
stem cells could exert an immunosuppressive effect in vivo well [23]. In other clinical
reports, refractory luminal Crohn’s disease and fistulizing Crohn’s disease were treated
with autologous bone marrow-derived mesenchymal stem cells and this treatment with
mesenchymal stem cells was without side effects, lead to decrement in the clinical disease
activity index, resulted into rectal mucosal healing and it was concluded that this therapy by
mesenchymal stem cells is a safer and feasible approach for Crohn’s disease therapy [24,25].
The outcome of another clinical study for the therapy of multiple sclerosis indicated that
mesenchymal stem cells do not exhibit any of the serious adverse events and improvements
in the visual acuity and visual evoked response latency and increment in the optic nerve
area were observed in this therapeutic regimen [26]. In other clinical studies, mesenchymal
stem cells have been employed for the speedy recovery of hematopoiesis in the patients of
advanced cancers when these patients were given high doses of chemotherapies. The out-
comes of these clinical studies suggested that these mesenchymal stem cell-based therapies
were non-toxic and led to improvements in the neutrophils count. Speedy hemopoietic
recovery was seen and the treatment approach seems to be feasible and safe with the
positive impact on the blood profiling of the cancer patients [27,28].

Because of these characteristic features, stem cells can be employed in clinical settings
for the treatment of several illnesses [29,30]. Nonetheless, most of the data regarding
stem cell-based therapeutics for diseases originates from small-scale randomized trials
that are seldom successful to produce meaningful treatment benefits. Furthermore, in
clinical treatment, stem cell-based therapy may sometimes raise the risks of immunological
rejection phenomena as well as malignant transformation [31,32].

Targeted delivery of the drug payload is a method which helps the patients receive sys-
temic administration of the medications and pharmacological compounds into particular
tissues or organs while minimizing the concentrations of the medication that accumulates in
healthy tissues [33,34]. Extended systemic retention capability, evasion of the immunologi-
cal barriers, biological barrier-breaking capacities, preservation of the pharmacologically
active molecules from degradation, targeted drug payload delivery, and controlled drug
release are all desirable characteristic features of an efficient drug delivery platform [35,36].
The incorporation of these characteristic features through methods like PEGylation etc. and
the idea of targeted delivery of drugs was born out of stimulus-responsiveness, surface
alterations and customizations, the use of nanoscale drug delivery carriers, and cellular- or
tissue-based specific targeting entities like ligands, aptamers, or antibodies [37,38].

Globally, mesenchymal stem cells have continuously been employed as therapeutics
for the treatment of a wide range of diseases in numerous clinical trials [39–42]. Due to
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their strong immunomodulatory as well as anti-inflammatory features, they have been
extensively used [43]. Moreover, drug-loaded and diagnostic nanocarriers have been
delivered for the particular targeting sites via these mesenchymal stem cells [44]. For
example, B16F10 melanoma bearing mice’s lung and sites of the metastatic tumors had
incorporated PLGA-DOX-loaded mesenchymal stem cells, which have exhibited enhanced
anti-tumor efficacies [45,46]. Scientific researchers whose reports have offered fascinating
perspectives on cellular therapeutic paradigms for various disorders have shown a great
deal of interest in mesenchymal stem cell-based nanocarriers and nanomedicines due to
their promising features, which include the regenerative properties of mesenchymal stem
cells supplemented with their ability to differentiate into diverse cell lineages [47,48]. The
unequalled capacity of mesenchymal stromal cells for their adherence to the pathological
tissues render them promising drug delivery platforms for targeted delivery of therapeutic
payload [49,50]. It has been evidenced previously that mesenchymal stem cells possess the
capability for absorption and they then subsequently release the chemotherapeutic drugs
(e.g., Paclitaxel) as well as causing the inhibition of the growth of subcutaneous tumor
xenografts [51,52].

Adult stem cells, more specifically mesenchymal stem cells, also produce nanovesi-
cles, just like other cell types. It was previously considered that the small molecules that
mesenchymal stem cells could secrete included chemokines, cytokines, and growth fac-
tors [53,54]. On the other hand, mesenchymal stem cells have been reported to release
small nano-sized vesicles in reaction to a wide array of chemical signals, mechanical, and
environmental stimuli. Nanovesicles derived from mesenchymal stem cells are loaded with
markers which have been quite specific to mesenchymal stem cells, including CD105, CD90,
CD29, CD73, CD44, and KIT (CD117). Several other cell types in the nearby or distant
environment can be influenced and become altered by these vehicles. Primary CD34+ cells
and hematopoietic stem cells derived from umbilical cord blood have been demonstrated
to proliferate when exposed to nanovesicles derived from mesenchymal stem cells [55–57].
They also affect the fate of the hematopoietic system and stop human stem cells from going
through apoptosis. Conversely, mesenchymal stem cell-derived nanocarriers suppress the
growth of B lymphocytes and exhibit immunosuppressive properties by inhibiting the ac-
tivity of natural killer cells and the production of interferon gamma [58–60]. In conclusion,
mesenchymal stem cell-based nanocarriers have a variety of uses and can affect the traits
and behavior of other recipient cells and tissues in a range of situations, such as immune
modulation, tissue repair, cancer progression, and embryonic development including but
not limited to a wide array of diseases and disorders [61–63].

Several recent review papers have been published which discuss various aspects of
mesenchymal stem cell-based nanocarriers and several advancements in this arena. For
example, Mian Wang and coworkers [64] have discussed recent advances in the context of
mesenchymal stem cells membrane-coated nanocarriers for biomedical uses, especially in
for their anti-cancer and anti-inflammatory applications. They have explained the aspects
like mesenchymal stem cell membrane and their receptors, alterations and tailoring of
mesenchymal stem cell membrane for homing of various types of nanoparticles, fabrication
of these nanomedicine for loading into mesenchymal stem cells etc. However, this review
has lacunae in terms of the mechanism of action of these MSC-based nanoformulations
along with their metabolism, biotransformation, toxicity and safety concerns, etc. Another
study by Wenjing Liu et al. [65] has discussed various advances of various specific cellular
membrane types, which have been obtained from various kinds of cells including stem cells,
immunological cells, platelet cells, neutrophils, red blood cells, and cancerous cells. They
have thoroughly described extraction of the cellular membranes by various techniques
and then their applications in anti-cancer therapeutics. However, their perspective lacks in
terms of the safety and toxicity of these membrane-based nanocarriers and various other
metabolic aspects.

In another recent report by Weiyue Zhang and co-workers [66], they have reviewed
stem cells membrane-based targeted drug delivering systems specifically in case of anti-
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cancer medicines. They have discussed the underlying mechanism for homing these
nanosystems inside the cancers, by the optimized modifications of the membranes of the
mesenchymal stem cells. They have discussed various aspects including the enhanced drug
loading capacities of these nanocarriers, enhanced biocompatibility, selective targeting
of tumor tissues and various other aspects. However, their report is lacking in terms
of the several aspects of metabolism, biotransformation and excretion of these stem cell
membrane based nanocarriers. Furthermore, their report focuses on specific application of
these nanocarriers in anti-cancer applications, rather than the broader areas of application
of these cellular membrane-based nanocarriers including immunotherapy and regenerative
medicine. Likewise, another comprehensive review of mesenchymal stem cell-membrane
based drug delivery system by Wu et al. [67] focuses on drug and gene delivery strategies
by elucidating several aspects which include employing mesenchymal stem cell-based
systems as gene carriers, their targeting abilities, their use as drug payload carrying systems
and improving their homing capabilities. They have also focused on various aspects of
metabolism, formulation approaches and their applications in bio-imaging and photo-
dynamic therapy. However, their report lacks in the wide range of applications of these
mesenchymal stem cell-based nanoformulations in a variety of diseases and disorders. In
the present report, the authors have explained in detail several of these aspects which have
been lacking or have been touched upon very briefly in the currently available literature.

The numerous biological activities of mesenchymal stem cells are present in nanopar-
ticles coated with their membranes, and the use of carriers is more adaptable. Then, by
imitating the mesenchymal stem cells’ capacity for targeting, covering nanoparticles with
membranes from mesenchymal stem cells not only improves their biocompatibility but
also optimizes their therapeutic efficacy.

2. Preparation and Characterization of MSC Membrane-Coated Nanocarriers
2.1. Isolation of MSC Membrane

The bilayer of phospholipids that makes up the cell membrane is composed of various
glycoproteins, polysaccharides, and integral membrane proteins [68]. The use of a pure
cell membrane makes sense since it enhances the development of cell membrane-coated
mimics by maximizing the effectiveness and uniformity of surface coatings while imitating
as many of the functions of the original cell as possible. Bone marrow, umbilical cord, or
adipose tissue can all be used to collect mesenchymal stem cells, which are less invasive
and produce higher results [69]. The manufacture of cell membrane-coated nanoparticles
mainly involves three processes: nanoparticle cores are manufactured, cell membrane-
derived vesicles are created and separated, and then cell membrane-derived vesicles and
nanoparticle cores are fused together [70]. To remove the cytoplasm from mesenchymal
stem cells, they are first lysed using hypotonic lysis solutions [71], or by repeatedly freezing
and thawing them [72]. Subsequently, they may undergo homogenization or sonification
in order to reduce their size. Second, to make the mesenchymal stem cell membrane,
the product is extracted using centrifugation and then repeatedly extruded from porous
polycarbonate membranes with pore widths ranging from 200 to 400 nm [73], thus raising
mesenchymal stem cell membranes. Maintaining cell membrane-derived vesicles below
−20 ◦C is necessary to ensure membrane protein stability over long term [74].

The delicate extraction of cell membranes frequently involves the processes of cell lysis
and membrane purification, which aid in preventing denaturation of membrane proteins.
Removing a cell membrane from different cell types while reducing cytosolic, mitochon-
drial, and nucleus contamination is the process of isolating a cell membrane. Cell lysis is
often performed in small amounts prior to the separating of cell membranes [75]. After ho-
mogenizing the cells using sonication to break them up, the mixture’s nucleus and plasma
membranes are separated using high-speed gradient centrifugation. The membrane-rich
portion is sonicated to create membrane vesicles, which are then passed through a polycar-
bonate membrane to create nanovesicles, following another wash with isotonic buffers [76].
Many methods, including treating the cells with a hypotonic solution and repeatedly freez-
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ing and thawing them, are employed to lyse the cells [72], and/or mechanical rupture
(such as extrusion, ultrasound). Discontinuous sucrose gradient centrifugation is used to
remove soluble proteins, intracellular biological macromolecules, intracellular vesicles, and
the cell nucleus from pure cell membranes. The refined membranes are extruded through
polycarbonate porous membranes with nanopores to form nanovesicles [76].

2.2. Coating of the Nanoparticle Cores by Membrane Nanovesicles
2.2.1. Extrusion

Extrusion involves continuously sliding membrane vesicles and nanoparticle cores
through polycarbonate membranes with varying hole diameters to achieve the desired
particle size. Usually, this process is carried out multiple times [77]. In order to thor-
oughly enclose the nanoparticles, more cell membranes are typically employed than is
necessary. Coating polymer-based nanoparticles with a maximum size of 350 nm is a com-
mon application of this technique. Extrusion-produced nanoparticles are more effective in
encapsulating drugs and have a consistent size distribution. However, this labor-intensive
approach is not practical for large-scale industrial applications. Vesicles composed of
cell membranes and the cores of nanoparticles are passed through polycarbonate porous
membranes throughout the extrusion process, with the pore widths gradually decreasing
from 400 nm to 100 nm [70]. The mechanical tension created by the fluidity of the cell mem-
brane during extrusion facilitates the nanoparticles’ penetration through the phospholipid
bilayer and their fusion with the membrane vesicles. The diameter of the perforations in
the polycarbonate membranes effectively controls the size of the resulting nanoparticles,
ensuring a uniform distribution of cell membrane-coated nanoparticles. The biological
activity of membrane proteins is greatly preserved by this time-consuming and arduous
procedure [78].

2.2.2. Sonication Method

This technique involves fusing together nanoparticle cores and plasma membranes
via electrostatic interactions and sonication. Although the simple sonication method
can generate core-shell nanoparticles on their own without causing any harm to the cell
membrane structure, it is not suitable for the large-scale synthesis of nanoparticles coated
with cell membranes. Although sonication and other ultrasonic methods are a good
alternative to extrusion [64], they may cause damage to membrane structures. When
treated with cell membrane vesicles, ultrasonic waves facilitate the reassembly of the
membranes surrounding the nanoparticles. However, optimal parameters such as power,
duration, and frequency need to be tuned in order to balance fusion efficiency and reduce
protein denaturation. [79].

2.2.3. Microfluidic Electroporation Method

Cell membranes are perforated via microfluidic electroporation, which uses the elec-
tromagnetic energy present in a microfluidic chip [80]. When combining core nanoparticles
with cell membrane vesicles, this method becomes very helpful because the created holes
make it easier for the vesicles to properly encase the nanoparticles. Throughout this process,
parameters like pulse voltage, duration, and flow rate need to be optimized. This is ensued
by fully coated, highly reproducible, and uniformly distributed cell membrane-coated
nanoparticles. Schematic representation for the formulation steps implicated in the prepa-
ration of mesenchymal stem cell-based nano-therapeutic drug delivery systems that ha
been depicted in Figure 1.



J. Xenobiot. 2024, 14 832

J. Xenobiot. 2024, 14, FOR PEER REVIEW  6 
 

 

is ensued by fully coated, highly reproducible, and uniformly distributed cell membrane-

coated nanoparticles. Schematic representation for the formulation steps implicated in the 

preparation of mesenchymal stem cell-based nano-therapeutic drug delivery systems that 

ha been depicted in Figure 1. 

 

Figure 1. Schematic representation for the formulation steps  implicated  in the preparation of the 

mesenchymal stem cell-based nano-therapeutic drug delivery systems. 

2.2.4. Flash Nanocomplexation (FNC) 

The flash nanocomplexation method [81] involves the preparation of polyelectrolyte 

solutions containing charged polymers,  followed by their simultaneous  injection  into a 

mixing chamber of specialized equipment such as a Continuous Impinging Jet Mixer or a 

Micro vortex Mixer. The high-speed mixing  induces  rapid and efficient  interaction be-

tween the oppositely charged polymers, leading to phase separation through polyelectro-

lyte complexation. This results in the formation of nanoparticles, wherein the polymers 

and any cargo molecules or drugs become encapsulated within the nanoparticle matrix. 

Surface modification can be performed to further tailor the properties of the nanoparticles 

[81]. The resulting nanoparticles are characterized and purified to ensure they meet de-

sired  specifications,  and  the  process  can  be  scaled  up  for  industrial-scale  production. 

Overall, FNC provides a rapid, scalable, and environmentally friendly approach to fabri-

cating nanoparticles with precise control over their properties. 

2.3. Characterization of Cell Membrane-Coated NPs 

After the biomimetic membrane-coated nanoparticles are manufactured, appropriate 

characterization needs to be carried out to ascertain whether the cell membrane coating 

was effective. Unlike the core nanoparticles, proteins and lipids are the main components 

Figure 1. Schematic representation for the formulation steps implicated in the preparation of the
mesenchymal stem cell-based nano-therapeutic drug delivery systems.

2.2.4. Flash Nanocomplexation (FNC)

The flash nanocomplexation method [81] involves the preparation of polyelectrolyte
solutions containing charged polymers, followed by their simultaneous injection into a
mixing chamber of specialized equipment such as a Continuous Impinging Jet Mixer or a
Micro vortex Mixer. The high-speed mixing induces rapid and efficient interaction between
the oppositely charged polymers, leading to phase separation through polyelectrolyte
complexation. This results in the formation of nanoparticles, wherein the polymers and
any cargo molecules or drugs become encapsulated within the nanoparticle matrix. Surface
modification can be performed to further tailor the properties of the nanoparticles [81].
The resulting nanoparticles are characterized and purified to ensure they meet desired
specifications, and the process can be scaled up for industrial-scale production. Overall,
FNC provides a rapid, scalable, and environmentally friendly approach to fabricating
nanoparticles with precise control over their properties.

2.3. Characterization of Cell Membrane-Coated NPs

After the biomimetic membrane-coated nanoparticles are manufactured, appropriate
characterization needs to be carried out to ascertain whether the cell membrane coating
was effective. Unlike the core nanoparticles, proteins and lipids are the main components
of the cell membrane. Transmission electron microscopy is useful to study the core-shell
structure of the cell membrane-coated nanoparticles [82]. Simultaneously, the dynamic light
scattering method evaluation of the water solubility kinetics of the membrane-modified
nanoparticles reveals a minor increase in particle sizes. Furthermore, a successful coating
of the cell membrane onto the nanoparticles is shown by the measurement of the zeta
potential of the cell membrane-coated nanoparticles matching that of the cell membrane.



J. Xenobiot. 2024, 14 833

2.4. Effect of Cell Membrane Coating on Nanoparticle Properties

Coating nanoparticles with cell membranes can significantly impact various properties
including size, zetapotential, and polydispersity index (PDI) stability, etc. The size of the
nanoparticles can be influenced by the cell membrane coating. Typically, the size of the
resulting hybrid nanoparticle will be larger compared to bare nanoparticles due to the
addition of the cell membrane layer. The surface charge of nanoparticles can be modified
by the cell membrane coating. The charge may become more neutral or negatively charged
due to the presence of phospholipids and glycoproteins from the cell membrane.

As reported by Hanze Hu and coworkers [81], increases in particle size after coat-
ing were observed through dynamic light scattering, whereas a decrease in particle size
and polydispersity index was observed with an increase in the ratio of cell membrane
to nanoparticle core (mesoporous silica) when the flash nanocomplexation was used to
make the formulation. When stability studies were performed for size, an increase in
the particle was observed after two weeks of storage. No major change in morphology
was observed after the coating of bare nanoparticles when studied using TEM [81]. Also,
an increase in negative-zetapotential was observed with an increase in the ratio of cell
membrane to nanoparticle core (mesoporous silica) when the formulation was prepared
through flash nanocomplexation and the formulation was studied by the dynamic light
scattering method [81]. Similar findings for particle size were also reported by Fang and
coworkers [83] where the coating increases the particle size of bare nanoparticles.

The cell membrane coating changed the size of PLGA nano from 225 nm to 247 nm
and zeta potential from −55 mV to −43 mV of CMC-NP, when analyzed using DLS
technique [84]. An increase in membrane/polymer ratio reduces the particle size [85].
Lang Rao and coworkers [86] found that the lowest core to shell (cell membrane) ratio at
which CMC NP demonstrated a steady size was approximately 1 mg UCNPs per 0.2 mL
blood. Whereas a negligible difference was observed in the size of CM coated and uncoated
nanoparticles, ~25nm. The coating of SiO2 NP with CM causes a consistent increase in
the hydrodynamic diameter of CMC NP by 10–20 nm and a change in the zeta potential
approximately from −37 mV to −32 mV after CM coating [87].

Hui-Wen Chen and coworkers [88] studied cell membrane coating of magnetic nanopar-
ticles. A sharp size distribution was observed before and after membrane cloaking of
nanoparticles, indicating the monodisperse nature of the polymeric cores. Although an
elevation of zeta potential was observed. The TEM images of the CM-coated NP showed a
roughly 20 nm increase in diameter compared with bare NPs [89,90]. The stability of inor-
ganic NPs and their resistance to enzymatic degradation can be improved using membrane
coating [90].

Most of the coatings caused an increment of around 10 to 30 nm to the diameter of
the nanoparticles [79]. Microfluidic electroporation can produce CMC NP with uniform
sizes. Its high reproducibility also guarantees the potential for large scale-up production of
CMNPs with enhanced colloidal stability [91,92]. The microfluidic electroporation method
exhibits better colloidal stability [93] when compared with the co-extrusion method.

The extrusion and sonication technique is laborious and not economical for use at an
industrial scale [94]. When contrasted with alternative approaches, employing microfluidic
systems offers clear benefits in minimizing the loss of surface membrane proteins and
preserving membrane integrity [95]. The sonication process is suitable for NPs obtained
by extrusion and involves less material loss [78]. The flash nano-complexation involves
swiftly blending nanoparticle cores with membrane nanovesicles and allowing them to
assemble autonomously within a micro-mixing chamber [81].

3. Classification of Mesenchymal Stem Cell Membrane-Based Nanocarriers
3.1. Lipid Based Nanocarriers

Lipid nanoparticles have been used for targeting different diseases because of their
high permeability and high efficiency. Various types of lipid carriers are used for the
incorporation of drugs to target the brain, lungs, eye, and tumor cell etc. A novel approach
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of coating mesenchymal stem cells to the membrane of lipid nanocarriers is used to enhance
the efficiency of targeting.

Various research works have been carried out for the development of nanoparticles
coated with mesenchymal stem cells for the enhancement of targeting. Clavreul and
coworkers [96] formulated Ferrociphenol lipid nanocapsules using the phase inversion
temperature approach to target brain tumors specifically and guarantee a wide intratumoral
distribution of this delivery vehicle in the orthotopic U87MG glioblastoma model. This
study validates the potential benefits of combining stem cell therapy with nanotechnol-
ogy to enhance the local tissue delivery of anticancer medications in glioblastomas. The
researcher found combinations of stem cell therapy and nanotechnology for improving
the local tissue distribution of anticancer drugs in glioblastoma due to the intrinsic prop-
erty of stem cells. They found that the optimum uptake of the drug in glioblastoma was
similar in both in vitro and in vivo with similar effects and found inhibition of U87MG
cell proliferation. The formulation with mesenchymal stem cells showed potential effects
in targeting tumors due to intrinsic properties in the body and also a reduction in side
effects to other organs as well as less toxicity due to its biodegradability. Misra, Chopra,
and Saikia et al. prepared solid lipid nanocarriers of galantamine hydrobromide by em-
ploying the microemulsion technique while using the hot homogenization phenomena to
treat Alzheimer’s disease. Adult stem cells, such as mesenchymal stem cells produced
from bone marrow, are being extensively investigated as a potential supply of neurons
to replace lost or damaged cells in a variety of neurological conditions. When glutamine
is administered, it shows a lack of therapeutic effect because of poor brain penetration
and bioavailability. The formulation of solid lipid nanoparticles overcame the effect of
poor bioavailability and the coating of the drug with mesenchymal stem cells improved
the efficiency in the treatment of dementia. An evaluation performed in vitro and in vivo
produced results that found the effect of solid lipid nanoparticles coated with mesenchymal
stem cells to be a prominent drug delivery for targeting [97].

With multiple formulations having been approved by the US FDA, lipid nanoparticles
have been the most therapeutically advanced mesenchymal stem cell-based nonviral gene
delivering technologies investigated. They can transfer the nucleic acids in a safer and
more effective and efficient manner and can remove a major obstacle to the advancement of
genetic therapy. But these and other nanoparticles’ lifetime and colloidal stability in blood
circulation must be considered in vivo [64].

Lipid nanoparticle (NP) or volatile polymer systems offer a plethora of interesting
therapeutic options for the treatment of brain tumors. These nanoparticles exhibit sus-
tained release characteristics at the site of action along with a notable capability for drug
encapsulation. Lipid based nanocarriers can be absorbed efficiently without impairing the
ability of MIAMI cells to differentiate or survive. Numerous experiments conducted in
our lab have demonstrated the potential of using lipid based nanocarriers to treat glioma
tumors [98].

The primary hindrances to the optimal utilization of this promising drug are its
low lipophilicity, the need for repeated administration, and the cholinergic side effects
associated with GH. We overcame these challenges by encasing GH inside of a novel carrier
system known as solid lipid nanoparticles. In rats with cognitive impairment, GH-loaded
SLNs were found to be substantially more effective in decreasing inflammatory, metabolic,
and behavioral parameters than naive GH [97].

3.2. Polymeric Nanoformulations

Polymeric nanoparticles, which can take the shape of nanospheres or nanocapsules,
can be created by combining biocompatible, nontoxic, and biodegradable polymers of either
synthetic or natural origin. Therapeutic drugs are frequently delivered to a particular target
region in a controlled release fashion using nanoparticles as nano-drug conjugates. One of
the most fascinating areas of research in recent years is nanodrug delivery. The biophysical
and metabolic characteristics of nanoparticles influence not only the bioavailability but
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also the in-vivo distribution of nano-therapeutic agents. The stability of nanoparticles is
affected by several parameters, including their size, shape, type of preparation material, and
surface properties. Additionally, the stability of nano-drugs is enhanced by phase transition
and additive conjugates, while the shelf life of nano-drug conjugates is enhanced by
encapsulation with certain polymer stabilizers. Target delivery of nano-drugs is hampered
by issues with release kinetics at the targeted site of action, phagocyte system evasion, and
biological barrier crossing [99].

The features of polymeric nanoparticles (NPs), which stem from their small size,
have garnered significant attention in recent years. Polymeric nanoparticles (NPs) offer
several benefits when used as drug carriers, such as the possibility of controlled release,
the capacity to shield biologically active compounds from the environment, and enhanced
bioavailability and therapeutic index. Both nanospheres and nanocapsules, which have
different morphologies, are included in the word “nanoparticle.” The composition of
nanocapsules consists of an oily core that dissolves the medicine and a polymeric shell
that regulates the drug’s release profile from the core. The continuous polymeric network
that underpins nanospheres allows for the retention of drugs inside or adsorbed onto their
surface [100].

In order to surface functionalize synthetic nanomaterials and create biomimetic drug
delivery systems for the treatment of cancer, several cell plasma membranes have been
used. The biological applications of plasma membranes in functionalizing nanocarriers
are facilitated by their natural characteristics and easy isolation from the original cells.
Mesenchymal stem cells produced from human umbilical cords have demonstrated a pref-
erence for malignant lesions and offer several benefits, including minimal immunogenicity,
high proliferative capacity, and ease of acquisition. In order to deliver chemotherapy to
specific tumors, we created a poly(lactic-co-glycolic acid) nanoparticle with a layer of
plasma membrane from umbilical cord mesenchymal stem cells coating on the surface.
The functionalization of mesenchymal stem cells plasma membrane improved Poly(lactic-
co-glycolic acid) nanoparticle cellular absorption efficiency, Poly(lactic-co-glycolic acid)-
encapsulated doxorubicin tumor cell killing efficacy, and most crucially, the ability of
doxorubicin encapsulated in Poly(lactic-co-glycolic acid) to kill tumor cells, and most cru-
cially, the nanoparticles’ ability to target tumors and accumulate there. Consequently, these
mesenchymal stem cells’ mimicking nanoformulation produced evident apoptosis within
tumor lesions and significantly inhibited tumor development. This study showed the high
feasibility of such biomimetic nanoformulations in cancer therapy, as well as the significant
potential of umbilical cord mesenchymal stem cells plasma membranes in functionalizing
nanocarriers with intrinsic tumor-homing properties for the first time [101].

Wang and coworkers formulated the mesenchymal stem cells loaded with paclitaxel
encapsulated poly(d,l-lactide-co-glycolide) nanocarriers for orthotopic glioma therapy in
rats. Researchers performed a comparative study of poly(d,l-lactide-co-glycolide) nanocarri-
ers and paclitaxel encapsulated with mesenchymal stem cells and found that mesenchymal
stem cells are effective for glioma treatment. The investigated major challenge in brain
tumor treatment is the migration of drugs towards the glioma cell of cancer therapy. It has
been found that when a drug is encapsulated with mesenchymal stem cells, it reduces the
migration and restoration. In the case of plan poly(d,l-lactide-co-glycolide) nanocarriers, it
was found that by increasing the rate of excretion of the drug faster, the drug is excreted and
therefore there is a reduced restoration effect during the therapy. Nanoparticles coated with
mesenchymal stem cells increase the effectiveness of the therapy through restoration and de-
creasing the rate of excretion. Incorporation of chemotherapeutic drug-loaded nanocarriers
into mesenchymal stem cells is a promising strategy for tumor-targeted therapy [102].

Gao and coworkers formulated the doxorubicin hydrochloride Gelatin nanogel for the
treatment of Human cervical cancer nanogel prepared by the desolvation process and the
coating of nanoparticles with mesenchymal stem cells by the co-extrusion technique. The
main challenge for doxorubicin hydrochloride is cardiotoxicity. Following the evaluation
of the formulation in vitro on HeLa cells as well as in vivo on Female BALB/c nude mice
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in a cytotoxicity study, it was found that SCMGs-DOX does not cause a toxic side effect
in vivo due to their intrinsic properties and biodegradability [103].

3.3. Inorganic

Inorganic nanoparticles are more stable, hydrophilic, nontoxic, and biocompatible
than organic compounds. High surface area per unit volume, unique optical and magnetic
capabilities, and the ability to be functionalized with various specialized ligands to boost
their affinity toward target molecules or cells are some of its other unique qualities. Inor-
ganic nanoparticles not only have a controlled release profile for medications, but they also
shield pharmaceuticals from deterioration and can reduce dosages and delivery frequency,
which greatly reduces the toxicity of medications—particularly cancer therapy. Innovative
materials have led to the evolution of medication delivery methods that have reduced
adverse effects and increased treatment efficacy. The main applications of nanotechnology
in medicine are in the fields of diagnostic processes, nanodrugs and delivery systems, and
biomedical implants. Nanotechnology-enabled medicine delivery is anticipated to present
the largest commercial possibility. Thanks to recent developments in nanotechnology,
there are now more inorganic nanoparticles accessible besides calcium phosphates that
offer effective drug delivery matrices. Nowadays, nanoparticles have incredibly complex
chemical properties, and many inorganic nanoparticles have been used as drug carriers.
Numerous studies have been conducted on the use of inorganic nanoparticles in cancer
detection and treatment, and the field’s applications are expanding. Furthermore, there
have been some new developments and applications of calcium phosphate, gold, and iron
oxide nanoparticles in tissue engineering and drug delivery [104].

Inorganic nanomaterials, including magnetic nanoparticles, gold nanoparticles, graphene,
mesoporous silica nanoparticles, quantum dots, and layered double hydroxides, are among the
most actively researched topics in the fields of biochemistry, biotechnology, and biomedicine.
Targeted drug delivery, cancer therapies, and bioimaging have shown great promise for
inorganic nanomaterials due to their facile manufacturing and modification, intrinsic physico-
chemical qualities, and excellent biocompatibility [64].

Lixu Xie et al. in 2023 formulated the Manganese Dioxide Nanoparticles Umbili-
cal Cord Mesenchymal Stem Cell Membrane of paclitaxel using the Coextrusion tech-
nique for the treatment of lung cancer. The paclitaxel drug can be used for the treat-
ment of lung cancer but the plan drug cannot reach the targeted site; therefore, the inor-
ganic nanoparticles are formulated with manganese dioxide and the coating of nanoparti-
cles with stem cell by incubation with transcriptional transactivator peptide-conjugated
1,2-distearoyl-sn-glycero-3-phosphoethanolamine N-methoxy (polyethylene glycol), whose
carbon and hydrogen chains were impromptu incorporated on the cellular membrane by
employing the lipid-insertional technique. Results of the study found that the cytotoxic
activity of the formulation showed a potent effect and safety data in treated mice showed
that the formulation of paclitaxel coated with mesenchymal stem cells has no systemic
toxicity. Nanoparticles coated with mesenchymal stem cells provide safety due to the
intrinsic nature and biodegradability of the mesenchymal stem cells [105].

Li et al. formulated Silica nano rattle doxorubicin anchored with mesenchymal stem
cells for targeting tumor cells. Researchers worked to overcome the change which is the
low efficiency of nanoparticle drug delivery to targeted sites. It has been found that the
intracellular retention time of the silica nanorattle was no less than 48 h, which is sufficient
for cell-directed tumor-tropic delivery. In vivo experiments proved that the burdened
mesenchymal stem cells can track down the U251 glioma tumor cells more efficiently and
deliver doxorubicin with wider distribution and longer retention lifetime in tumor tissues
compared with free doxorubicin and silica nano rattle-encapsulated doxorubicin [106].
Some selected examples of these nano-systems and drug delivery agents based on or
associated with mesenchymal stem cells have been presented in Table 1.
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Table 1. Various types of nanocarriers and drug delivery systems employed for homings and
associations with mesenchymal stem cell-based nanotherapeutic agents.

Type of MSC Type of Nanoparticle Example of Drug Method for Preparation Disease/Disorder/Application Reference

Lipid Nanoparticles Lipid nanocapsules Ferrociphenol Phase inversion
temperature method Glioblastomas [96]

Solid lipid Nanoparticle Galantamine
hydrobromide

Microemulsion method using
hot homogenization Alzheimer’s disease [97]

Lipid carrier
nanoparticle Ferrociphenol Phase inversion

temperature method Brain tumor [98]

Nanostructured
lipid carriers Simvastatin High shear homogenization Diabetes [107]

Polymer
Nanoparticle PLGA nanoparticles Doxorubicin Double emulsion method Tumor [101]

Gelatin Doxorubicin
hydrochloride Desolvation method Human cervical cancer [103]

PLGA nanoparticles Paclitaxel Tumor [102]

Inorganic
Nanoparticle

Manganese Dioxide
Nanoparticles Paclitaxel Coextrusion technique Lung cancer [105]

Silica nanorattle Doxorubicin Modified Stober reaction Tumor [106]

4. Mesenchymal Stem Cell-Based Nanocarriers for Therapeutics and
Regenerative Medicines
4.1. MSC-Based Nanocarriers in Regenerative Medicine

A broad biomedical use of mesenchymal stem cell-based nanocarriers is tissue regen-
eration by nanotherapeutics. These nanocarriers made of mesenchymal stem cells have a
dimetric scale of 1 to 100 nm, making them extremely small particles. These mesenchymal
stem cell-based nanocarriers find a range of uses due to their tunable optical, electrical,
magnetic, and mechanical capabilities, which may be adjusted by modifying particular pa-
rameters [108]. For instance, bone marrow-derived mesenchymal stem cells can be driven
toward the cardiac lineage by internalizing gold nanoparticles, and cellular adhesion is
improved when gold nanoparticles hybridize with the silica nanoparticles and the arginine
glycine aspartic acid motifs [109]. Similarly, mesenchymal stem cells differentiate into
the neuronal lineage when exposed to dexamethasone-iron oxide nanoparticles, and bone
marrow stem cells are supported as an appropriate delivery model for diabetic patients
when silica nanoparticles are conjugated with insulin [110]. Furthermore, regeneration of
the central nervous system, anti-inflammation at the site of injuries, inhibition of tumors
when these mesenchymal stem cell-based nanocarriers become internalized by the corre-
sponding tumor tissue, and cardiac and skeletal disorders are the targets of mesenchymal
stem cell-based therapies [111]. A number of mesenchymal stem cell-based therapeutic
and regenerative applications have been reported because of their immunomodulatory
characteristics and differentiation capabilities; hence, these mesenchymal stems cell-based
nano-systems have been used in several pre-clinical and clinical settings as shown in
Figure 2.

Immune system, musculoskeletal, neurological, and cardiovascular disorders are
treated with mesenchymal stem cell-derived exosomes. For example, an experimental
in vitro study established mesenchymal stem cell-derived exosomes as a viable treatment
option for osteoarthritis and other cartilage injuries [112,113]. These mesenchymal stem cell-
derived exosomes also form collagen II rich, hyaline-like cartilage, which has a regenerative
effect on osteochondral defects. Exosome-borne biomolecules have also been shown to
be chondroprotective and anti-inflammatory in both in vitro and in vivo studies. Recent
studies have demonstrated the potential therapeutic use of mesenchymal stem cell-derived
exosomes in models of acute liver injury and liver fibrosis. Specifically, exosomes containing
miR-125b can reduce liver fibrosis by suppressing the activation of hedgehog signaling. A
novel therapy for osteoarthritis called allogeneic human mesenchymal stromal/stem cells
has entered clinical trials. A growing body of research indicates that paracrine signaling is
necessary for mesenchymal stem cells therapeutic efficacy. The researchers have looked
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into how human bone marrow-derived secreted extracellular vesicles aid in the repair of
human osteoarthritic cartilage.
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Figure 2. Mesenchymal stem cells have an array of several applications because of their immunomod-
ulatory characteristics and differentiation capabilities; hence, these mesenchymal stem cells have
been employed in most stem cell-based research in both preclinical and clinical settings. Reproduced
with permission from [108].

Researchers studied the pro-inflammatory genetic expressional alterations by RT-PCR
after the mesenchymal stem cell-based nanocarriers treatment of tumor necrosis factor
alpha-stimulated osteoarthritic chondrocyte monolayer cultures in order to assess the im-
pact of mesenchymal stem cell-based nanovesicles on osteoarthritic cartilage inflammation.
In order to evaluate the effect of mesenchymal stem cell-based nanovesicles on cartilage
regeneration, the regeneration cultures of human osteoarthritic chondrocytes were supple-
mented with mesenchymal stem cell-based nanovesicles. Later, the glycosaminoglycan
content of these cultures was measured using the 1,9-dimethylmethylene blue assay. Addi-
tionally, type II collagen and proteoglycans (safranin-O) were stained in paraffin sections of
the regenerate tissue. They demonstrated that mesenchymal stem cellsbased nanovesicles
prevent inflammatory mediators from negatively affecting cartilage homeostasis. Mes-
enchymal stem cell-based nanovesicles inhibited tumor necrosis factor-alpha-induced
collagenase activity and negated tumor necrosis factor alpha-mediated upregulation of
cyclooxygenase-2 and pro-inflammatory interleukins when co-cultured with osteoarthritic
chondrocytes. In vitro, mesenchymal stem cell-based nanovesicles additionally aided in
cartilage regeneration. When mesenchymal stem cells -based nanovesicles were added to
chondrocyte cultures obtained from patients with osteoarthritis, these cells produced more
type II collagen and proteoglycans. According to the final data, these nanovesicles have a
lot of potential as a novel treatment for osteoarthritis and cartilage regeneration. They can
also be significant mediators of cartilage repair [114].

Additionally, the mesenchymal stem cell-based exosomes facilitate intercellular com-
munication through the transfer of micro RNAs, which supports recipient neuron axonal
growth and retinal ganglion cell survival [115]. Recent research shows that by activating
the PI3K/protein kinase B/mechanistic target of rapamycin/glycogen synthase kinase 3β
signaling pathway, exosomes designed to be rich in miR-17-92 improve neurological reha-
bilitation. Similarly, neurite outgrowth and neural plasticity are promoted by mesenchymal
stem cells enriched with miR-133b exosomes, indicating a potential therapeutic approach
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for peripheral nerve damage [116]. Exosomes produced from human mesenchymal stem
cells have improved locomotor performance and induced anti-inflammatory action in a rat
spinal cord injury model, demonstrating a reparative effect. Furthermore, exosomes pro-
duced from human mesenchymal stem cells respond favorably in the cardiac infarct model
by enhancing cell proliferation, encouraging neovascularization in vitro, and decreasing
the infarct size as determined by monitoring systolic and diastolic blood pressure [117].
According to recent studies, mesenchymal stem cell-derived nanocarriers may be able
to treat COVID-19. This can be achieved by either utilizing these nanocarriers unaltered
or by adding particular micro RNAs and employing them as drug delivery vehicles. In
order to determine whether mesenchymal stem cell-derived nanocarriers are effective in
reducing COVID-19 symptoms, numerous clinical trials are being carried out in this area.
Mesenchymal stem cell-derived nanocarriers, for instance, may be given to patients by
aerosol inhalation; mesenchymal stem cell-based exosomes derived may be employed for
the treatment of lung injuries in COVID-19 patients; and exosomes derived from huma bone
marrow stem cells may be given intravenously to patients with COVID-19-induced acute
respiratory distress syndrome. Putting particular micro RNAs inside these mesenchymal
stem cell-based nanocarriers to block SARS-CoV-2’s transcriptional machinery functions as
a cell-free therapeutic agent [118].

Because of their capacity for both immune-modulation as well as their regeneration
capabilities, extracellular nano-vehicles inferred from mesenchymal stem cells hold great
promises as nanotherapeutic platforms for liver diseases and disorders [119,120]. Extracel-
lular nano-vesicles derived from mesenchymal stromal cells have been among the powerful
substitutes for whole-cell therapies and are carving their ways into the clinical arena of
liver diseases and disorders as nano-therapeutics. In both the clinical samples as well as
the animal models, the formation of neutrophil extracellular traps in hepatic tissues has
been confirmed as one of the crucial factors for liver ischemia–reperfusion injury. Mes-
enchymal stem cell-based nanovesicles derived from human umbilical cords may serve to
decrease the formation of neutrophil extracellular traps and subsequently enhance liver
ischemia–reperfusion injury [121,122]. Researchers have demonstrated mechanistically that
functional mitochondria from human umbilical cord-derived mesenchymal stem cell-based
nanovesicles are transferred to intrahepatic neutrophils. In order to prevent the formation
of neutrophil extracellular traps, this effect leads to the initiation of the mitochondrial fu-
sion, which then restores the mitochondrial status and functions in neutrophils. All of their
data point to the therapeutic potential of human umbilical cord-derived mesenchymal stem
cell-based nanovesicles for liver ischemia–reperfusion injury by indicating that mesenchy-
mal stem cell-based nanovesicles inhibit the formation of local neutrophil extracellular
traps by the transfer of functional mitochondria to the intra-hepatic neutrophils as well
as mending the mitochondrial functionalities [123]. The mechanism of action of another
stem cell–based nanocarrier system has been depicted in Figure 3 where gadolinium and
iron-oxide based nanoparticles have been associated with the mesenchymal stem cells
derived from the umbilical cords [61].

(UMSCs) as a bio-NCT agent can cross the blood brain barrier (BBB) and fuse with
tumor cells under magnetic navigation for enhanced neuron capture therapy.

Researchers have also investigated several concentrations of gold nanoparticles for
assessing the biocompatibility and efficacy in Wharton’s jelly mesenchymal stem cell model
and when these nanoparticles were combined with collagen and fluorescein isothiocyanate
and characterized by DLS, UV and FTIR Wharton’s jelly mesenchymal stem cells had the
better viabilities, higher expression of the receptors, greater distances of the migrations,
and lower expression of the apoptosis related proteins. The intracellular uptake of the
nanoparticles and mechanism of intracellular uptake further exhibited that these nanopar-
ticles demonstrated cellular uptake through clathrin-mediated endocytosis with improved
stabilities in the cells for avoiding the lysosomal degradations and better uptake efficiencies.
These also showed better retention capacities and improved tissue integrities in the animal
models [124].
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with the mesenchymal stem cells derived from the umbilical cord which possess the capability for
crossing the blood brain barrier and can become fused with cancerous cells under magnetic navigation
for improved neuron capturing therapeutics (reprinted from [61]).

Mesenchymal stem cell-derived nanoformulation also showed improved cartilage
regeneration in a degenerative relentless osteoarthritis model when researchers employed
these for in vitro and in vivo studies. The mesenchymal stem cell-based nanoformulation
ameliorated the inflammation and cartilage degeneration and brought down the cartilage
loss and bone changes in osteoarthritic conditions. The nanoparticles were formulated
based on a cytoplasmic membrane-based nanoformulation approach and contained the mes-
enchymal stem cell surface characters while lacking the cellular machineries. It imparted
the nanocarriers to evade the immunological barriers and to prevent being susceptible to
the host-induced alterations in their characteristic features [125].

4.2. MSC-Based Nanocarriers in Anti-Cancer Medicine

Targeting tumor cells and/or tumor-associated micro capillaries with the least amount
of systemic harm is the aim of cancer treatment. Mesenchymal stromal cells exhibit a
unique capacity to adhere to pathological tissues, making them promising agents for
targeted medication administration [126,127]. It was demonstrated by researchers that
mesenchymal stem cells function as carriers and are capable of absorbing and releasing the
chemotherapy drug paclitaxel as well as inhibiting the growth of subcutaneous glioblas-
toma multiforme xenografts. In order to determine if paclitaxel-loaded mesenchymal stem
cells maintain a tropism towards the tumor cells in the brain setting and to define the
cytotoxic damage generated by mesenchymal stem cells-driven paclitaxel release in the
tumor microenvironment, the researchers employed an orthotopic Glioblastoma model.
The mCherry protein was used to fluorescently mark U87MG glioblastoma cells, which
were then grafted onto the brains of immunosuppressed rats. The researchers injected
green fluorescent protein-expressing mouse mesenchymal stem cells—either loaded or
unloaded with paclitaxel—into nearby brain areas. Confocal microscopy was used to eval-
uate the xenografted brain for paclitaxel-induced cell damage after one week of survival.
Overall, mesenchymal stem cell-based carriers showed remarkable tumor tropism. Rats im-
planted with paclitaxel-mesenchymal stem cells as carriers showed nuclear fragmentation,
multi-spindle mitoses, and changes in centrosome number in the nucleus of U87MG cells.
These alterations are typical of paclitaxel. The frequency of multinucleated cells formed
by numerous spindle mitoses was much greater in the carriers than in the controls when
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paclitaxel and mesenchymal stem cells were co-grafted into tumors. There were no nuclear
changes in the nearby astrocytes or neurons around the tumor [128].

One of the main drawbacks of cancer therapy based on nanoparticulate drug delivery
systems is low targeting efficiency. In a paper, mesenchymal stem cells were used as the
targeting vehicle and a silica nanorattle as the drug carrier to create an effective method
for tumor-targeted medication administration. Without the need for cell preconditioning,
a doxorubicin drug delivery system based on silica nanorattle was effectively anchored
to mesenchymal stem cells through particular antibody-antigen recognitions at the cy-
tomembrane interface. Each mesenchymal stem cell had up to 1500 nanoparticles put
onto it, giving the cells excellent cell survival and tumor-tropic potential. For cell-directed
tumor-tropic administration, the silica nanorattle’s intracellular retention duration of at
least 48 h is enough. Compared to free DOX and silica nanorattle-encapsulated DOX,
in vivo tests demonstrated that burdened mesenchymal stem cells are more effective in
locating U251 glioma tumor cells and delivering doxorubicin with a larger dispersion and
longer retention lifetime in tumor tissues. The considerable enhancement of tumor-cell
apoptosis was further aided by the increased and prolonged intratumoral distribution of
DOX. This approach could lead to the development of a strong, broadly applicable targeted
tumor treatment approach with low systemic toxicity and great efficacy [106].

Gold nanoparticles have been extensively studied for use in photothermal cancer
treatment because they can generate heat when subjected to near-infrared light. To improve
their tumor-targeting effectiveness and maximize the photothermal impact by adjusting the
nanoparticle size, further work has to be done. It has been demonstrated that mesenchymal
stem cells can target tumors, assemble pH-sensitive gold nanoparticles in slightly acidic
endosomes, and be used in photothermal treatment. Comparing these aggregated struc-
tures to pH-insensitive control gold nanoparticles, there was a greater cellular retention,
which is crucial for the cell-based administration method. When mesenchymal stem cells
loaded with pH-sensitive gold nanoparticles are injected intravenously into tumor-bearing
mice, the tumor-targeting efficiency increases 37-fold (5.6% of the injected dose), and the
heat generation increases 8.3 ◦C in comparison to injections of control gold nanoparticles
after irradiation. This leads to a markedly improved anti-cancer effect [129]. An example of
another study where nanoparticles and mesenchymal stem cell-based therapy has been
employed for cancer treatment has been depicted in Figure 4.
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The primary pathogenic feature of type 2 diabetes is insulin resistance, which is
frequently developed in the elderly. But it is still unknown what fundamental mecha-
nisms underlie insulin resistance associated with aging. Studies have demonstrated that
adipocytes, myocytes, and hepatocytes may absorb nanosized exosomes generated by aged
mice’s bone marrow mesenchymal stem cells, leading to insulin resistance in both vivo
and in vitro. Researchers discovered that the quantity of miR-29b-3p was significantly
elevated in the exosomes secreted by aged mice’s bone marrow mesenchymal stem cells
using microRNA array tests. Mechanistically, exosomal miR-29b-3p’s downstream target
for controlling insulin resistance has been found to be SIRT1 (sirtuin 1). Interestingly, the
insulin resistance of elderly mice was markedly improved by using an aptamer-mediated
nanocomplex delivery method that down-regulated the expression of miR-29b-3p in bone
marrow mesenchymal stem cell-derived exosomes. In the meantime, young mice devel-
oped insulin resistance due to bone marrow mesenchymal stem cell-specific upregulation
of miR-29b-3p. All of these results pointed to the possibility that exosomal miR-29b-3p
produced from bone marrow mesenchymal stem cells could regulate age-related insulin
resistance, making it a viable target for therapy [131].

A promising method for magnetic targeting and in vivo tracking of transplanted stem
cells is labelling them with magnetic nanoparticles. This is important for enhancing the ther-
apeutic efficacy of cell therapy. Nevertheless, the use of these cutting-edge improvements
in stem-cell-mediated regenerative therapy has been hampered by traditional endocytic
labelling, which has a brief labelling lifespan and relatively low labelling efficiency. A
state-of-the-art magnetothermal technique has been reported by researchers to effectively
label mesenchymal stem cells for magnetic resonance imaging tracking and targeted stroke
therapy. The technique uses biocompatible γ-phase, ferrimagnetic vortex-domain iron
oxide nanorings with superior magnetoresponsive properties as a tracer. This method
allows for the safe and effective labelling of γ-phase, ferrimagnetic vortex-domain iron
oxide nanorings with up to 150 pg of Fe per cell, without interfering with the proliferation
and differentiation of mesenchymal stem cells. This is 3.44 times higher than labelling
by endocytosis. In addition to allowing for the long-term tracking of transplanted mes-
enchymal stem cells over a period of 10 weeks and the ultrasensitive magnetic resonance
imaging detection of sub-10 cells, such a high labelling effectiveness also gives transplanted
mesenchymal stem cells the capacity to manipulate magnetic fields in vivo. The labelled
mesenchymal stem cells enabled magnetic targeting and monitoring for effective replace-
ment therapy with a much lower dosage of 5 × 104 transplanted cells, according to a
proof-of-concept study conducted on a rat stroke model. The results of this study have
shown how effective the magnetothermal approach can be as a labelling method in the
future for use in clinical settings [132].

Without using ionizing radiation, acoustic imaging is accessible and reasonably priced.
When applied at high frequencies with excellent temporal resolution, photoacoustic imag-
ing can provide good spatial resolution and contrast compared to a standard ultrasound.
Emerging as a photoacoustic contrast agent, Prussian blue nanoparticles have significant
optical absorption in the near-infrared spectrum. The researchers created an easy-to-use
technique for labelling human mesenchymal stem cells with Prussian blue nanoparti-
cles and using photoacoustic imaging to image the cells. Initially, ferric chloride and
K4[Fe(CN)6] were reacted in the presence of citric acid to create Prussian blue nanoparticles,
which were then complexed with the cationic transfection agent poly-l-lysine. With a
maximum absorption peak at 715 nm, the poly-l-lysine-coated Prussian blue nanoparticles
(nano-complexes) could effectively mark human mesenchymal stem cells. The study em-
ployed bright field, fluorescence, and transmission electron microscopy to investigate the
cellular uptake of these nanocomplexes. The labelled stem cells expressed CD73, CD90,
and CD105 on their surface after effectively differentiating into two downstream lineages of
adipocytes and osteocytes. Prussian blue nanoparticle labelling did not affect the viability
or proliferation of the labelled cells, and the secretome cytokine analysis showed that the
expression levels of 12 distinct proteins were not dysregulated. Following labelling, the
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optical characteristics of PBNPs were maintained, making them appropriate for the precise
and quantitative identification of implanted cells. When scanned at 730 nm, labelled hu-
man mesenchymal stem cells showed substantial photoacoustic contrast both in vitro and
in vivo; in vivo, the detection limit was 200 cells/µL. As a function of cell concentration,
the photoacoustic signal increased, suggesting that the quantity of labelled cells may be
measured both before and after cell transplants. This method provides image-guided,
real-time brain intraparenchymal injections even through an undamaged skull in hybrid
ultrasound/photoacoustic imaging. The 14-day monitoring and identification of 5 × 104

mesenchymal stem cells in living mice was made possible by this labelling and imaging
technology [133].

Targeting aging chondrocytes could be a promising therapeutic approach since chon-
drocytes derived from osteoarthritic cartilage frequently display senescent and aging
features. In a recent report, it was suggested that osteoarthritis might be treated by using
exosomes made from mesenchymal stem cells obtained from the umbilical cord, together
with a regulated release mechanism and the ability to target chondrocytes. This would
rejuvenate aging chondrocytes. Extensive functional miRNAs in mesenchymal stem cells
from umbilical cords were studied, and the p53 signaling pathway was shown to be the crit-
ical component. Exosomes were generated on membranes using a chondrocyte-targeting
polymer that was specifically designed for this purpose. The exosomes were then encased
within thiolated hyaluronic acid microgels to form a “two-phase” releasing system in a
rat model of osteoarthritis cartilage regeneration. The purpose of this was to extend the
duration of retention and improve the therapeutic efficacy of mesenchymal stem cells
derived from umbilical cords in vivo. In conclusion, this work showed promise for de-
veloping a future cell-free osteoarthritis treatment by combining sustained-release and
chondrocyte-targeting techniques. It also highlighted the rejuvenating effects of umbilical
cord-derived mesenchymal stem cells on osteoarthritis chondrocytes [134].

Because mesenchymal stem cell-based nanomedicines can develop into a wide variety
of tissue species depending on the substrate they grow on, they hold great promise for use
in the field of regenerative medicine. The capacity of a thin layer of pegylated multiwalled
carbon nanotubes spray dried over hot coverslips to affect the proliferation, shape, and
ultimate differentiation of human mesenchymal stem cells into osteoblasts was examined
by researchers. Their results showed that the uniform layer of functionalized nanotubes
promoted cell differentiation more than carboxylated nanotubes or uncoated coverslips
by providing a more conducive microenvironment for mesenchymal stem cells. It also did
not exhibit any cytotoxicity. It is interesting to note that numerous independent criteria at
the transcriptional, protein expression, and functional levels show that cell mesenchymal
stem cells differentiation happened even in the absence of additional biochemical inducing
factors. When considered collectively, these results indicate that functionalized carbon
nanotubes may serve as an appropriate scaffold for a highly selective differentiation into
bone [135].

Layek and coworkers have recently explained that anticancer medication non-specific
toxicity may be reduced, and therapeutic effectiveness may be enhanced by tumor-targeted
drug delivery. Nevertheless, the drug delivery strategies used today rely on the drug
carrier’s ineffective passive accumulation inside the cancers. Their approach to tumor
targeting is based on the engineering of mesenchymal stem cells with drug-loaded nanopar-
ticles. Our research employing the A549 orthotopic lung tumor model demonstrates that
mesenchymal stem cells that have been nanoengineered to carry the anticancer medication
paclitaxel settle into tumors and form cellular drug depots that release the drug payload
over a few days. Nano-engineered mesenchymal stem cells led to a considerable sup-
pression of tumor development and improved survival even at much lower dosages of
paclitaxel. The antitumor effect of mesenchymal stem cells modified by nanotechnology
was validated in immunocompetent C57BL/6 albino female mice with orthotopic Lewis
Lung Carcinoma tumors. Moreover, leukopenia was induced by paclitaxel solution and
paclitaxel nanoparticle treatments, while nano-engineered mesenchymal stem cells had no
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influence on white blood cell count at dosages that produced equal therapeutic effective-
ness. Additionally, compared to the paclitaxel solution and nanoparticle groups, the lung
to liver and lung to spleen ratios of paclitaxel for the nano-engineered mesenchymal stem
cell group were several times higher, indicating a markedly reduced off-target deposition.
In conclusion, our findings show that tumor-specific drug delivery may be effectively
facilitated by nano-engineered mesenchymal stem cells, which also markedly increased the
anti-cancer efficacy of traditional chemotherapeutic medications [136].

In another study, the possibility of using mesenchymal stem cell-derived exosomes
as drug delivery vehicles was assessed. An alternate vesicle for drug delivery might be
the synthetically customized exosome mimetics. Exosome mimetic isolation from human
mesenchymal stem cells was the goal of researchers. Paclitaxel was added to cells, and
exosomal mimetics laden with the drug were separated and tested for their ability to
prevent breast cancer. Mesenchymal stem cells generated from human bone marrow were
used to isolate exosome mimetics. Mesenchymal stem cells were serially extruded through
polycarbonate membrane filters using a mini-extruder, either in the presence or absence
of paclitaxel at varying doses in phosphate-buffered saline. After centrifuging mesenchy-
mal stem cells to eliminate debris and filtering the supernatant, exosome mimetics and
drug-loaded exosome mimetics were separated by ultracentrifugation. Exosome mimetics
without the encapsulated drug payload as well as those containing the paclitaxel were
assessed by several techniques like nanoparticle tracking analysis, western blotting, and
transmission electron microscopy. Anticancer effects of mesenchymal stem cells derived
exosomal mimetics and paclitaxel loaded mesenchymal stem cells derived exosomal mimet-
ics were evaluated with breast cancer cell lines both in vitro and in vivo using the optical
imaging system. Exosomal mimetics were isolated by the extrusion method and ultra-
centrifugation. The membrane markers of the separated vesicles were positive, while the
markers of the endoplasmic reticulum and Golgi bodies were negative. Exosomal mimetics
produced from mesenchymal stem cells were around 150 nm in size, as determined by
nanoparticle tracking analysis, and their shape was validated by transmission electron
microscopy. At increasing doses of exosomal mimetics produced from mesenchymal stem
cells loaded with paclitaxel, the viability of cancer cells was drastically reduced in vitro.
Comparing paclitaxel-loaded mesenchymal stem cell-derived exosomal mimetics to control
and mesenchymal stem cell-derived exosomal mimetics, the in vivo tumor development
was dramatically suppressed. Consequently, drug-loaded mesenchymal stem cell-derived
exosomal mimetics were demonstrated to be therapeutically effective for the treatment of
breast cancer both in vitro and in vivo. These mesenchymal stem cell-derived exosomal
mimetics were effectively extracted utilizing straightforward techniques. Exosomal mimet-
ics derived from mesenchymal stem cells have the potential to be utilized as medication
delivery vehicles treating breast cancer [137].

5. Safety and Toxicity Implications of Mesenchymal Stem Cell-Based Nanocarriers In
Vitro and In Vivo

A number of therapeutic superiorities have been reported regarding the applications
of mesenchymal stem cell-based nanocarriers for drug delivery applications [138]. For
example, these mesenchymal stem cell-based nanocarriers exhibit a higher degree of
affinity for the hypoxic microenvironment found in tumors. Both in vitro and in vivo
tumor growth is inhibited by the combination of nanoparticles in mesenchymal stem cells
in rodent models of cancer. The covalent conjugation of nanoparticles with mesenchymal
stem cells surface can greatly enhance the delivery of drug load to tumor sites. In vitro
tumor growth was inhibited by gold, silica and silicates, diamond, silver, and copper
nanoparticle-based anti-angiogenic systems [130,139,140]. Glycolic acid polyconjugates,
for instance, have been shown to improve the drug delivery of nanoparticles and human
mesenchymal stem cells. However, along with the therapeutic efficacy and long-term
stability of these mesenchymal stem cell-based nanoparticles, their biosafety should also be
improved for their clinical applications [94,141]. In fact, when mesenchymal stem cells are
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employed as the vehicles for drug delivery paradigms along with the NPs, these exhibit
lower toxicities but sometimes their inefficient accumulation in tumors can be seen because
of their clearance by the reticuloendothelial organ systems. To overcome these limitations
and problems, internalization or conjugation of therapeutic payload-loaded nanoparticles
can be rendered more efficient by encapsulating these in mesenchymal stem cells [142,143].

Till recent, some relevant clinical reports accounted the safety of mesenchymal stem
cells without tumorigenesis in patients. In the meta-analysis which comprised of 36 studies,
and incorporated eight clinical trials of a randomized nature having the adequate control
groups, the absence of cancers was shown post transplantation of the mesenchymal stem
cells (n = 1012 patients) [144]. As far as safety and toxicological aspects of mesenchymal
stem cell-based nanocarriers are concerned, many of their aspects continue to get resolved
regarding the biosafety of these mesenchymal stem cell-based nanocarriers, such as their
long-term toxicological outcomes when different types of nanoparticles are combined with
mesenchymal stem cells especially with their applications in cancer patients to assure their
clinical safety paradigms [145,146]. One of the key aspects is loading of the optimized
nanoparticle concentrations into these mesenchymal stem cells which becomes necessary
for their successful translation into clinical aspects, although more insights and better
and in-depth comprehensions are always necessary which could confirm their safety and
minimize their adverse effects [147,148].

Mesenchymal stem cells have exhibited promising paradigms for the treatment of
myocardial infarction in both animals and human studies. This regenerative medicine
arena has broadly engaged engineered silica nanoparticles as the contrast agents because
of their easy functionalization and resistance to degradation [149]. On the other hand,
debates still remain regarding their efficacious biosafety in cell-based systems. Gallina and
coworkers deeply investigated the impacts of human mesenchymal stem cells labelled with
dye-loaded amorphous silica nanoparticles on the cell-viability and functional capacities
and optimized the protocols of human mesenchymal stem cells labelling and also assessed
their feasibility in a beating heart model. The optimized cell-labelling could be incurred
after exposing these human mesenchymal stem cells to the fluorescent 50 nm nanocarriers
and it was further observed that activation of lysosomes consequential to the nanoparticle
reposition cannot be consociated with the oxidative stress. Long-term culturing of these
human mesenchymal cells leads to preservation of their stemness/differentiation properties,
proliferative capabilities, and further imparts resistance to cytotoxicity and genotoxicity.
Eventually, both the ultra-structural testing of cell engraftment inside the myocardial
tissues and clearer visualization of human mesenchymal stem cells in both normalized
and infarcted rat hearts could be made possible by brilliant fluorescence discharged by
the internalized nanocarriers. Overall, these mesenchymal stem cell-based nanocarriers
exhibited superior compatibility with mesenchymal stem cells in terms of the preservation
of key characteristics of these cells and the absence of cytotoxicity and genotoxicity. Because
of their proven biosafety as well as their capability to label cells correctly and be seen
in histological sections, these mesenchymal stem cell-based nanocarriers could provide
some of the best viable routes for tracking cells within heart tissue [150]. Schematic
representation of the designing and formulation strategies for safe and non-toxic stem
cell-based nanostructures has been depicted in Figure 5.

Another issue is the unclear in vivo fate of these mesenchymal stem cell-based nanocar-
riers, which makes it challenging to establish the safety and treatment mechanism [151].
By using mesenchymal stem based inorganic nanocarriers as contrast agents, these can
be made potentially feasible for their traceability, which allows for the tracking of their
locations and viability in vivo. This information can be used to guide precise transplanta-
tion, clarify therapeutic mechanisms, and guarantee patient safety [152]. Another approach
to enhance safety of these mesenchymal stem cell-based nanocarriers is their formulation
approach viz. in the formulation of mesenchymal stem cell-based exosomes formation;
direct methods which undertake passive electroporation and creation of an electric field
within the membrane of the macrovesicles for improvement of their membrane permeabili-
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ties leads to enhancement of the safety of these mesenchymal stem cell-based exosomes
and minimizes their potential toxicities. The other indirect methodology which involves
co-incubation undertakes the modification of the parent mesenchymal stem cells with drugs
followed by their transfer encapsulation inside these mesenchymal stem cells. In this way,
mesenchymal stem cell-based exosomes can be formulated with special qualities—such as
low immunogenicity, biosafety, nanoparticulate size, long circulation half-lives, optimal bio-
compatibility, exceptional penetration capabilities, and higher uptake rates—which render
them perfect for biological applications in the treatment of various human diseases [148].
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membranous nanocarriers appropriate for delivering the therapeutic payload (reprinted from [153]).

One key goal is to achieve clinical effectiveness of these mesenchymal stem cell-
based nanomedicines with lower nanoparticle concentrations while maintaining safety and
minimizing the toxicological implications. In a recent report, mesenchymal stem cell-based
exosomes efficiently absorbed glucose-coated gold nanoparticles via an active, energy-
dependent mechanism. The researchers tracked the labelled exosomes delivered nasally
using a mouse model, and they found that within 24 h, there was a notable accumulation
of these exosomes at the site of a brain injury. When compared to the control animals’
erratic movement and clearance, this accumulation was greater. The labelling technique
for exosomes holds great promise as an invaluable diagnostic tool for a range of brain
disorders and could enhance neuronal regeneration treatments [154]. Researchers have
evaluated the safety and toxicological implications of various types of mesenchymal stem
cell-based nanocarriers, the details of which have been provided in Table 2.
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Table 2. Safety and cytotoxicity testing implications of various types of nanocarriers employed in mesenchymal and other types of stem cells research in regenerative
medicines (adapted from [155]).

S. No. Types of Stem Cells Driven from Species Types of Nanomaterials Safety and Toxicity Analysis Dose/Concentrations Conclusions Ref.

1 Mesenchymal stem cells Human Cholera toxin quantum dots

Assessment of the cell viabilities,
morphological evaluation,
proliferative and differentiation
capacities

250 pm–16 nM No deleterious outcomes
were observed [156]

2 Mesenchymal stem cells Human RGD peptide-conjugated
quantum dots

Assessment of proliferative and
differentiation capacities 20–50 nM No deleterious outcomes

were observed [157]

3 Mesenchymal stem cells Human Cadmium selenium zinc
sulfide quantum dots

Assessment of the cellular
viabilities, and
immune-phenotypic profiling

0.75–3 µg/mL No deleterious outcomes
were observed [158]

4 Mesenchymal stem cells Human Cadmium selenium zinc
sulfide quantum dots

Evaluation of cellular viabilities,
proliferative and
differentiation capacities

1.625 µg Impaired chondrogenic
differentiation was seen [159]

5 Mesenchymal stem cells Human Cadmium selenium zinc
sulfide quantum dots

Assessment of cellular
viabilities, proliferative
as well as
differentiation capacities

1.625 µg Impaired chondrogenic
differentiation was seen [160]

6 Mesenchymal stem cells Rat Cadmium selenium zinc
sulfide quantum dots

Cellular viabilities assessment,
and evaluation of
the differentiation
capacities

16 µg/mL No deleterious outcomes
were observed [161]

7 Mesenchymal stem cells Human Carbon quantum dots

Cellular viabilities evaluation,
and differentiation capacities
and capacities to for the single
cell spheres

50 µg/mL No deleterious outcomes
were observed [162]

8 Adipocyte derived
stem cells Human Graphene quantum dots

Cellular viabilities, and
other metabolic
activities

0.5, 1.0, and
2.0 mg/mL

No deleterious outcomes
were observed [163]

9 Mesenchymal stem cells Rat Graphene quantum dots
Cellular viabilities,
proliferative and
differentiation capacities

50 µg/mL

The osteogenic
and adipogenic
differentiation
was enhanced

[164]
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Table 2. Cont.

S. No. Types of Stem Cells Driven from Species Types of Nanomaterials Safety and Toxicity Analysis Dose/Concentrations Conclusions Ref.

10 Mesenchymal stem cells Human Mesoporous silica
nanoparticles

Cellular adhesion capacities,
immune-phenotypic
profiling

50 µg/mL

The adhesion capacity
was enhanced along with
the increased
expression of
Connexin-43

[165]

11 Mesenchymal stem cells Human
Spherical core-shell
fluorescent
silica nanoparticles

Assessment of the cellular
viabilities, and
adipogenic differentiation
capacities

100 µg/mL
Impaired adipogenic
differentiation
was observed

[166]

12 Mesenchymal stem cells Human Core-shell fluorescent
silica nanoparticles

Evaluation of the cellular
viabilities, osteogenic
differentiation
capacities

10 µg/mL Enhanced osteogenic
differentiation [167]

13 Mesenchymal stem cells Human Mesoporous silica
nanoparticles

Assessment of the cellular
viabilities, as well as
the migration
capacities

100 and 200 µg/mL No deleterious outcomes
were observed [168]

14 Mesenchymal stem cells Human Dye-loaded amorphous
silica nanoparticles

Evaluation of the cellular
viabilities, proliferative as
well as
differentiation capacities

50 µg/mL No deleterious outcomes
were observed [150]

15 Mesenchymal stem cells Human Mesoporous silica
nanoparticles

Cellular viabilities evaluation,
proliferative as well as
differentiation capacities

20 µg/mL No deleterious outcomes
were observed [169]

16 Mesenchymal stem cells Human Mesoporous silica
nanoparticles

Measurements of the cellular
viabilities, followed by
the differentiation
capacities

3–10 µg/mL No deleterious outcomes
were observed [170]

17 Mesenchymal stem cells Human Mesoporous silica
nanoparticles

Evaluation of the cell viabilities,
morphologies,
Immuno-phenotypic profiles,
proliferative as well
as differentiation
capacities

20 µg/mL No deleterious outcomes
were observed [171]
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Table 2. Cont.

S. No. Types of Stem Cells Driven from Species Types of Nanomaterials Safety and Toxicity Analysis Dose/Concentrations Conclusions Ref.

18 Mesenchymal stem cells Human Mesoporous silica
nanoparticles

Cellular viabilities assessment,
immuno-phenotypic
profiling, proliferative as well as
differentiation capacities

20 µg/mL No deleterious outcomes
were observed [172]

19 Mesenchymal stem cells Rat Superparamagnetic
iron-oxide nanoparticles

Cell viabilities assessment, and
then differentiation
capacities

1, 5 µg/mL
Increment chondrogenic
differentiation
was observed

[173]

20 Mesenchymal stem cells Rat

Superparamagnetic
iron-oxide nanoparticles
complexed amylose
cationized with spermin

Evaluation of the cell viabilities,
rate of apoptosis,
levels of the intracellular
reactive oxygen species,
measurements of the
mitochondrial
transmembrane
potentials, and differentiation
capacities

30 µg/mL No deleterious outcomes
were observed [174]

21 Adipocyte-derived stem
cells Rat

Polyethylene glycol/poly
vinyl pyrrolidone—
Superparamagnetic
iron-oxide nanoparticles
and Polyethylene
glycol/polyethylene imine
Superparamagnetic
iron-oxide nanoparticles

Assessment of the cellular
viabilities, followed by the
assessment of the morphologies

12, 25, and 50 µg/mL No deleterious outcomes
were observed [175]

22 Adipocyte derived
stem cells Rat Superparamagnetic

iron-oxide nanoparticles

Assessment of cellular
viabilities, cellular
morphologies,
proliferative capacities

50 µg/mL No deleterious outcomes
were observed [176]

23 Mesenchymal stem cells Human Superparamagnetic
iron-oxide nanoparticles

Evaluations of cellular
viabilities, as well
as differentiation
capacities

25 µg/mL No deleterious outcomes
were observed [177]
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Table 2. Cont.

S. No. Types of Stem Cells Driven from Species Types of Nanomaterials Safety and Toxicity Analysis Dose/Concentrations Conclusions Ref.

24 Mesenchymal stem cells Rat

1-hydroxyethylidene-1.1-
bisphosphonic acid coated
Superparamagnetic
iron-oxide nanoparticles

Assessment of cellular
viabilities, cellular
morphologies, differentiation
capacities

25 µg/mL No deleterious outcomes
were observed [178]

25 Mesenchymal stem cells Human Superparamagnetic
iron-oxide nanoparticles

Cellular viability evaluations,
and assessment of
cell morphologies,
and differentiation
capacities

1, 10, and 100 µg
Fe/mL

No deleterious outcomes
were observed [179]

26 Mesenchymal stem cells Human Superparamagnetic
iron-oxide nanoparticles

Assessment of cellular
viabilities, cellular
morphologies,
and differentiation
capacities

13–16 pg Fe/cell Impaired chondrogenic
differentiation was seen [180]

27 Adipocyte-derived
stem cells Mouse

Penetrating peptide-
bioconjugate-persistent
luminescent nanoparticles

Cellular viabilities assessments,
and evaluations of
differentiation capacity

50 µg/mL No deleterious outcomes
were observed [181]

28 Mesenchymal stem cells Human Purified polymer
nanoparticles

Assessments of cell viability,
and proliferative
capacities

0, 5, 10, 20, 40 µg/mL No deleterious outcomes
were observed [182]

29 Mesenchymal stem cells Human R8-Polymer nanoparticles

Cellular viabilities
measurements, proliferative as
well asdifferentiation capacities,
tumorigenic index assessments,
and immunophenotypic
profiling

10 µg/mL No deleterious outcomes
were observed [183]

30 Mesenchymal stem cells Porcine Gadonanotubes; polymer
nanoparticles Cell viability measurements 1014 Gd3+ ions/cell

No deleterious outcomes
were observed [184]

31 hESC-CM Human Polymer nanoparticles
Cell viabilities assessments,
and immunophenotypic
profiling

0, 2, 4, 8 × 10−9 M
No deleterious outcomes
were observed [185]
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Table 2. Cont.

S. No. Types of Stem Cells Driven from Species Types of Nanomaterials Safety and Toxicity Analysis Dose/Concentrations Conclusions Ref.

32 Mesenchymal stem cells Human Gold nanoparticles

Measurements of cellular
viabilities, proliferative
index and
differentiation capacities

1012 NPs/mL
No deleterious outcomes
were observed [186]

33 Mesenchymal stem cells Human Silica-coated gold
nanoparticles

Measurements of cellular
viabilities, proliferative
indices and
differentiation capacities

0.0–0.14 nM No deleterious outcomes
were observed [187]

34 Mesenchymal stem cells Rat Silica-coated gold
nanoparticles

Cellular viability assessment,
and proliferative
capacities

1012 NPs/mL
No deleterious outcomes
were observed [188]

35 Mesenchymal stem cells Mouse PEGylated gold
nanoparticles

Assessments of cellular
viabilities, migration capacities,
proliferative indices,
differentiation capabilities and
capacities for the colonization of
the scaffolds

100 µg/mL

Increased migration
capacities, increased
differentiation
of osteoclasts, and
increased capacities
for the
scaffolds colonization

[189]

36 Mesenchymal stem cells Human

2,2,6,6-
tetramethylpiperidine-
N-oxyl Conjugated
Gold nanoparticles

Measurements of cell viabilities,
proliferative indices and
differentiation capacities

0.05–1.00 mM

Increment in
chondrogenic
differentiation, while
decreased adipogenic
differentiation

[190]

37 Adipocyte-derived
stem cells Human N-acetyl cysteine modified

gold nanoparticles

Assessments of cellular
viabilities, as well as
ALP activities

20 µM Increased cell viabilities [191]
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6. Biotransformation Mechanisms and Clearance of Mesenchymal Stem
Cell-Based Nanocarriers

Comparing cell membrane-camouflaged drug delivery systems to cell-based drug
delivery systems, recent research has revealed that the latter can lose all of the native
cells’ biological characteristics and functions, including the long lifespan of erythrocytes
(red blood cells, or RBCs) in circulation, the ability of macrophages, neutrophils, and
mesenchymal stem cells to homing in on inflammation, and the capacity of T cells and
natural killer cells to recognize and eliminate tumors [192–194]. Additionally to the effect of
nanocarriers, various physiological and pathological barriers, such as hepatic metabolism,
renal filtration, immune clearance, and various organ and tissue barriers (e.g., epithelial–
endothelial barrier, extracellular matrix barrier, and cell membrane barrier), control the
drug delivery capabilities of mesenchymal stem cells in vivo [195,196].

Mesenchymal stem cells as well as mesenchymal stem cell-based nanocarriers possess
the larger volumes of internal spaces with hydrophilic or hydrophobic features, and due
to the separate space inside the cell, they can protect the loaded pharmaceuticals from
degradation and clearance for a variety of drug loadings (with distinct features) based
on diverse mechanisms [108,130,197]. Drugs that are encapsulated in the cytoplasm of
these stem cells can interact with other chemicals in the plasma less and be shielded from
clearance and degradation before reaching their intended locations.

Therefore, it is critical for the development and practical use of mesenchymal stem
cell-based drug delivery systems to elucidate the in vivo fate of these particles, including
their distribution, homing, retention, clearance, and activity [37,198,199]. Specifically, the
extended half-life of the drug loaded into the bloodstream is significantly extended due
to the extended half-life of these mesenchymal stem cell-based nanocarriers in circulation
(60–90 days), leading to an elevated concentration of the drug in the blood. For instance, it
has been observed that when the anticancer medication is administered via these nanocar-
riers based on mesenchymal stem cells, its circulation half-life increases from four hours to
almost six days [78,200,201]. Additionally, in vivo pharmacokinetics and biodistribution
of the loaded medicine in mesenchymal stem cell-based nanocarriers can be markedly
enhanced by a suitably lengthy blood circulation period [202,203]. Moreover, the clearance
process conducted by mononuclear phagocyte systems and other problematic tissues might
occasionally result in a limitation of mesenchymal stem cell-based nanocarriers’ ability to
infiltrate and passively transport medications to the liver, spleen, and other pathological
sites [204–206].

Drug delivery methods based on mesenchymal stem cells also switch the drug’s
clearance pathway from renal filtration to mononuclear phagocyte uptake. It is widely ac-
knowledged that glomerular filtration is a common method of eliminating small-molecule
medicines [207–209]. However, this method is not effective for compounds with a relative
molecular mass larger than 70,000 or mesenchymal stem cell-based nanoparticles with a
particle size bigger than 8 nm [210]. When drugs and therapeutic payloads are directly
bound to mesenchymal stem cells, it can result in membrane disruption and quick in vivo
clearance of drug-loaded cells. The intracellular content of mesenchymal stem cells may
decrease as a result of drug loading, and the membranes and other cytological features
of the mesenchymal stem cells may become less elastic, strong, and intact [211–213]. The
circulation time of mesenchymal stem cell-based nanocarriers was negatively impacted
by the drug-loading method when compared to native mesenchymal stem cells in mice
and rats, but it was still significantly longer than the half-life of other nanoparticle-based
drug delivery systems [214–216]. Furthermore, the drug-loading procedure may cause
stem cells’ exposure to phosphatidylserine to rise from the normal value by several orders
of magnitude (more than 5%) which leads to complement fixation and activation, dedif-
ferentiation of mesenchymal stem cells, and elevated stress sensitivity, which ultimately
impairs the biocompatibility of these mesenchymal stem cell-based nanocarriers and other
drug delivery systems [217–219].
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Mesenchymal stem cells laden with drugs can be administered locally or systemi-
cally through injections (e.g., intravenous and arterial delivery). Few mesenchymal stem
cell-based nanosystems are transferred to other organs after intravenous injection; the
majority of cells are first kept in the lungs and then re-distributed to the liver, spleen, and
kidney [220–223]. Because of the mesenchymal stem cells’ passive adhesion in pulmonary
capillaries, which is brought about by their increased cell volume and adhesion molecule
expression during ex vivo culture, mesenchymal stem cell-based drug delivery systems
remain in the lung after intravenous injection [224,225]. After an intravenous injection,
mesenchymal stem cells can redistribute between a few minutes to several days. The half-
life of mesenchymal stem cell-based nanosystems’ elimination from the lungs is roughly
10–24 h [220]. Additionally, Kraitchman and coworkers observed that in a dog model
of acute myocardial infarction, mesenchymal stem cell-based systems were highly dis-
tributed in the lungs immediately following intravenous infusion and were progressively
redistributed to the liver, spleen, and kidneys over the course of the next one to seven
days. [226]. Consequently, effective tumor targeting may be achieved using intravenous
injections of mesenchymal stem cells for the treatment of lung tumors. Mesenchymal stem
cells can be surface modified to target organ and tissue delivery and extend their circulation
in vivo. For instance, hyaluronic acid wheat germ agglutinin combined with mesenchymal
stem cells improved targeted delivery to the liver (which expresses a lot of hyaluronic
acid receptors) [227]. Varied intravenous injections can also result in varied biodistribu-
tions of mesenchymal stem cell-based nanoformulations; following portal vein injection,
mesenchymal stem cell-based nanocarriers are primarily dispersed in the liver. [228–230].
Additionally, in comparison to the inferior vena cava injections, superior mesenteric vein
injections might culminate into the in greater liver selectivity and homing times. [231].

After arterial injection, the lungs are bypassed, resulting in a greater distribution
of mesenchymal stem cells in other bodily organs. When mesenchymal stem cell-based
formulations were administered intravenously versus orally to pigs, the distribution of
these formulations changed. After arterial injection, the amount of accumulated mesenchy-
mal stem cells in the lungs decreased, while the amount of mesenchymal stem cell-based
nanocarriers in the liver, spleen, and kidneys increased [203,232,233]. By using arterial
injection, targeted distribution to certain organs and tumors can also be accomplished.
Mesenchymal stem cells, for instance, injected into the kidney through the renal artery
had a concentrated distribution in the kidney but not in other organs [230,234,235]. While
injections into the portal vein and artery system can effectively target specific organs, these
delivery modalities necessitate invasive procedures and carry a significant risk of bleeding
complications. Consequently, the recommended technique for administering mesenchymal
stem cells is still intravenous injection [236,237].

Different administration routes result in different in vivo fates and therapeutic out-
comes for drug-loaded mesenchymal stem cell-based drug delivery systems. In addition
to systemic administration, local tissue injection (e.g., central nervous systems, peritoneal,
peritumor, and intratumor) is another common delivery method [238,239]. Targeted tumor
locations can be effectively supplied with mesenchymal stem cells through intratumoral
and peritumoral administration. Delivery via the central nervous system makes it possible
to reach specific brain areas or tumors, including glioblastomas. Following intracerebroven-
tricular injections, Wang et al. demonstrated that mesenchymal stem cells laden with
paclitaxel may move and infiltrate gliomas [240–242]. The glioblastoma model mice’s
survival was significantly extended by the cerebral injection of mesenchymal stem cells ex-
pressing interferon beta, as opposed to the intravenous treatment [243–245]. Furthermore, a
study has reported that significant intracerebral migration can be achieved by administering
mesenchymal stem cells intranasally, avoiding the blood brain barrier [246–250]. Various
studies summarizing the various mesenchymal stem cell membrane-coated nanosystems
along with their in-vivo behavior have been listed in Table 3.
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Table 3. Summarized view of the reports implicating stem cell membrane as a coating for nanocarrier
systems along with their in-vivo applications and behavior (adapted from [78]).

S. No Inner Nanoparticle
Core

Outer Coating
Membrane

Active
Pharmaceutical

Compound

Method of
Preparation Animal Model Outcome Ref.

1
Polydopamine-coated

gold silver
nanoparticles

Mesenchymal stem
cell membrane -

- Hypotonic
lysis

- Sonication

Male golden
hamsters

injected with
Propionibacterium

acnes

Enhanced photothermal
conversion efficiency,
increased efficiency of

cellular uptake,
and increased

anti-proliferative effects

[251]

2
Poly

(lactic-co-glycolic
acid) nanoparticles

Neural stem
cell membranes

overexpressing the
CXC receptors

Glyburide
Freeze–thaw cycles

and sonication
and co-extrusion

Middle cerebral
artery

occlusion mice

For enhancing the
therapeutic effect

of glyburide
[252]

3 Liposomes Mesenchymal stem
cell membrane Curcumin Freeze–thaw cycles

and sonication

Middle cerebral
artery

occlusion mice

For increasing the survival
rate and prevention of the

weight loss tendency
[253]

4
Poly

(lactic-co-glycolic
acid) nanoparticles

Adipose-derived
stem cell

membranes
overexpressing the
CXCR4 receptors

Vascular
endothelial

growth factor

Hypotonic lysis
and sonication

Female C57BL/6
mice with

hindlimb ischemia

Decreasing the uptake by
macrophages, and to

enhance the targeting of
ischemic tissues

[254]

5 Mesoporous silica
nanoparticles

Mesenchymal stem
cell membrane microRNA21 Sonication

Mice with
myocardial
infarction

Increasing the targeting of
infarcted myocardium, and

inhibition of the apoptosis of
the cardiomyocytes

[255]

6 Iron oxide
nanoparticles

Mesenchymal stem
cell membrane Kartogenin Hypotonic lysis

and sonication

Rats with
osteochondral

autograft
transplantation

To increase the cartilage
regeneration activity, and for

enhancing the
biosafety profiles

[256]

7. Pharmacological and Immunological Barriers in Stem Cell
Membrane-Based Nanocarriers

The unique qualities of stem cell membrane-based nanocarriers, such as their low
immunogenicity, biocompatibility, and biodegradability, have drawn attention in the field
of drug delivery. For their successful implementation, pharmacological and immunolog-
ical barriers still present some difficulties that need to be overcome for their successful
applications in preclinical and clinical settings.

7.1. Challenges in Parenteral Delivery and Biodistribution

Drug delivery has become more commonplace thanks to the development of many
mesenchymal stem cell-based nanocarriers by researchers. Exosome-based nanocarriers
have shown to be a great natural nanocarrier system in this series, and they can overcome
the drawbacks of earlier nanocarrier-based drug delivery systems [257]. These can be
released by physiological processes or pathological conditions in various types of cells
including mesenchymal stem cells. The most promising exosome dimensions for sophisti-
cated and targeted drug delivery are currently garnering increased attention due to their
nanoscale nature [258]. Research has shown that exosome-based nanosystems have the
best stability of any extracellular vesicle and an extraordinary ability to maintain the sta-
bility of their payload. Numerous pieces of evidence suggest that exosomal materials
and nanosystems can withstand degradation caused by digestion and other biological
processes, enabling them to reach their intended locations in an active state [259]. One of
the key factors influencing the biodistribution and toxicity of exosomal nanosystems is
their biological origin. It has been shown that tumor-derived exosomal nanosystems are
capable of successfully transporting anticancer treatments to the tumor that gave rise to
them. Even though tumor-derived exosomes continue to offer several benefits for tumor
targeting, systemic injection of these may raise safety concerns viz. exosomes produced
from tumors have the potential to stimulate tumor growth in normal tissues by initiating
the establishment of pre-metastatic niches in those tissues [260,261]. According to Mirza-
aghasi et al., a significant portion of exosomal nanosystems could also become transferred
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to the lungs in sepsis-induced mice after intravenous infusion, with over 30% moved to
the lungs within one hour of injection, but almost none could be observed in the lung of
healthy mice. It was found that these exosomal nanosystems could also get retained in
blood stream for longer durations and could then sometimes also lead to liver failure [262].

Additionally, concerning the overcoming of the challenges of parental delivery of
cell based nanocarriers, nanoparticles can improve the exosomes’ capacity to carry drugs.
Lin et al. created a type of hybrid nanoparticle combining exosome and liposome by
straightforward incubation, which effectively encapsulates big plasmids, in order to address
the issue of the exosomes’ limited efficacy in encapsulating large nucleic acids. Moreover,
nanoparticles for drug delivery have several advantages for exosomes like, they may change
the biological characters of exosomes viz. and these can regulate the release of exosomes
form parental cells and also regulate the contents of exosomes. Nanoparticles for drug
delivery can be combined with exosomes for overcoming several of their other deficiencies
including but not limited to encapsulation of larger sized therapeutic payloads [263,264].

Following parenteral administration, these nanosized delivery systems have been
demonstrated to distribute to several major organs; the origin of this distribution, which is
largely dependent on the chemistry of the exosomal membranes, signifies the molecular
signatures required for cellular interaction as well as the subject’s pathophysiological state.
According to biodistribution studies, injecting more than 400 µg of exosomal nanosystems
causes the test animal to asphyxiate due to unintended aggregations and is then followed
by their accumulation in the lung tissues [265]. Effective dosage reduction can be achieved
by systemic administration of extracellular vesicle-based drug delivery systems; however,
when accompanied by the increased tissue/organ distribution, it sometimes becomes
more difficult to limit off-target binding and off-target effects [266,267]. Moreover, if the
target tissue is more accessible, experimenting with different delivery methods of these
mesenchymal stem cell-based nanosystems might aid in lowering the effective dose of
the drug or therapeutic payload loaded in these. In fact, boosting the uptake of these
mesenchymal stem cell-based nanosystems by a targeted organ can increase their efficacy,
since the route of delivery will also control their biodistribution [268]. In contrast to
intravenous injection, the intraperitoneal or subcutaneous route of these nanocarriers’
deliveries may further a greater accumulation in the gastrointestinal tract and pancreas,
whereas the liver and spleen may sometimes exhibit lower quantities. In addition, the
uptake of these mesenchymal stem cell-based nanosystems may sometimes be enhanced by
the simultaneous presence of some of the extracellular proteins, e.g., albumin. Furthermore,
the inverse relationship between intravenous injection of rising nanocarriers’ concentrations
and their accumulation in the liver suggests that the doses of these stem cells based
nanosystems can also influence their biodistribution [269,270].

Recent research has shown that there are several challenges to be solved in the par-
enteral dispersion of MSC-based nanocarriers. In a recent study, Gupta and colleagues [271]
looked at parenteral delivery issues and emphasized the challenges of maintaining mes-
enchymal stem cells’ viability and functioning during the encapsulation process. The
capacity of MSCs to function as therapeutic cells may be impacted by potential impacts
on cell survival, which is an exciting subject raised by the encapsulation of MSCs within
nanocarriers. The immune response is a significant additional issue. According to re-
searchers, responses triggered by the immune system’s recognition of mesenchymal stem
cells and their nanocarriers may compromise the therapeutic efficiency of these cells. The
effectiveness of parenteral distribution is contingent upon immune response control and
management strategies that ensure the survival and functioning of MSCs [272,273].

Other researchers claim that a key component has always been the biocompatibility
of stem cell-based nanocarriers. Mesenchymal stem cells and stem nanocarrier materials
have different compatibilities, which affects the safety and effectiveness of parenteral
distribution. Minimizing undesired cytotoxic effects or interfering with the biological
processes of encapsulated mesenchymal stem cells is necessary for a successful clinical
translation. Achieving customized dispersion to tissues remains a challenging endeavor.
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The challenges of creating nanocarriers to improve mesenchymal stem cell homing and
retention have been studied by researchers. To guarantee accurate targeting to the desired
region while minimizing off-target consequences, new strategies are required. These
strategies include surface modifications and functionalizing nanocarriers for improved
tissue-specific homing in stem cells [274].

Similarly, additional challenges include biodistribution and clearance kinetics, as
highlighted by some recent reports [275,276]. The nanocarriers affect the body’s ability
to distribute mesenchymal stem cells, as well as the cells’ endurance and ability to go to
certain locations. Understanding and improving these features is essential to enhancing the
therapeutic outcomes of mesenchymal stem cell-derived nanocarrier delivery systems. In
conclusion, there are a number of challenges to be solved in the parenteral administration
and distribution of mesenchymal stem cell-based nanocarriers. These challenges include
immune response and cell survival issues, as well as issues with the nanocarriers’ biocom-
patibility, accurate targeting, and biodistribution kinetics. To overcome these challenges, a
complex, multidisciplinary approach including expertise from several scientific domains is
required. As researchers strive to comprehend the intricacy more thoroughly, new methods
ought to emerge, propelling the field’s objective of completely actualizing the therapeutic
potential of mesenchymal stem cell-based nanocarriers in clinical settings.

7.2. MSC-Based Nanocarriers’ Stabilities in Systemic Circulation and Their Clearance

NPs have been applied to a variety of specialized conditions, including additional
therapeutic uses and site-specific medication delivery systems [277,278]. They have also
been utilized to prevent tumor growth. However, using mesenchymal stem cells as drug
delivery vehicles with NPs can cause toxicity, ineffective accumulation in tumor locations,
and potential clearance by reticuloendothelial organs. To address these issues, methods for
internalizing or conjugating drug-loaded nanoparticles in mesenchymal stem cells have
been proposed [49,130]. Promising outcomes have also been observed when using mes-
enchymal stem cells as cell-based drug delivery vectors for tumor-homing cancer treatment.
But mesenchymal stem cells’ widespread biodistribution also makes non-target peripheral
tissues potentially hazardous [279]. Unlike synthetic nanocarriers, mesenchymal stem cell-
based nanocarriers’ can withstand engulfment or degradation while in circulation. Because
they are naturally secreted chemicals, they circulate in the receiver with intrinsic stability
and can cross natural barriers like the blood-brain barrier and they are less immunogenic
than other conventional carriers.

Leukocyte homing to inflammatory areas is the first method for cellular trafficking
via systemic circulation to be defined. This process involves a multistep adhesion and
extravasation cascade. It is not unexpected that mesenchymal stem cells are believed to use
comparable processes to move toward inflammatory cues arising from sites of tissue injury,
including the tumor microenvironment, given their function in controlling the immune
response as a whole [280–282]. Bypassing the first-pass effect, intra-arterial infusions can
offer a single exposure to peripheral tissues and one pass through the systemic circulation
before reaching the lungs. For instance, in one study, downstream micro vessels (7 µm
diameter) of the cremaster muscle showed immediate stoppage at the precapillary level in
>90% of mesenchymal stem cells injected into the iliac artery [49,283]. Similarly, minutes
after the injection, the great majority of mesenchymal stem cells given intravenously
are quickly removed from the blood and discovered in the lung’s capillary beds. This
quick trapping is followed in both human and animal models by removal from the lungs
and accumulation in the liver and spleen over the course of the next few hours to days.
According to recent data, this “redistribution” might be the result of nonclassical phagocytic
monocytes consuming cellular debris from apoptotic mesenchymal stem cells that are
confined in the lungs, together with tracking markers [28,284,285]. Nevertheless, the use
of mesenchymal stem cells as drug delivery vehicles with NPs may result in toxicity,
ineffective accumulation in tumor areas, and potential clearance by reticuloendothelial
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organs. To address these issues, various methods for internalizing or conjugating drug-
loaded nanoparticles in mesenchymal stem cells have been proposed [130,286].

Recent studies have shed important light on the stability of nanocarriers based on
mesenchymal stem cells in systemic circulation. The authors of a study by Zhang and
coworkers [287] investigated how stability was affected by surface changes on nanocarriers.
They showed how appropriate surface engineering, such as covering nanocarriers with
biocompatible polymers, greatly increased resistance to physiological stressors encountered
in circulation and prevented early degradation, which in turn greatly improved stability.
Researchers found that using sophisticated biomaterials with great structural integrity
improved stability during systemic circulation. The study underlined how important it is
to give careful design considerations to guarantee the structural stability of nanocarriers in
physiological settings.

Together, these results highlight how crucial surface alterations and nanocarrier ar-
chitecture are to maintaining the stability of mesenchymal stem cell-based nanocarriers in
the intricate systemic circulation environment. As the field develops, these insights help
create more robust nanocarriers that provide better stability and increase the possibility of
delivering mesenchymal stem cells in therapeutic applications in a targeted and efficient
manner [153,258]. Comprehensive understanding of the clearance mechanisms of nanocar-
riers based on mesenchymal stem cells is still a problem, despite continued research in
this area. This complex procedure is clarified by several published studies. The clearance
dynamics of mesenchymal stem cell-loaded nanoparticles were investigated in another
study by researchers, which emphasized the function of the mononuclear phagocyte system
in the quick identification and elimination of nanocarriers from circulation. Furthermore,
another research emphasized how surface changes of nanocarriers affect clearance rates.
Their study revealed that immune identification and subsequent clearance might be evaded
by surface engineering techniques like PEGylation, which would extend the circulation
duration [53,288].

Additionally, researchers have also explored the significance of nanocarrier size in
clearance kinetics. According to the study, smaller nanocarriers circulated for longer periods
of time, which may have helped them avoid being recognized by macrophages and lowered
clearance rates. The intricacy of mesenchymal stem cells -based nanocarrier clearance is
highlighted by these combined investigations, highlighting the necessity of customized
design approaches to maximize circulation and improve therapeutic efficacy [37,208,279].
Understanding the subtleties of clearance pathways through these investigations helps
researchers refine nanocarrier designs for enhanced stability and extended circulation in
systemic settings.

7.3. Microenvironmental Heterogeneities and Nanoformualtion Uptake and
Cellular Internalization

Mesenchymal stem cells’ behavior is significantly impacted by the physicochemical
characteristics of a cellular micro as well as the nano-environment, including the effects
of topography and matrix elasticities on the differentiation process. The final destinies
of mesenchymal stem cells could well be determined in large parts by the chemical sig-
nals that are produced on these matrices by growth factors and other regulators [289,290].
The formulation and development of functional biomimetic scaffolds can exhibit greater
promises in mesenchymal stem cell-based nanotherapeutics by offering the highly coor-
dinated physical and chemical cues in space and time. Advancements in these sectors
require an implicit comprehension of the molecular properties of the cellular-environment
along with their nano interactions in order to manipulate and harness them for the develop-
ment of sophisticated next-generation mesenchymal stem cell-based nanocarriers [291,292].
Researchers have documented the evolution of diverse routes and processes concerning
matrix adherence and their potential correlation with stemness and stem cell differentiation.
Super-resolution imaging and single molecular tools for in-vitro nano-manipulation have
made it easier to identify and characterize the molecules and the mechanics of structural
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transformations within mesenchymal stem cells and matrices. These advancements fa-
cilitate the exploration of the mesenchymal stem cell niche and aid in the development
of new classes of mesenchymal stem cell-based nanoformulations that facilitate the pro-
duction of “used biomaterials” for applications in tissue engineering and regenerative
medicine [293,294].

Extracellular vesicular nanostructures inferred from the mesenchymal stem cells ex-
hibit significant promise as nanotherapeutics due to their capacity to both stimulate the
immune system and promote regeneration. Phagocytic cells have been criticized for their
rapid clearance of extracellular vesicular nanostructures that are foreign to them. When
specific media-acquired proteins are concurrently adsorbed on the surface of extracellular
vesicles, researchers have examined the effects of these proteins in the form of protein
corona on these vesicular nanostructures from the mesenchymal stem cells [63,295]. These
mesenchymal stem cells derived from the extracellular vesicular nanostructures are formed
under two distinct culture conditions. It has been well known that the formation of the
protein corona around the mesenchymal stem cell-derived nanoparticles upon systemic
exposure can affect the in vivo fate of these nanoparticles. The adsorption of proteins on
these mesenchymal stem cell-derived extracellular vesicular nanostructures derived from
conditioned culture medium and/or after exposure to serum has not been extensively
studied. It has also been reported that human monocyte-derived dendritic cells’ proin-
flammatory responses are mediated by the protein corona on THP-1-derived vesicular
nanostructures in vitro [63,296,297].

Various kinds of other sub-populations of the bone marrow-inferred mesenchymal
stem cells, which also include multipotent types of adult progenitors, marrow-obtained
adult types of the multilineage showing inducible cellular structures, and very small types
of the embryonic-like stem cells, may find their applicability as the drug payload delivery
agents for the nanoparticles homing in these cells [298,299]. It has been quite critical to
preserve the viabilities of the mesenchymal stem cells post their integration along with the
drug-loaded nanoparticles and to ensure that these medications have not altered the cellular
structures before they have reached their intended destination. Inducing the expression
of multidrug-resistant protein 1 in these mesenchymal stem cells is one way to provide
resistance to chemotherapy. There have been several administration routes for delivering
these mesenchymal stem cell-based nanocarriers to their targeted destinations in vivo
which include the intravenous route of administration, intraperitoneal administration,
administration of the intrathecal injections, or an intravascular delivering methodology can
also be employed. Regarding extensive applications of the intrathecal injections, although
they have exhibited assuring outcomes in some reports, it has largely been restricted to some
of the specialized microenvironments, particularly in solid tumors solid tumors [211,298].

In a different study, researchers investigated how the tumor penetration capabilities
of the mesenchymal stem cell-based nanoformulations for malignant stem cell therapies
can lead to the suppression of the transforming growth factor β signaling pathway. This
report concentrated primarily on the existence of a secondary niche with a more hypoxic
microenvironment where malignant stem cells reside [298,300]. This is due to research sug-
gesting that hypoxic cells can exhibit the higher resistances to the traditional therapies well
and may possess the higher likelihood of tumor regressions following any of the successful
treatment paradigms. Mesenchymal stem cell-based nanoparticle drug delivery systems
offer benefits in the treatment of cancer. The necessity for medications to extravasate from
tumor arteries and disseminate deeper to be internalized by malignant stem cells is a
barrier to the application of these mesenchymal stem cell drug delivery systems. This
study employed mesenchymal stem cell-based nanoformulations that functioned as small
interfering RNA carriers in conjunction with inhibitors of transforming growth factor-β
receptors as a logical and efficient treatment against malignant stem cells [202,298,301].
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8. Future Perspective and Conclusions

Nanomedicines based on mesenchymal stem cells offer a new avenue for research to
treat a wide range of incurable illnesses. With the kind of intense attention and research
that has been going on over the last five to ten years, mesenchymal stem cell-based therapy
will soon be used commercially in every door. A number of important aspects still need
to be further researched, including developing low-cost media, finding a practical large-
scale cell harvesting technique, and examining differentiation efficiency. Furthermore,
mesenchymal stem cell development on biodegradable scaffolds for in vivo transplantation
may be beneficial.

Further studies on the interaction between nanomedicine and mesenchymal stem cells
ought to be carried out in rat models of illness prior to being applied in human settings. This
will enable us to better comprehend the regulation of stem cell function by mesenchymal
stem cell-based nanocarriers. More crucially, though, we must comprehend contradictory
results about the impact of particular metallic nanocarriers on mesenchymal stem cells’
interactions and differentiation. For instance, knowledge of the molecular pathways
underlying pluripotent stem cells’ reprogramming and differentiation on different kinds of
nanomedicines will provide specific details on future clinical uses against cancers. We also
need to decrease the damage that different kinds of nanoparticles do to stem cells. Patients
should not disregard the fact that some metallic nanocarriers have negative impacts on
stem cell differentiation and proliferation. It is imperative to conduct further study on the
toxicity of various nanoparticles to stem cells. Moreover, the effects of metallic nanocarriers
on the growth of stem cells have not been thoroughly studied, and further research is
needed to determine the toxicity of superparamagnetic iron oxide nanoparticles in stem
cells.

To gain a better understanding of these strategies, mesenchymal stem cells should
be employed to investigate the toxicity and homing of different nanoparticles and drug
delivery systems. Further studies employing mesenchymal stem cells and nanoparticles
in rodent cancer models verify the minimum toxicity before it is used in clinical settings.
Nonetheless, evaluation of the biophysical effects and related biological activities of nano-
materials is necessary to find nanomedicines that do not affect the cells’ viabilities or
membranous fluidities of mesenchymal stem cells. Lastly, research into improved migra-
tory ability (homing) and novel biophysical characteristics of nanoparticle-mesenchymal
stem cells may produce nanocarriers with improved cell trafficking. Enhancing nanocarri-
ers with a greater internalization capability and no harmful side effects, together with the
power to lower intracellular reactive oxygen species and peroxidation formation, should
be the main goals of study.

From the author’s perspective, many factors, including ease of construction, stability
based on thermal and biomechanical parameters, bioactivity in relation to interactions
with other biochemical moieties in the body, immune response avoidance, and approach
specificity with minimal side effects, are important to consider when selecting the best
scaffold, nano-therapy, or other composite material. However, authors would like to
suggest that here are still certain issues that require standardization. To summarize, a
standard operating procedure must be created to enable the prompt storage and transfer
of mesenchymal stem cells to distant institutions. This will ensure that mesenchymal
stem cell-based treatments yield the best outcomes in terms of the survivability of the
nano-composites created and the repeatability of the model about its efficacy in patients
with the fewest negative effects. Critical aspects also include the patients’ willingness to
accept such novel treatments and their output value. These techniques could serve as a
catalyst, elevating the most promising mesenchymal stem cell therapies to the fore.

As far as authors’ perspective on exosomes is considered, due to their many ther-
apeutic benefits, mesenchymal stem cell-derived exosomes have been widely used in
the creation of innovative regeneration techniques for a variety of diseases. The use of
exosomes in treatment reduces safety issues associated with the introduction of living
cells by enabling cell-free therapy. Mesenchymal stem cell exosomes’ ability to promote
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regeneration in recipient cells has frequently been associated with their anti-inflammatory
properties. Exosomes produced from mesenchymal stem cells possess immunomodulatory
features that make them useful for treating a range of inflammatory and autoimmune dis-
eases. By preconditioning the growth of mesenchymal stem cells—for example, by adding
chemicals or cytokines, establishing hypoxic conditions, or introducing gene changes like
CRISPR/Cas9—exosome activity can be readily altered. Since lot-to-lot variation in pri-
mary naïve mesenchymal stem cells can be partially addressed by using embryonic stem
cells, preconditioning the stem cells, or removing exosomes from induced pluripotent
stem cells, the authors would like to suggest that most of these problems and limitations
with mesenchymal stem cell-based nano-therapy can be partially resolved. In conclusion,
several studies’ findings suggest that exosomes produced from mesenchymal stem cells
have considerable therapeutic potential for the management of a range of illnesses. The
development of recommendations for safety and therapeutic effectiveness should hasten
the application of exosomes generated from mesenchymal stem cells as regenerative agents
in clinical settings.

Intact mesenchymal stem cells can still be just as successful in treating patients by
loading other therapeutic molecules and minimizing the danger of cancer from genetic
switching, even though mesenchymal stem cells with their genes switched on showed
positive outcomes. In the current report, authors have presented the special abilities of
mesenchymal stem cells in tumor inhibition and tropism; non-genetically modified mes-
enchymal stem cells provide a novel solution to this issue. It also demonstrates how
effectively chemotherapeutic medications loaded into mesenchymal stem cells may be
transported to cancerous areas. Moreover, mesenchymal stem cells may re-strict angiogen-
esis and induce apoptosis in tumor cells with the administration of a chemotherapeutic
drug to the tumor sites, both of which work together to kill glioma cells.

The discussion of the potential uses of mesenchymal stem cell-based therapies sup-
ported by nanocarriers as drug delivery systems based on mesenchymal stem cells and
vesicular nano-systems released by mesenchymal stem cells, as well as therapeutic agents
with enhanced specificities, regenerative, and anti-inflammatory nano-therapeutic agents,
have been concludes in this review. With the help of nanotechnology, mesenchymal stem
cells with special abilities have been presented in preclinical and clinical settings today,
surpassing the limitations of genetically produced mesenchymal stem cells. With posi-
tive results in the near future, this opens the door for new guidelines on stem cell-based
nano-therapies.
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