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Abstract: Short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) are environmental
contaminants known for their persistence and bioaccumulation in fatty tissues. SCCPs are considered
potential carcinogens and endocrine disruptors, with similar effects expected for MCCPs. This study
investigated the body burden of SCCPs and MCCPs in residents of two regions of the Czech Republic
with different levels of industrial pollution. Blood serum samples from 62 individuals in Ceske
Budejovice (control area) and Ostrava (industrial area) were analysed. The results showed higher
concentrations of SCCPs (<120–650 ng/g lipid weight (lw)) and MCCPs (<240–1530 ng/g lw) in
Ostrava compared to Ceske Budejovice (SCCPs: <120–210 ng/g lw, MCCPs: <240–340 ng/g lw).
The statistical analysis revealed no significant correlations between chemical concentrations and
demographic variables such as age, BMI, or gender. The findings are consistent with European and
Australian studies but significantly lower than levels reported in China. This is the first compre-
hensive survey of SCCPs and MCCPs in human blood serum in the Czech Republic and the second
study in Europe. The data collected in this study are essential for assessing SCCPs and MCCPs.
They will contribute to a better understanding the potential health risks associated with exposure to
these chemicals.
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1. Introduction

Man-made chemical pollution is one of the current civilisation problems. Chemicals
enter the environment, food, and living organisms during production, use, and disposal,
contributing to human exposure [1].

One of the groups of environmental pollutants currently under discussion are chlori-
nated paraffins (CPs). CPs are complex synthetic mixtures of polychlorinated n-alkanes
with different carbon chain lengths and chlorine contents in the molecules. Commercially
produced technical CPs are usually classified into three groups according to the length
of the carbon chain: short-chain chlorinated paraffins (SCCPs, C10–C13), medium-chain
chlorinated paraffins (MCCPs, C14–C17) and long-chain chlorinated paraffins (LCCPs,
C18–C30). The molecule’s chlorination degree is usually 30–70 weight percentages [2].
However, the range of industrial products associated with CPs can be constantly expanded.
Recently, CPs with shorter chains than SCCPs have also been discovered, so-called very
short-chain CPs (vSCCPs, C6–C9), which occur as impurities in synthetic CP products or
by-products [3].

Technical mixtures are used as secondary plasticisers and flame retardants in polyvinyl
chloride (PVC) products and other plastics, rubber, paints, sealants, and adhesives. These
mixtures have also been added to cutting fluids as lubricants and additives that withstand
high pressures. They have also been used to dissolve grease in the working and processing
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of leather for clothing, fabrics and furniture [4]. SCCPs have been classified as potential
human carcinogens [5], and due to their persistence in the environment, ability to bioaccu-
mulate, and possible adverse effects, they were classified as persistent organic pollutants
(POPs) listed in the Stockholm Convention in 2017 [6]. MCCPs show similar properties and
have been proposed as candidate compounds for inclusion in the Convention since 2021.
LCCPs are also thought to have these properties, but little is known about them. Studies
on vSCCPs associated with commercial products and environmental and human blood
samples can already be found in the literature [3].

Since SCCPs and MCCPs are used as plasticisers in plastics, sources of exposure may
include these plastics used in products that come into contact with food (hand blenders,
plastic bottles, and food packaging) or toys and their packaging [7,8]. They are also used in
insulation materials, which may pose a risk during manufacture or disposal. They have
also been found in textiles such as T-shirts and socks, which may be a source of dermal
exposure [9].

CPs have been detected in all environmental compartments—water [10–12], soil [13],
sediments [14–16], air [17–19], dust [20], food and crops [21–25]. The most important
exposure source is dietary intake, i.e., ingestion of contaminated food or food supple-
ments [26,27], followed by inhalation exposure via indoor air and dermal exposure from
dust and consumer products [28]. Breast milk is the most crucial way of infants’ exposure
to CPs, which reflects the mother’s internal exposure [29].

Human biomonitoring is a method that focuses on determining internal exposure
to CPs and other pollutants. This method uses human biological samples to measure
xenobiotics and their metabolites. The preferred and common sample type for assessing
internal exposure to CPs is human blood plasma or serum, as blood is in contact with all
organs and tissues [30]. Breast milk is also used to assess the exposure of both the infant
and the mother [31]. However, hair and nails can also be used to evaluate exposure [30].
Currently, three European studies on the CPs in human serum are available. One of them
is from the Czech Republic, where the medians were 370 ng/g lipid weight (lw) and
360 ng/g lw (SCCPs and MCCPs) [32]. Unlike the first study, samples were taken from
both genders, and it was possible to consider this parameter when processing the results.
The other two are from Norway. In one of these studies, the medians were 2500 ng/g lw
for SCCPs and 1100 ng/g lw for MCCPs [33]. Data are also available for the Australian
population. The reported median concentrations were 97 ng/g lw and 190 ng/g lw (SCCPs
and MCCPs, respectively) [34]. Concentrations of SCCPs and MCCPs in blood plasma,
serum, and breast milk have been reported mainly from China. There, mean values for
blood serum range from 13,800 to 20,949 ng/g lw for SCCPs and from 1340 to 15,200 ng/g lw
for MCCPs [35–37]. Results from Europe and Australia are up to 50-times lower than in
China, which is consistent with China being the largest producer of CPs in the world [2].
The study aimed to determine human blood serum samples (n = 62) from men and women
for the presence of SCCPs and MCCPs, thereby extending the results from Europe, which
are still few.

2. Materials and Methods

In this survey, we aimed to further confirm the results of a pilot methodological
study [32] by analysing a broader set of samples. The studied general population is from
two locations (the industrial area of Ostrava and the control area of Ceske Budejovice) in
the Czech Republic. Gas chromatography coupled with high-resolution mass spectrometry
operated in negative chemical ionisation mode (GC-NCI-HRMS) was used to determine
CPs in human blood serum samples (n = 62). In the pilot study, samples were collected only
from men, but in this survey, we had blood serum sampled from both men and women.

2.1. Analytical Standards and Chemicals

Single-chain standard mixtures of SCCPs with 45%, 55%, and 65% chlorine (w/w) and
single-chain mixtures of MCCPs with 45% and 55% chlorine (w/w) (in 10 and 100 µg/mL
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cyclohexane, respectively) were purchased from LGC Standards (Teddington, UK). Poly-
chlorinated biphenyl 166 (10 µg/mL isooctane), used as an internal standard, was pur-
chased from Dr. Ehrenstorfer (Augsburg, Germany). Other chemicals used are listed in the
earlier study by Tomasko et al., 2021. The polypropylene test tubes (50 mL) used for the
extraction were obtained from Eppendorf (Hamburg, Germany).

2.2. Samples

The current study determined SCCPs and MCCPs in human blood serum samples
collected from the Czech adult population (n = 62) between September 2019 and May 2021.
The cohort was a healthy population with no significant health problems. The samples
were obtained as a part of the HAIE (Healthy Aging in Industrial Environment) project,
which was conducted in close collaboration with the Institute of Experimental Medicine of
the Czech Academy of Sciences. The HAIE project aimed to determine the links between
industrial pollution and human health. The HAIE project was not primarily focused on CPs,
but beyond the project’s scope, this unique sample set was used to assess the exposure of
the Czech population to CPs. Serum samples were collected from two locations—Ostrava
(49◦50′ N 18◦17′ E) and Ceske Budejovice (48◦58′ N 14◦28′ E). Ostrava was selected as
a typical industrial area where the population is likely to be more exposed to CPs than
Ceske Budejovice, which was chosen as a control area, similar to previous studies focusing
on the presence of persistent organic pollutants (POPs) in human biological samples in
the Czech Republic [38,39]. Donors of volunteer samples were men (n = 34) and women
(n = 28) aged 18–63. The detailed information of individual volunteers includes age, BMI,
gender, occupation, and education, which are summarised in the Supplementary Materials
in Table S1.

2.3. Sample Preparation Procedure

For sample preparation, the analytical approach from the study by Svarcova et al.,
2019 [40] was used, which was initially developed for a broad group of halogenated pollu-
tants (polychlorinated biphenyls, organochlorine pesticides, halogenated flame retardants)
with minor modifications for CPs described in the study by Tomasko et al., 2021 [32]. Three
grams of blood serum was mixed with 0.04 mL of internal standard stock solution in
acetone (PCB 166 at 50 ng/mL used for CPs analysis). The procedure involved a triplicate
extraction with a mixture of 6 mL n-hexane:diethyl ether (9:1, v/v). Anhydrous sodium
sulfate was used to remove residual water. Solid phase extraction (SPE) on a Florisil®

column (0.5 g) was applied as a clean-up step. The sample was dissolved in 0.25 mL
isooctane. The total lipid content was determined enzymatically.

2.4. Instrumental Analysis and Quantification of SCCPs and MCCPs

Instrumental analysis was performed by gas chromatography coupled with high-
resolution mass spectrometry (GC-HRMS) using an Agilent 7200B system consisting of
Agilent 7890B gas chromatograph equipped with a multimode inlet, PAL RSI 85 autosam-
pler for automated injection, and quadrupole-time of flight mass spectrometer (GC/Q-
TOF; Agilent Technologies, Santa Clara, CA, USA) in negative chemical ionisation mode.
The instrument parameters and quantification algorithm are documented in Tomasko
et al., 2023 [9].

2.5. QA/QC

A previously validated and established method was used to determine SCCPs and
MCCPs in human blood serum. The validation of the procedure for the analysis of SCCPs
and MCCPs in human blood serum is described in a previous study by Tomasko et al.,
2021 [32] (recoveries in the range of 71–89%, repeatability < 20%—expressed as relative
standard deviation, RSD). The LOQ was set to the value in standards where at least three
congener groups were detected (120 ng/g lw and 240 ng/g lw for SCCPs and MCCPs,
respectively). The value LOD is then taken as one-third of the value LOQ.
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Procedural blanks were prepared each day. The SCCPs and MCCPs concentrations
in the blanks ranged from LOD to LOQ; the blank CPs values were subtracted from the
samples. The polypropylene tubes used in the extraction process have been previously
identified [32] as a critical point in background contamination of the laboratory with CPs.
In this study, every batch of tubes was tested and did not contain detectable CPs.

To monitor the performance characteristics of the method on each day of extraction,
blank samples of bovine serum were spiked with CPs to a concentration of 50 ng/g weight
and 100 ng/g weight for SCCPs and MCCPs, respectively. The mean recoveries were
116% and 122% (SCCPs and MCCPs, respectively). We can not analyse certified reference
material because it is not available. The only available reference material is fish tissue.

2.6. Statistical Analyses

MetaboAnalyst 5.0 (University of Alberta, Edmonton, AB, Canada) and RStudio
(Posit, Vienna, Austria) software were used for statistical data processing. Statistically
significant results were set as α = 0.5. Data were log-transformed as they did not have
a normal distribution, which was tested using the Shapiro-Wilk normality test at the
α = 0.05 level. Welch’s Two Sample t-tests were used to assess differences in the levels of
contaminants between sampling sites. Spearman correlation tests were used to identify
possible significant correlations in the measured data set. One-way and two-way variance
analyses (ANOVA) were used to compare the distribution of age groups, BMI, and CP.

For statistical analysis of the results in human blood sera, concentrations below the
LOQ (120 ng/g lw for SCCPs and 240 ng/g lw for MCCPs) were replaced by half the value
of LOQ (60 ng/g lw for SCCPs and 120 ng/g lw for MCCPs) and values below the LOD
(40 ng/g lw for SCCPs and 80 ng/g lw for MCCPs) were replaced by half the value of LOD
(20 ng/g lw for SCCPs and 40 ng/g lw for MCCPs). The half values are used to identify
possible differences between the groups, as it is often not possible to assess population
exposure based on the different groups due to the low concentrations. This procedure was
used for all statistical calculations.

3. Results
3.1. Frequency of Detection of CPs in Human Blood Samples

The frequency of findings above the LOQ/LOD values (values above the LOQ) of
SCCPs was three times lower in Ceske Budejovice (9%) than in Ostrava (28%) as shown
in Figure 1a and for MCCPs ten times lower in Ceske Budejovice (3%) than in Ostrava
(32%), as shown in Figure 1b. These results could indicate a higher population exposure
in Ostrava.
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Figure 1. The frequency of findings above the LOQ/LOD values (a) The frequency of findings
above the LOQ/LOD of SCCPs in control area (Ceske Budejovice) and industrial area (Ostrava);
(b) The frequency of findings above the LOQ/LOD of MCCPs in control area (Ceske Budejovice) and
industrial area (Ostrava).
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3.2. SCCPs and MCCPs Concentrations in Blood Samples from the Czech Republic

A statistically significant difference (p < 0.05) was found for the individual locations in
the Czech Republic (Figure 2). In Ceske Budejovice, measured concentrations ranged from
<120–210 ng/g lw for SCCPs (3 samples above LOQ) and <240–340 ng/g lw for MCCPs
(1 sample above LOQ), and in Ostrava <120–650 ng/g lw for SCCPs (8 samples above LOQ)
and <240–1530 ng/g lw for MCCPs (9 samples above LOQ).
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Figure 2. Concentrations of SCCPs and MCCPs in blood serum in both localities. The boxplots
illustrate the lower quartile (25% of the results, Q1) or the value that defines the lowest quarter of the
values, and the upper quartile (75% of the results, Q3) or the value that separates the highest quarter.
The so-called “whiskers” indicate the minimum and maximum values that fall within a range that
results from multiplying the value by 1.5 and the variance between Q3 and Q1. The values outside
the boxplot with whiskers are outliers (circle). The line between Q1 and Q3 indicates the median,
while the cross in this case indicates the mean value.

3.3. Correlation Between SCCPs and MCCPs Concentrations in Serum and Gender, Age and BMI

When looking for a correlation between the concentrations of SCCPs and MCCPs and
the gender of the Czech participants, no statistically significant difference was found. Since
CPs are persistent and can accumulate in human adipose tissue, a correlation between the
measured concentrations and the age of the study participants was searched for. In this
case, there was no statistically significant difference between the concentrations of SCCPs
and MCCPs and the age of the donors. Consistent with the assumption of an accumulation
of CPs in adipose tissue, the relationship between SCCPs and MCCPs concentrations and
the BMI of the study participants was examined. This test also showed no statistically
significant difference.

The p-values and correlation coefficients are shown in Table 1.

Table 1. Values of statistical analysis to look for possible correlations between SCCPs and MCCPs
and various factor.

p-Value Correlation Coefficient

Search Factor SCCPs MCCPs SCCPs MCCPs

Gender 0.1027 0.4699 −0.2092 −0.0935

Age 0.3630 0.5499 0.1175 0.0774

BMI 0.9418 0.3001 0.0095 −0.1337

Figure 3a illustrates the measured concentrations of SCCPs and MCCPs for both male
and female participants. The measured concentrations of SCCPs and MCCPs in men’s
serum ranged from 120 to 494 ng/g lw (three samples above the LOQ) and from 240
to 794 ng/g lw (four samples above the LOQ), respectively. For women, the measured
concentrations ranged from <120–650 ng/g lw for SCCPs (eight samples above LOQ) and
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<240–1530 ng/g lw for MCCPs (six samples above LOQ). The median concentrations in
both groups were below the LOQ for SCCPs and MCCPs.
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serum in BMI groups (c). The boxplots illustrate the lower quartile (25% of the results, Q1) or the
value that defines the lowest quarter of the values, and the upper quartile (75% of the results, Q3)
or the value that separates the highest quarter. The so-called “whiskers” indicate the minimum
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As a function of age, the concentrations of SCCPs and MCCPs are presented in
Figure 3b. The highest concentration of both compounds was observed in the 36–45 age
group. The median concentrations of SCCPs and MCCPs in all groups are below the limit
of quantification (LOQ).

The results of the measurement of SCCPs and MCCPs concentrations, divided based
on BMI, are presented in Figure 3c. The highest concentration of SCCPs and MCCPs was
observed in the 21–25–45 BMI group. The median concentrations of SCCPs and MCCPs in
all groups were below the limit of quantification (LOQ).

The absence of a trend between CP concentrations and age or BMI may be related
to several factors, including excretion rate, metabolism, environmental exposure, and the
composition of chlorinated paraffins.

In the study participants, some occupations could potentially be more exposed, such
as firefighter, Plastics specialist, and Foundry worker in an ironworks. Unfortunately,
we do not have a detailed job description of the individual employees. Higher concen-
trations were confirmed for individuals with the employment of foundry worker in an
ironworks (31 years old, man, high concentrations of both SCCPs (494 ng/g lw) and MCCPs
(489 ng/g lw)), but as mentioned, it is not possible to identify employment as a source
of exposure. For example, for firefighters, the concentrations of SCCP and MCCP were
below the LOQ, and the same finding was found for the plastics specialist. The most
exposed participants were a policewoman (42 years old, woman, high concentration of
both SCCPs (653 ng/g lw) and MCCPs (1064 ng/g lw)), a teacher (38 years old, woman,
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high concentration of MCCPs (1529 ng/g lw)) and a foundry worker in an ironworks.
Occupational information for all study participants is provided in Table S1.

3.4. SCCPs and MCCPs Homologue Profiles in Serum Samples

The group of congeners with 11 carbons was the most abundant (48%) in the serum
samples, followed by 10 carbons (28%), 12 carbons (23%), and the group of congeners
with 13 carbons (1%) was the least frequently detected (Figure 4a). The concentration
range (of all samples) of C10, C11 was <LOD—310 ng/g lw, <LOD—288 ng/g lw and
<120 ng/g lw for C12 and C13. The median values (of all samples) of C10, C11, C12 and
C13 were below LOD.
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In the case of MCCPs, the group of congeners with 14 carbons was the most abundant
(96%), followed by those with 16 carbons (4%). The groups of congeners with 15 and
17 carbons were not detected at all (Figure 4b). A homologue profile for SCCPs and MCCPs
was generated from all samples that showed positive signals for at least two chains. In
this study, we already had single-chain standards for MCCP available, so it was possible
to extend the pilot study with these results. The concentration range for C14 was from
LOD to 1063 ng/g lw; for C16, it was from LOD to 500 ng/g lw, and for C15 and C17 was
<240 ng/g lw. The median values (of all samples) of C14, C15, C16 and C17, were all below
LOD. The medians of all chains for both Ceske Budejovice and Ostrava were <LOD.

4. Discussion

Based on the measured SCCP and MCCP levels at two different sites in the Czech
Republic, it became clear that areas with higher industrial activity had higher CP levels,
confirming the likely link between exposure to these pollutants and industrial emissions.
In the surroundings of Ceske Budejovice, where industrial activity is significantly lower,
exposure to CPs and other persistent organic pollutants (POPs) is significantly lower than
in the more industrialised areas of the Czech Republic. Ostrava and Karvina are considered
the most industrialised regions in the country due to the historical heritage of heavy
industry, the current metallurgy and engineering sector and the significant influence of
transport [38,39]. While slightly elevated concentrations of SCCPs were found in the blood
sera of women, a larger sample with an equal representation of women and men would be
required to establish a statistically significant association. In general, it remains difficult
to detect statistically significant differences between SCCPs and MCCPs concentrations
and the variables gender, age and BMI in the blood serum donors, similar to the studies by
Xu et al., 2019 [29], Ding et al., 2020 [36] and Niu et al., 2023 [41]. Compared to the blood
serum concentrations reported in peer-reviewed studies, especially from China, the results
from samples in the Czech Republic are significantly lower. In China, the concentrations
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are two orders of magnitude higher, suggesting that the Czech population is exposed to
considerably lower amounts than the Chinese population. Samples from Australia [34],
collected over a more extended period, showed median concentrations similar to those
reported from the Czech Republic. From Europe, only two studies from Norway [33,42] are
available, the results of which also indicate a higher exposure of the Norwegian population
compared to that in the Czech Republic. In summary, the available studies suggest that
people in the Czech Republic are significantly less exposed to CPs than in other countries.
Figure 5 shows trends over time, particularly the increase in MCCP concentrations observed
in both the Chinese population and the global results.
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Figure 5. Comparison of SCCP and MCCP concentrations in blood serum based on published studies.

The figure shows the minimum, median and maximum concentrations. The figure
also documents when the samples were taken and how many were provided for the study.

When comparing CP profiles from different studies, it becomes clear that there are
fluctuations in the dominant congeners of SCCPs. In some studies, the C10 congener is
the predominant form, whereas in others, the C13 congener is the more prevalent. This
variability indicates that the sources of SCCPs exposure may be different. In contrast, the
C14 congener predominates in MCCPs in several studies [32,35–37,42–44].

(Chen et al., 2022) [45] reported that in Europe and the USA, the C11 and C12 congeners
dominate in technical mixtures and are mainly used in metalworking fluids. In China,
conversely, the C10 congener was most prevalent in technical mixtures, primarily employed
as additives in PVC products. This indicates that the origin of SCCPs is primarily to be
found in industry and only secondarily in products containing SCCPs. Among the MCCPs,
the most widely produced and used congener is C14, with China and the USA leading in
production. In addition, C15 and C16 congeners are made in China and Europe. When
analysing the MCCPs congener groups, it becomes clear that products containing MCCPs
originate predominantly from China.
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In general, CPs in metalworking fluids have a higher potential for environmental emis-
sions than CPs in PVC products, which have a lower potential for environmental emissions.
PVC products release CPs into the environment on a long-term and continuous basis.

There are minimal or almost no restrictions to limit the production and use of CPs
in China. As a major producer, China contributes significantly to CPs pollution and
environmental emissions. CPs can spread through the air, travel long distances, and
eventually enter water bodies that are carried by ocean currents, mainly affecting Japan
and South Korea. CPs can also be emitted by products imported from China.

It is worth noting that a transition from SCCPs to MCCPs or even LCCPs is evident
in the data from various studies. However, despite the increasing production and use of
CPs and the associated increase in environmental exposure, there is still insufficient data to
comprehensively assess the exposure of the general population and specific population
subgroups. Although more and more scientific publications deal with CPs-related topics,
reference values (RV95) for estimating exposure in different population groups are still
difficult to find. Future research on CPs must prioritise acquiring further data on their
occurrence in the environment, food, everyday objects, and biomonitoring. These compre-
hensive data sets must be made available to assess the exposure of different population
groups and address the ongoing challenges posed by CPs.

5. Conclusions

The present study, conducted in the Czech Republic, aimed to analyse the presence of
CPs in human blood serum samples from two locations: Ceske Budejovice and Ostrava.
The results showed a statistically significant difference in CP concentrations between these
areas, suggesting that CPs exposure is likely related to industrial activities, especially in
Ostrava, a region with a long history of heavy industry.

Concentrations of SCCPs and MCCPs in serum samples from Ceske Budejovice were
generally lower, with SCCPs ranging from <120–210 ng/g lw (9% of samples above LOQ)
and MCCPs < 240–340 ng/g lw (3% of samples above LOQ). In contrast, Ostrava had
higher CP levels, with SCCPs in the range of <120–650 ng/g lw (29% of samples above
LOQ) and MCCPs < 240–1530 ng/g lw (32% of samples above LOQ).

Despite analysing various demographic factors such as gender, age and BMI, the
study did not find a clear correlation between these factors and CP concentrations in
serum samples.

Although this is the second study on SCCPs and MCCPs in human blood serum
from the Czech Republic, this is the first study in which we were able to investigate
the presence of SCCPs and MCCPs in human blood serum from women. The results of
this study are consistent with the pilot study’s results and confirm the data’s consistency.
By increasing the number of samples and including a broader population, this study
contributes to understanding SCCPs and MCCPs in human blood serum in Europe and
provides important information for risk assessment. The concentrations found in the Czech
Republic are significantly lower than in similar studies in China, emphasising the regional
differences in exposure to CPs. The results from Australia are more in line with our study
than the Norwegian studies, where the results were slightly higher. This study emphasises
the importance of monitoring and assessing the presence of CPs in human serum, especially
in areas with industrial activities, to better understand potential health risks associated
with CPs exposure.
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