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Abstract: Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term
exposure to low levels of CPF is associated with neurodevelopmental and neurodegen-
erative disorders. The mechanisms leading to these effects are still not fully understood.
Normal NMDA receptor (NMDAR) function is essential for neuronal development and
higher brain functionality, while its inappropriate stimulation results in neurological deficits.
Thus, the current study aimed to investigate the role of NMDARs in CPF-induced neurotox-
icity. We show that NMDARs mediate CPF-induced excitotoxicity in differentiated human
fetal cortical neuronal ReNcell CX stem cells. In addition, by using two-electrode voltage
clamp electrophysiology of Xenopus oocytes expressing NMDARs, we show CPF potentia-
tion of both GluN1-1a/GluN2A (EC50 ≈ 40 nM) and GluN1-1a/GluN2B (EC50 ≈ 55 nM)
receptors, as well as reductions (approximately halved) in the NMDA EC50s and direct
activation by 10 µM CPF of both receptor types. In silico molecular docking validated
CPF’s association with NMDARs through relatively high affinity binding (−8.82 kcal/mol)
to a modulator site at the GluN1–GluN2A interface of the ligand-binding domains.

Keywords: chlorpyrifos; organophosphate; neurotoxicity; NMDA receptors; stem cells;
Xenopus oocytes; two-electrode voltage clamp

1. Introduction
Organophosphorus insecticides have been among the most heavily used pesticides

throughout the world for over half a century, with chlorpyrifos (diethyl 3,5,6-trichloro-2-
pyridyl phosphonothioate) (CPF) representing one of the top-selling insecticides for many
years [1,2]. Their primary target in insect pests is acetylcholinesterase (AChE), which is
inhibited by CPF binding, resulting in the abnormal accumulation of acetylcholine in the
synaptic cleft and persistent activation of acetylcholine receptors. This leads to paralysis of
the insect pest [3,4].

Despite recent efforts to restrict its applications, such as bans in the USA, Europe,
and the UK [5–7], CPF is still authorized for use in some parts of the world. In addition,
long-term exposure to residual CPF in the environment, food, and from imported products
is still of concern in areas where CPF use has already been restricted.

Based on epidemiological, in vivo, and in vitro studies, exposure to CPF has been
associated with adverse effects on the developing nervous system [8,9]. For instance,
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an increased risk of attention deficit hyperactivity disorder (ADHD) has been reported
in children who had increased urinary levels of CPF [10]. Prenatal exposure to CPF is
associated with decreased intellectual development and overall IQ scores in seven-year-old
children [11], and morphological and structural changes were detected in the developing
brain using magnetic resonance imaging (MRI) [12]. Furthermore, the risk of autism has
been reported to increase three-fold in children whose pregnant mothers lived within a mile
of agricultural regions treated with CPF, when the mothers were exposed in their second
trimester [13,14]. Neurobehavioral deficits have also been reported among agricultural CPF
users in Egypt [15]. The mechanisms associated with these effects are not well understood.

Although insecticide formulations utilize active CPF, the parent compound can be
metabolized by de-sulfuration to form chlorpyrifos-oxon (CPO), an even more potent AChE
inhibitor than CPF [16,17]. This can be further hydrolyzed into less toxic metabolites such
as 3,5,6-trichloro-2-pyridinol (TCPy) and diethyl phosphate (DEP) [17]. CPF is also directly
oxidized via CYP450 enzymes to diethyl thiophosphate (DETP) and TCPy, which can be
detected in urine and provide a means (in addition to blood) to quantify CPF exposure [18].

Repeated exposure to CPF has been associated with long-term neurotoxic effects
at doses that are insufficient to induce cholinergic toxidrome [19]. Furthermore, nu-
merous studies have suggested that CPF-induced neurotoxic effects are explained by
AChE-independent mechanisms including induction of oxidative stress and adduction
of secondary targets at exposure levels that are unlikely to cause sufficient or prolonged
inhibition of AChE [20–25].

N-methyl-D-aspartate receptor (NMDAR) activation, resulting in excitotoxicity, is a
possible contributory mechanism to CPF-induced neurotoxicity, through increased presy-
naptic glutamate release, inducing glutamate-mediated excitotoxicity in primary cortical
culture [26] and enhanced corticostriatal glutamatergic neurotransmission in mice [27].

NMDARs are a subtype of ionotropic glutamate receptors that are widely distributed
in the central nervous system (CNS) [28]. Normal NMDAR physiology is fundamental for
neuronal development and higher brain functions including learning and memory [29],
while its inappropriate or excessive activation causes excitotoxicity and subsequent neu-
rodegeneration [30–32]. Thus, in the current study, we aimed to investigate the possible role
of NMDARs in CPF-induced neurotoxicity. To test this hypothesis, we employed the human
neural progenitor ReNcell CX cell line, which mimics normal in vivo brain development
with differentiation into co-cultures of neurons, astrocytes, and oligodendrocytes [33] and
the development of neuronal synapses [33,34]. In addition, the direct effect of CPF on NM-
DAR function was investigated by two-electrode voltage clamp (TEVC) electrophysiology
using Xenopus oocytes expressing recombinant GluN1-1a/GluN2A or GluN1-1a/GluN2B
subunits. The study then employed molecular docking to simulate the molecular interac-
tion between CPF and the NMDAR and to predict the binding mode and affinity. These are
all novel approaches to the study of CPF-induced neurotoxicity.

2. Materials and Methods
2.1. Chemicals and Reagents

Chlorpyrifos (O,O-diethyl O-(3,5,6-trichloropyridin-2-yl) phosphorothioate) PES-
TANAL, purity ≥ 98% was purchased from Sigma-Aldrich (Poole, UK). It was dissolved in
DMSO to make stock solutions of 100 mM and kept at −20 ◦C. Working solutions were
freshly prepared and final concentrations were prepared in culture media with the DMSO
concentration not exceeding 0.1%. All other chemicals and reagents were purchased from
Sigma-Aldrich (Poole, UK) unless otherwise specified.
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2.2. Neuronal Stem Cell Culture and Differentiation

The human neural progenitor ReNcell CX cell line (Merck Millipore, Watford, UK)
is a neural stem cell line derived from the developing human fetal brain cortex (ventral
mesencephalic region) at 14 weeks of gestational age. The ReNcell CX cell line was ex-
panded on laminin-coated flasks (20 µg/mL; Sigma-Aldrich, Poole, UK) in ReNcell Neural
Stem Cell (NSC) Maintenance Medium (Merck Millipore, Watford, UK) containing fresh
EGF (20 ng/mL; Merck Millipore, Watford, UK) and FGF-b (20 ng/mL; Merck Millipore,
Watford, UK). Cultures were incubated at 37 ◦C in a 95% humidified atmosphere of 5%
CO2. ReNcell CX neural progenitor cells were differentiated into a co-culture of neurons,
astrocytes, and oligodendrocytes by replacing the complete ReNcell CX medium with
EGF- and FGF-b-free medium; with the differentiation medium refreshed every 2 days
throughout the 4-week differentiation period.

2.3. Cell Viability Assessment Using Live, Dead, and Apoptotic Cell Staining

A three-color fluorescence assay was performed as described by Kim et al. [35].
Non-fluorescent fluorescein diacetate (FDA) permeates into active and intact cells and
is hydrolyzed by intracellular esterases into a highly fluorescent green fluorescein when
illuminated with a fluorescein isothiocyanate (FITC; blue) excitation filter set (emission
wavelength 460 nm). Propidium iodide (PI) is a nucleic acid dye that cannot permeate
intact cell membranes and selectively stains the nuclei of dead cells or cells in late apoptotic
stages. Stained nuclei omit red fluorescence under rhodamine (green) excitation (emission
wavelength 650 nm). Live–dead cell assays followed the protocol described by Jones and
Senft [36]. The cells were observed using a Nikon TS100 inverted microscope (Nikon
Europe B.V., Amstelveen, The Netherlands) with incident fluorescence optics. Images
were captured at 200× magnification and digitalized with a Moticam 2300 camera (Roper
Scientific Inc., Duluth, GA, USA; resolution 3 MP).

Live/dead cell staining was analyzed quantitatively. The number of PI-stained nuclei
was counted manually using the cell counting option in the ImageJ software (V2 Fiji-
win64, University of Nottingham). The live cells were FDA stained, while cells that were
categorized as being in apoptosis had a compromised membrane and were stained by a
mixture of FDA and PI.

2.4. Expression of NMDARs in Xenopus Laevis Oocytes

Ovaries of mature female Xenopus laevis were supplied by the European Xenopus
Resource Centre (University of Portsmouth, Portsmouth, UK). Upon receipt, oocytes were
first separated with 1 mg/mL collagenase (Type 1A from Clostridium histolyticum; Sigma,
Poole, UK) in Ca2+-free Barth’s gentamicin–theophylline–pyruvate (GTP) solution (96 mM
NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, 2.5 mM pyruvic acid, 0.5 mM theophylline,
50 µg/mL gentamicin, pH 7.5) on a shaker for approximately 45 min at room temperature.
Oocytes were then rinsed with Ca2+-free GTP solution six to eight times until a clear
solution was obtained and incubated in normal Barth’s GTP solution (Ca2+-free GTP with
inclusion of 1.8 mM CaCl2) at ~4 ◦C for at least half an hour prior to microinjection.

Healthy oocytes at developmental stages IV and V were injected with 50 nL of cRNA
(into the cytoplasm) or plasmid DNA (into the nucleus) at a concentration of ~100 ng/µL
using a Nanolitre 2010 Injector (World Precision Instruments, Hitchin, UK). cRNA or
DNA plasmids encoding the rat NMDAR subunits GluN1-1a and GluN2A or GluN1-
1a and GluN2B were mixed at ratios of 1:1 (by weight) for injection. The cRNA was
synthesized from linearized plasmid DNA (pRK7 or pBluscript SK(−)) containing the GluN-
encoding genes using an Invitrogen mMessage mMachine kit (Thermo Fisher Scientific,
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Loughborough, UK). Injected oocytes were kept in normal Barth’s GTP solution at 19 ◦C
for two to three days for expression of NMDAR subunits before recordings.

2.5. TEVC Recordings

TEVC electrophysiology was used to assess the direct effects of CPF on NMDARs
containing GluN1-1a and GluN2A or GluN1-1a and GluN2B subunits expressed in Xenopus
oocytes. Pulled borosilicate glass capillaries (GC150TF-10, Harvard Apparatus, Cambridge,
UK) (resistances 0.5–2 MΩ) were filled with 3 M KCl and used to impale injected oocytes
for recording. Injected oocytes were continuously perfused with Mg2+-free Xenopus Ringer
solution (95 mM NaCl, 2 mM KCl, 2 mM CaCl2, 5 mM HEPES, pH 7.5) at a flow rate of
5 mL/min, with test compounds applied using a Valvelink 8 gravity-fed perfusion system
(Automate Scientific, Berkeley, CA, USA). Recordings were performed at 20–25 ◦C and
oocytes were clamped at −75 mV holding potential in all experiments. Output current
responses were transferred to a PC via an analogue-to-digital (A/D) converter (National
Instruments PCI-6014, Austin, TX, USA) and recorded in WinEDR V3.2.7 software (John
Dempster, Strathclyde Electrophysiology Software, Strathclyde Institute of Pharmacy and
Biomedical Sciences, University of Strathclyde, Strathclyde, UK). Current changes in re-
sponse to NMDA/glycine when applied with CPF were normalized to the control current
without CPF.

2.6. Molecular Docking

The 3D crystal structure of unbound apo human GluN1/GluN2A ligand-binding
domain (LBD) with a 1.81 Å resolution (PDBID; 5H8F) [37] was retrieved from the Protein
Databank (https://www.rcsb.org/ (accessed on 10 January 2023)) and used for docking
studies. The structure of CPF (PubChem CID: 2730) was retrieved from the PubChem
database in SDF file format, which was then converted into PDBQT format just before
docking. CPF (ligand) was docked with the target protein (GluN1/GluN2A LBD) using
AutoDock Vina 1.5.6 as described by Mishra and Dey [38]. The receptor and ligand files
were represented in PDBQT file format. For docking, the protein molecule was prepared by
deleting heteroatoms and water followed by adding Kollman charges and polar hydrogen
atoms using AutoDock tools 4.2.6. A grid box measuring 126 Å in each dimension was
established, with a grid spacing of 0.4 Å, keeping the receptor rigid and the ligand as
a flexible molecule. The 50 conformations of the molecules with binding energy and
docking, the interaction energy of the ligand, its geometric coordinates, and a summary
of the interaction energies, such as grid score, electrostatic energy, and van der Waals
forces, were obtained using the Lamarckian genetic algorithm as the docking result. The
intermolecular energy and other terms were calculated through the docking software.
The ligand’s backbone and sidechain were flexible and allowed to dock with the receptor
to form all possible conformations. After defining the binding site and receptor–ligand
preparation, docking runs were launched from the command prompt. The interaction
energy between the ligand and the receptor was calculated for the entire binding site
and expressed as affinity (kcal/mol). Then the conformations were ranked based on the
lowest energy obtained from the root mean square (RMS) deviation of each cluster. The
binding interactions between the protein and ligands were further visualized and analyzed
using PyMOL (version 3.0; https://www.pymol.org/ (accessed 24 July 2024)) and LigPlot
software (version 2.2; https://www.ebi.ac.uk/thornton-srv/software/LigPlus/ (accessed
22 July 2024)).

2.7. Data Analysis

Results were expressed as means ± standard error of the mean (SEM). Statistical analy-
sis was undertaken between concentrations using an independent samples Kruskal–Wallis
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test across cell culture conditions using IBM SPSS statistical software (version 26.0). A
p < 0.05 indicated data were significantly different from the control. EC50 and maximum
response values were obtained using non-linear regression by fitting a four-parametric lo-
gistic equation to concentration–response plots in GraphPad Prism 10 (GraphPad Software
Inc., La Jolla, CA, USA):

Y = Min +
Max − Min

10(LogEC50−X)S + 1
(1)

where Y is the response to the agonist, X is the log10 concentration of the agonist, EC50 is
the concentration of agonist that produces a half-maximum activation response, and S is
the Hill slope. EC50s and maximum responses were compared for significant differences
using an extra sum of squares F-test in GraphPad Prism 10.

3. Results
3.1. Ifenprodil Attenuates the CPF-Induced Decrease in Differentiated Neuronal Stem Cell Viability

Exposure of 4-week differentiated ReNcell CX cells to CPF at a concentration of 14 µM
for 24 h triggered a significant increase in apoptosis (p < 0.001) and a significant decrease
in cell viability from 96.4% to 71.4% (p < 0.001) (Figure 1A,B). Furthermore, significantly
more (p < 0.0001) treated cells had transitioned to apoptosis (18.7%) compared to dead
cells (3.91%) (Figure 1B). Co-administration of the non-competitive NMDAR antagonist,
ifenprodil (IFN), at a concentration of 25 µM, significantly (p < 0.001) attenuated the CPF-
induced decrease in ReNcell CX cell viability (Figure 1B); indicative that the CPF-induced
decrease in cell viability is mediated by NMDARs.
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Figure 1. CPF-induced apoptosis and cell death of 4-week differentiated ReNcell CX cells. Cells were
treated with 14 µM CPF, with or without 25 µM IFN, for 24 h and the percentage of live, dead, and
apoptotic cells quantified using a three-color fluorescence assay. (A) Sample cell treatment showing
live (evenly stained green with FDA), dead (stained red with PI), and apoptotic (mixture of FDA and
PI) cells, highlighted with arrows. Scale bar is 20 µm. (B) Data points are means ± SEMs from two
independent experiments in which triplicate wells were assessed with 6 captured images in each well
from the control and treated cells. For marked significance: * p < 0.05 and *** p < 0.001 based on a
Bonferroni post hoc correction test for significant differences from control.
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3.2. CPF Potentiates NMDA/Gly-Evoked Currents

Co-application of CPF in increasing concentrations with NMDA and glycine potenti-
ated the NMDA/glycine-evoked current in Xenopus oocytes expressing recombinant GluN1-
1a/GluN2A and GluN1-1a/GluN2B receptors, when tested at −75 mV (Figure 2A,B). The
CPF EC50s were ~40 nM and ~55 nM for GluN1-1a/GluN2A and GluN1-1a/GluN2B,
respectively (Figure 2C).
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Figure 2. CPF potentiation of NMDA/glycine (10 µM/10 µM) responses in GluN1-1a/GluN2A
and GluN1-1a/GluN2B-containing NMDARs. Sample TEVC recordings for CPF potentiation of
current mediated by GluN1-1a/GluN2A (A) or GluN1-1a/GluN2B (B) at −75 mV. (C): Concentration–
potentiation curves for CPF potentiated current mediated by GluN1-1a/GluN2A (n = 5) or GluN1-
1a/GluN2B (n = 6). Percentage of potentiation (mean ± SEM) values were plotted against Log10 CPF
concentration and fitted with Equation (1).

CPF-induced potentiation of NMDA/glycine-evoked current was completely blocked
by co-application of NMDAR antagonists, with GluN1-1a/GluN2A receptors blocked
by 10 µM MK-801 (Figure 3A) and GluN1-1a/GluN2B receptors blocked by 100 µM IFN
(Figure 3B).
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Figure 3. TEVC recordings showing antagonism of CPF-induced potentiation of NMDA/Gly-
evoked currents in Xenopus oocytes expressing recombinant NMDARs. The 1 µM CPF potentiated
NMDA/Gly-evoked current when co-applied with 10 µM NMDA and 10 µM Gly, was antagonized
by co-application of 10 µM MK-801 or 100 µM IFN to Xenopus oocytes expressing GluN1-1a/GluN2A
(A) or GluN1-1a/GluN2B (B), respectively. Recordings with or without antagonist were made from
the same oocytes at −75 mV.

3.3. CPF Reduced NMDA EC50s and Increased Its Maximal Response

The effect of CPF application on NMDA EC50 values was studied in Xenopus oocytes
expressing GluN1-1a/GluN2A or GluN1-1a/GluN2B. Here, 10 µM glycine was present in
all solutions. Co-application of 10 µM CPF with 0.1 to 1000 µM NMDA reduced the NMDA
EC50 from 57.9 µM (95% CI 30.0–98.8) to 32.9 µM (95% CI 16.8–64.2) for GluN1-1a/GluN2A
(Figure 4A) and from 70.0 µM (95% CI 39.9–111) to 35.5 µM (95% CI 20.7–59.3) for GluN1-
1a/GluN2B (Figure 4B), although these reductions did not reach statistical significance
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(p = 0.255 and 0.075, respectively). The maximum responses significantly increased from
102% (95% CI 90.0–116) to 135% (95% CI 119–153) (p = 0.0043) for GluN1-1a/GluN2A
(Figure 4A) and from 103% (95% CI 90.6–115) to 120% (95% CI 108–133) (p = 0.048) for
GluN1-1a/GluN2B (Figure 4B).
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CPF. All data were expressed as a percentage of the response to 1 mM NMDA (mean ± SEM), plotted
and fitted with Equation (1) to give EC50 and maximum response values.

3.4. CPF Can Activate NMDAR Alone or in Combination with Either NMDA or Glycine

CPF (10 µM) was directly applied to Xenopus oocytes expressing recombinant NM-
DAR subunits GluN1-1a/GluN2A or GluN1-1a/GluN2B at −75 mV (Figure 5). This
resulted in NMDAR-mediated currents for both GluN1-1a/GluN2A (Figure 5A) and GluN1-
1a/GluN2B (Figure 5B). CPF was also co-applied with either 10 µM glycine (at 1 µM) or
100 µM NMDA (at 10 µM) to Xenopus oocytes expressing recombinant NMDAR subunits
GluN1-1a/GluN2A or GluN1-1a/GluN2B, respectively. CPF significantly (p < 0.05) en-
hanced NMDAR-mediated current evoked by 10 µM glycine or 100 µM NMDA by ~1.7-fold
and ~8.2-fold, respectively (Figure 5C–F).

3.5. CPF Interacts with NMDARs at a Positive Modulatory Site in the Interface Between the
GluN1 and GluN2A Ligand-Binding Domains

CPF was docked into the GluN1/GluN2A ligand-binding domain (LBD) to assess the
level of interaction and to consider the interacting residues between the protein and ligand
complexes (Figure 6A–C). The CPF-GluN1/GluN2A LBD complex exhibited the lowest
binding energy (highest affinity) of −8.82 kcal/mol through hydrogen bond interaction
with Arg248(755) and hydrophobic interactions with Ile128(519), Pro141(532), Ser249(756),
and Gly250(757) from the GluN1 subunit and hydrophobic interactions with Val128(526),
Pro129(527), Phe130(528), Val131(529), Glu132(530), Leu263(780), and Val266(783) from the
GluN2A subunit (numbers in parentheses are residue numbers in the full length subunits)
(Figure 6B,C).
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Figure 5. Effect of CPF alone or co-application of CPF with either NMDA or glycine in Xenopus
oocytes expressing NMDARs. (A,B): TEVC recordings (at −75 mV) for direct application of 10 µM
CPF to Xenopus oocytes expressing GluN1-1a/GluN2A (A) or GluN1-1a/GluN2B (B) showing
elicited currents in both cases. (C,D): TEVC recordings for application of either 10 µM Gly ± 1 µM
CPF or 100 µM NMDA ± 10 µM in Xenopus oocytes expressing GluN1-1a/GluN2A (C) or
GluN1-1a/GluN2B (D), respectively. (E,F): Currents were significantly enhanced for glycine at
GluN1-1a/GluN2A (n = 3) (E) and for NMDA at GluN1-1a/GluN2B (n = 5) (F). Data shown are
means ± SEM of the peak current response. Statistical analysis was performed using an unpaired
Student’s t-test (two-tailed). For marked significance: * indicates changes that were significantly
different from NMDA- or glycine-only-evoked responses with p < 0.05.
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Figure 6. Three-dimensional (A,B) and two-dimensional (C) poses showing interaction of CPF with
the GluN1/GluN2A LBD interface. CPF forms a hydrogen bond (dashed line) with Arg248(755) and
hydrophobic interactions with Ile128(519), Pro141(532), Ser249(756), and Gly250(757) from the GluN1
subunit LBD and hydrophobic interactions with Val128(526), Pro129(527), Phe130(528), Val131(529),
Glu132(530), Leu263(780), and Val266(783) from the GluN2A subunit LBD (numbers in parentheses
are residue numbers in the full length subunits).

4. Discussion
CPF is an environmental hazard and a frequent contaminant of food produce [39,40].

Animal studies have suggested that exposure to low levels of CPF at key neurodevelop-
mental times can induce neurological deficits [19,41]. However, there is a need to further
consider the potential for toxicological effects in human-based studies and models [42,43].
Therefore, the ReNcell CX (human) cell line was chosen for the current study and to
comply with the principles of the 3Rs (reduction, refinement, and replacement in ani-
mal studies). A three-color fluorescence assay revealed that CPF-induced apoptosis was
attenuated by the co-application of ifenprodil (IFN) in human cortical neuronal stem
cells that were derived from ReNcell CX cells differentiated for 4 weeks. IFN is an al-
losteric non-competitive NMDAR antagonist with high selectivity for GluN2B-containing
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NMDARs [44,45]. This suggests that CPF-induced neurotoxicity can, at least in part, be
mediated by (pathological) activation of GluN2B-containing NMDARs; a potentially novel
mechanism of CPF-induced neurotoxicity. A significant increase in neuronal Ca2+ levels has
been reported to mediate excitotoxic cell death induced by the pathological activation of
NMDARs [46]. GluN1/GluN2B-containing NMDARs were reported to have slower kinet-
ics of channel deactivation than GluN1/GluN2A subunits, allowing more Ca2+ influx [47].
Therefore, data obtained from the current study suggest that the differentiated cortical
neuronal ReNcell CX cells express GluN2B-containing NMDARs at this developmental
stage, consistent with previous studies reporting that expression of NMDARs containing
GluN1-1a/GluN2B and GluN1-1a/GluN2D subunits is high in the pre- and early post-natal
human brain [48,49]. Previous studies have also shown that differentiating neuronal stem
cells derived from human fetal brain cortex can attain a time-dependent functional expres-
sion of NMDARs [50,51]. The modest level of apoptosis induced here by a relatively high
concentration of CPF is likely due to the differentiation of ReNcell CX cells into various cell
types [33], with only a subset of these being neurons expressing NMDARs.

A role for NMDARs in CPF-induced neurotoxicity was further confirmed using electro-
physiological studies. TEVC recordings showed that CPF elicited NMDAR-mediated cur-
rents when applied directly in Xenopus oocytes expressing recombinant GluN1-1a/GluN2A
or GluN1-1a/GluN2B NMDAR subunits. Furthermore, CPF potentiated NMDA/Gly-
evoked currents in a concentration-dependent manner. Interestingly, the EC50 values for
CPF potentiation are similar to or even lower than in vivo human exposure levels that have
been reported. For instance, blood levels of CPF in some mothers (at delivery) or newborns
living in an agricultural community (Salinas Valley, CA, USA) were as high as ≈4–5 µM,
respectively [52]. In addition, a median concentration of 23.5 µM CPF was detected in
meconium samples taken from newborns of 200 pregnant women who were at risk of
exposure to CPF through dermal absorption, inhalation, and ingestion [53]. The NMDAR
subunits GluN1-1a/GluN2A and GluN1-1a/GluN2B were specifically used in the current
study as they represent two highly expressed NMDAR subunit combinations at different
neurodevelopmental stages [54,55].

Molecular docking data confirmed that CPF could be best docked at the GluN1–
GluN2A inter-dimer interface of the LBDs and with a relatively high binding affinity. A
hydrogen bond can be formed between the nitrogen atom of the 3,5,6-trichloropyridine ring
of CPF and Arg248(755) of the S2 domain of GluN1 and there are hydrophobic interactions
between CPF and multiple residues of the S1 and S2 domains of GluN1 and GluN2A LBDs.
All but two residues (Val131(529) → Ile and Val266(783) → Phe in GluN2B) that interact
with CPF are shared between GluN1/GluN2A and GluN1/GluN2B subunits, and this
could explain the relatively non-selective effect of CPF on both NMDAR subtypes in the
current study. There is a paucity of data that consider NMDAR modulators that bind at
the GluN1/GluN2 LBD interface. GNE-6901 and GNE-8324 are synthetic compounds that
behave as positive allosteric modulators of NMDARs, which bind at the GluN1/GluN2A
LBD dimer interface with selective action on GluN1/GluN2A NMDARs [37]. Interestingly,
they bind at approximately the same location that we have predicted for CPF. The binding
of CPF to this positive modulator site in the GluN1/GluN2A LBD interface may promote
the formation of contacts between adjacent GluN1 and GluN2A LBDs, altering their normal
configuration and leading to stabilization of an open channel state in the presence or
absence of NMDA (or glutamate)/glycine binding. It would be expected that there will
be two equivalent CPF binding sites per NMDAR, in which case, all four LBDs will be
influenced by CPF binding.

The current study provides a novel mechanistic explanation of the potential impact of
CPF exposure on the neurodevelopment and neurocognitive functions of the human brain,
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through pathological activation or potentiation by CPF of excessive NMDAR activation,
since these receptors play an essential role in higher brain functions such as learning,
memory, and synaptic plasticity [56,57]. Therefore, an increased prevalence of neurode-
velopmental and neurodegenerative disorders in areas with high levels of exposure to
CPF could correlate with CPF-induced neurotoxicity, including the disruption of normal
NMDAR-mediated neuronal signaling and synaptic plasticity. Furthermore, CPF-mediated
neurotoxicity, including the over-activation of NMDARs, could contribute to diminished
function and the associated impact on IQ levels, neurodevelopmental delay, and neurologi-
cal disorders such as ADHD, autism spectrum disorders, and deficits in cognitive function
attributed to CPF exposures [8,12,15].

Interestingly, our TEVC data (Figure 2) provide evidence for CPF effects (in vitro)
at concentrations below those reported for in vivo human exposure levels. Egyptian
pesticide users occupationally exposed to CPF had an estimated internal exposure of
181 µg/kg/day (≈516 nM) [58], underlining the need for suitable personal protective
equipment (PPE) during crop spraying. This exposure is higher than the no observed
adverse effect level (NOAEL) of 100 µg/kg/day (≈285 nM) set by the European Food
Safety Authority [59]. Hence, CPF-induced neurotoxicity may arise at exposure levels below
those reported to cause effects on brain development in industry-funded risk assessment
studies [60], highlighting the need to consider appropriate safety margins for exposures of
the developing brain to xenobiotic environmental chemicals.

Although efforts are being implemented to improve testing paradigms for develop-
mental neurotoxicity [61], there may be discrepancies between actual safety levels and
those established by the chemical regulatory and environmental agencies, in particular for
the consideration of the developmental neurotoxicity of chemicals. This can be attributed
to limited developmental neurotoxicity testing in vivo [61,62] and the need to develop and
implement a battery of appropriate developmental neurotoxicity tests [62–64], which may
not always have been undertaken for chemical hazard risk assessment including that for
neurotoxic pesticides. The need for developmental toxicity testing is particularly pertinent
given the potential vulnerability of the developing nervous system to damage from CPF at
relatively low exposure levels [12,65].

In summary, the current study has revealed that CPF can act as a positive modulator
and activator of NMDARs, with a proposed high-affinity binding to a novel modulatory site
as a contributory mechanism to CPF-induced neurotoxicity. Furthermore, the concentration
range of CPF that induced toxicity was comparable (or lower) to that documented in human
exposures. This highlights the need for a more comprehensive evaluation of CPF-induced
developmental neurotoxicity by inclusion of sensitive methods such as electrophysiology
and to consider safer pesticide alternatives.
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48. Bagasrawala, I.; Memi, F.; Radonjić, N.V.; Zecevic, N. N-Methyl d-Aspartate Receptor Expression Patterns in the Human Fetal
Cerebral Cortex. Cereb. Cortex 2017, 27, 5041–5053. [CrossRef]

49. Jantzie, L.L.; Talos, D.M.; Jackson, M.C.; Park, H.K.; Graham, D.A.; Lechpammer, M.; Folkerth, R.D.; Volpe, J.J.; Jensen, F.E.
Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits in human white and gray matter: Potential
mechanism of increased vulnerability in the immature brain. Cereb. Cortex 2015, 25, 482–495. [CrossRef]

50. Anderson, G.W.; Deans, P.J.; Taylor, R.D.; Raval, P.; Chen, D.; Lowder, H.; Murkerji, S.; Andreae, L.C.; Williams, B.P.;
Srivastava, D.P. Characterisation of neurons derived from a cortical human neural stem cell line CTX0E16. Stem Cell Res.
Ther. 2015, 6, 149. [CrossRef]

51. Gupta, K.; Hardingham, G.E.; Chandran, S. NMDA receptor-dependent glutamate excitotoxicity in human embryonic stem
cell-derived neurons. Neurosci. Lett. 2013, 543, 95–100. [CrossRef]

52. Huen, K.; Bradman, A.; Harley, K.; Yousefi, P.; Boyd Barr, D.; Eskenazi, B.; Holland, N. Organophosphate pesticide levels in blood
and urine of women and newborns living in an agricultural community. Environ. Res. 2012, 117, 8–16. [CrossRef]

53. Ostrea, E.M.; Morales, V.; Ngoumgna, E.; Prescilla, R.; Tan, E.; Hernandez, E.; Ramirez, G.B.; Cifra, H.L.; Manlapaz, M.L.
Prevalence of fetal exposure to environmental toxins as determined by meconium analysis. Neurotoxicology 2002, 23, 329–339.
[CrossRef]

54. Bar-Shira, O.; Maor, R.; Chechik, G. Gene Expression Switching of Receptor Subunits in Human Brain Development. PLoS Comput.
Biol. 2015, 11, e1004559. [CrossRef] [PubMed]

55. Liu, X.B.; Murray, K.D.; Jones, E.G. Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during
early postnatal development. J. Neurosci. 2004, 24, 8885–8895. [CrossRef] [PubMed]

56. Li, F.; Tsien, J.Z. Memory and the NMDA receptors. N. Engl. J. Med. 2009, 361, 302–303. [CrossRef] [PubMed]
57. Kolic, D.; Kovarik, Z. N-methyl-D-aspartate receptors: Structure, function, and role in organophosphorus compound poisoning.

Biofactors 2024, 50, 868–884. [CrossRef] [PubMed]
58. Farahat, F.M.; Ellison, C.A.; Bonner, M.R.; McGarrigle, B.P.; Crane, A.L.; Fenske, R.A.; Lasarev, M.R.; Rohlman, D.S.; Anger, W.K.;

Lein, P.J.; et al. Biomarkers of Chlorpyrifos Exposure and Effect in Egyptian Cotton Field Workers. Environ. Health Persp 2011, 119,
801–806. [CrossRef]

59. EFSA. European Food Safety Authority: Statement on the available outcomes of the human health assessment in the context of
the pesticides peer review of the active substance chlorpyrifos. EFSA J. 2019, 17, e05809. [CrossRef]

60. Mie, A.; Ruden, C.; Grandjean, P. Safety of Safety Evaluation of Pesticides: Developmental neurotoxicity of chlorpyrifos and
chlorpyrifos-methyl. Environ. Health 2018, 17, 77. [CrossRef]

61. Sachana, M.; Shafer, T.J.; Terron, A. Toward a Better Testing Paradigm for Developmental Neurotoxicity: OECD Efforts and
Regulatory Considerations. Biology 2021, 10, 86. [CrossRef]

62. Bal-Price, A.K.; Coecke, S.; Costa, L.; Crofton, K.M.; Fritsche, E.; Goldberg, A.; Grandjean, P.; Lein, P.J.; Li, A.; Lucchini, R.; et al.
Advancing the science of developmental neurotoxicity (DNT): Testing for better safety evaluation. ALTEX 2012, 29, 202–215.
[CrossRef]

63. Makris, S.L.; Raffaele, K.; Allen, S.; Bowers, W.J.; Hass, U.; Alleva, E.; Calamandrei, G.; Sheets, L.; Amcoff, P.; Delrue, N.; et al. A
retrospective performance assessment of the developmental neurotoxicity study in support of OECD test guideline 426. Environ.
Health Perspect. 2009, 117, 17–25. [CrossRef]

64. Schmidt, B.Z.; Lehmann, M.; Gutbier, S.; Nembo, E.; Noel, S.; Smirnova, L.; Forsby, A.; Hescheler, J.; Avci, H.X.; Hartung, T.; et al.
In vitro acute and developmental neurotoxicity screening: An overview of cellular platforms and high-throughput technical
possibilities. Arch. Toxicol. 2017, 91, 1–33. [CrossRef] [PubMed]

65. Bjorling-Poulsen, M.; Andersen, H.R.; Grandjean, P. Potential developmental neurotoxicity of pesticides used in Europe. Environ.
Health 2008, 7, 50. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1152/jn.1998.79.2.555
https://doi.org/10.1093/cercor/bhw289
https://doi.org/10.1093/cercor/bht246
https://doi.org/10.1186/s13287-015-0136-8
https://doi.org/10.1016/j.neulet.2013.03.010
https://doi.org/10.1016/j.envres.2012.05.005
https://doi.org/10.1016/S0161-813X(02)00077-3
https://doi.org/10.1371/journal.pcbi.1004559
https://www.ncbi.nlm.nih.gov/pubmed/26636753
https://doi.org/10.1523/JNEUROSCI.2476-04.2004
https://www.ncbi.nlm.nih.gov/pubmed/15470155
https://doi.org/10.1056/NEJMcibr0902052
https://www.ncbi.nlm.nih.gov/pubmed/19605837
https://doi.org/10.1002/biof.2048
https://www.ncbi.nlm.nih.gov/pubmed/38415801
https://doi.org/10.1289/ehp.1002873
https://doi.org/10.2903/j.efsa.2019.5809
https://doi.org/10.1186/s12940-018-0421-y
https://doi.org/10.3390/biology10020086
https://doi.org/10.14573/altex.2012.2.202
https://doi.org/10.1289/ehp.11447
https://doi.org/10.1007/s00204-016-1805-9
https://www.ncbi.nlm.nih.gov/pubmed/27492622
https://doi.org/10.1186/1476-069X-7-50
https://www.ncbi.nlm.nih.gov/pubmed/18945337

	Introduction 
	Materials and Methods 
	Chemicals and Reagents 
	Neuronal Stem Cell Culture and Differentiation 
	Cell Viability Assessment Using Live, Dead, and Apoptotic Cell Staining 
	Expression of NMDARs in Xenopus Laevis Oocytes 
	TEVC Recordings 
	Molecular Docking 
	Data Analysis 

	Results 
	Ifenprodil Attenuates the CPF-Induced Decrease in Differentiated Neuronal Stem Cell Viability 
	CPF Potentiates NMDA/Gly-Evoked Currents 
	CPF Reduced NMDA EC50s and Increased Its Maximal Response 
	CPF Can Activate NMDAR Alone or in Combination with Either NMDA or Glycine 
	CPF Interacts with NMDARs at a Positive Modulatory Site in the Interface Between the GluN1 and GluN2A Ligand-Binding Domains 

	Discussion 
	References

