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Abstract: The lack of new antibacterial medicines and the rapid rise in bacterial resistance
to antibiotics pose a major threat to individuals and healthcare systems. Despite the avail-
ability of various antibiotics, bacterial resistance has emerged for almost every antibiotic
discovered to date. The increasing prevalence of multidrug-resistant bacterial strains has
rendered some infections nearly untreatable, posing severe challenges to health care. Thus,
the development of alternatives to conventional antibiotics is critical for the treatment
of both humans and food-producing animals. Endolysins, which are peptidoglycan hy-
drolases encoded by bacteriophages, represent a promising new class of antimicrobials.
Preliminary research suggests that endolysins are more effective against Gram-positive
bacteria than Gram-negative bacteria when administered exogenously, although they can
still damage the cell wall of Gram-negative bacteria. Numerous endolysins have a modular
domain structure that divides their binding and catalytic activity into distinct subunits,
which helps maximize their bioengineering and potential drug development. Endolysins
and endolysin-derived antimicrobials offer several advantages as antibiotic substitutes.
They have a unique mechanism of action and efficacy against bacterial persisters (without
requiring an active host metabolism); subsequently, they target both Gram-positive and
Gram-negative bacteria (including antibiotic-resistant strains), and mycobacteria. Further-
more, there has been limited evidence of endolysin being resistant. Because these enzymes
target highly conserved links, resistance may develop more slowly compared to traditional
antibiotics. This review provides an overview and insight of the potential applications of
endolysins as novel antimicrobials.

Keywords: endolysins; bacteriophages; multidrug-resistant bacteria; protein engineering;
phage therapy; holins; spanins; mutagenesis; synergism

1. Introduction

One of the main public health concerns of the twenty-first century is antimicrobial
resistance; however, accurate estimates of the net global health burden resulting from
bacterial antibiotic resistance are lacking [1,2]. Numerous studies have estimated the burden
of resistance to particular combinations of clinical disease, bacterial agents, antibiotics,
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and better healthcare facilities than contexts (mostly hospitals in industrialized countries).
However, these estimates are only approximate due to significant knowledge gaps and
reliance on extrapolating from small-scale studies.

The “burden” of infectious diseases is measured using a variety of metrics, such as
length of hospital stay, duration of morbidity, disability-adjusted life years, and cost of
care. Precisely defining the burden of antibiotic resistance is a crucial first step. We propose
the most relevant definition as the total number of deaths linked to antibiotic therapy
failure due to antibiotic resistance. This definition does not equate to the total number of
deaths among patients with antibiotic-resistant infections and could be significantly lower
for two main reasons: first, not all patients with potentially resistant infections receive
treatment with clinically indicated antibiotics; second, for those who do, the measurable
difference in outcome between patients with susceptible and resistant infections may be
negligible. Formally, the number of deaths that would not occur if antibiotic resistance
were eradicated is known as the population-attributable fraction (PAF), also known as the
etiological fraction. PAF is rarely used to assess the global burden of resistance since such
data are rarely accessible [2]. According to a 2015 assessment, by 2050, multidrug-resistant
(MDR) infections are expected to cause an additional 10 million deaths worldwide [3].

2. Global Antibiotic Usage

According to recent estimates, around 70 billion doses of antibiotics are consumed
annually worldwide [4]. The most common antibiotic classes, accounting for more than half
(55%) of all permitted antibiotics, were fluoroquinolone (18%), tetracycline (17%), penicillin
(10%), and sulfonamide (10%) [5]. The World Health Organization (WHO) last released
generic guidelines for the therapeutic use of antibiotics in 2023. These guidelines, along
with more recent national and international recommendations, emphasize the importance
of considering local circumstances—particularly local patterns of antibiotic resistance—but
are not prescriptive. Consequently, usage patterns can differ greatly between places [6].

Hospital-level data on antibiotic consumption are available in some countries, but
again, these data are not consistently connected to the ailments [7]. Current antibiotic
resistance patterns influence antibiotic usage. For example, due to resistance, significant
Gram-negative bacterial infections may not be treated with amino-penicillins alone, and
require combination therapies.

A recent survey by the World Health Organization (WHO) provided extensive infor-
mation on antibiotic resistance worldwide [8]. Nonetheless, for the majority of bacterial
species and antibiotic uses, less than half of the global population was represented, as
many countries provided only limited data (testing 30 isolates). This survey highlighted
significant differences in the types of isolates studied and, in the techniques used for re-
sistance testing. This gap complicates the accurate determination of the PAF calculation,
particularly the fraction of patients with bacterial infections resistant to the antibiotics used
for treatment. This issue is compounded by the lack of data linking antibiotic usage to
patient clinical states.

3. Causes of the Crisis in Antibiotic Resistance
3.1. Misuse of Antibiotics

In 1945, Sir Alexander Fleming drew attention to the risk of antibiotic misuse and
overuse, a concern that remains relevant today [9,10]. The misuse of antibiotics significantly
contributes to the emergence of resistance [10]. Epidemiological research links antibiotic use
directly to the formation and spread of resistant bacterial strains [11]. Bacterial resistance
genes can be inherited or acquired through horizontal gene transfer (HGT) via plasmids,
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spreading resistance among various bacterial species [12]. Similarly, natural selection
pressures allow antibiotic-resistant bacteria [mutant] to proliferate [13].

Despite warnings, the global over-prescription of antibiotics continues to exacerbate
resistance, indicating a need for strict control [14]. The antibiotic misuse is exacerbated
due to the lack of regulations, and retail sold and over-the-counter sales [11,14]. Figure 1
depicts the threat caused by antibiotic resistance.
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Figure 1. (A) WHO's ten threats that burden human health with highlighted antibiotic resistance.
(B) The number of antimicrobial-resistance-related deaths occurring annually compared to other
leading causes of death.

3.1.1. Bad Prescription Practices

An improper prescription of antibiotics significantly encourages the growth of resis-
tant bacteria [15]. Research indicates that 30% to 50% of instances involve inappropriate
treatment indications, agent selections, or antibiotic medication durations [15,16]. Addi-
tionally, studies show that 30% to 60% of antibiotics administered in intensive care units
(ICUs) are unnecessary, inappropriate, or suboptimal [16].

3.1.2. Widespread Use in Agriculture

Antibiotic use in agriculture significantly impacts the environmental microbiome. Up
to 90% of the antibiotics administered to livestock are excreted in feces and urine, leading
to their widespread distribution by surface runoff, groundwater, and through natural
fertilizers [10,15]. The use of antibiotics as insecticides also has significant geographic
effects and may increase the ratio of resistant to susceptible bacteria in the environment [17].
Antibacterial products marketed for cleaning or hygiene may also prevent the development
of immunity to environmental antigens, weakening immune system adaptability, and po-
tentially increasing morbidity and mortality from typically non-virulent infections [14,17].

3.1.3. Limited Supply of New Antibiotics

The pharmaceutical industry considers novel antibiotic development as financially im-
prudent [10]. Pharmaceutical companies prefer to invest in chronic disease treatments like
diabetes, asthma, or gastric reflux due to their higher profitability compared to antibiotics
because of their short-term use and considered curative treatment or care [10,17-20]. Addi-
tionally, antibiotics are relatively inexpensive. A course of newer antibiotics costs USD 1000
to USD 3000, compared to tens of thousands of dollars spent on chemotherapy [10,18-20].
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A cost-benefit analysis by the Office of Health Economics in London found that a drug
for a neuromuscular condition has an approximate USD 1 billion net present value (NPV),
while a new antibiotic has only about USD 50 million [10].

3.1.4. Regulating Obstacles

Regulatory approval is a significant barrier for companies discovering novel antibi-
otics [18,20]. Several issues have been identified as obstacles to obtaining regulatory
approval, such as bureaucracy, ambiguity, differences in national requirements for clinical
trials, changes in licensing and regulatory policies, and inefficient channels of communica-
tion [20]. The U.S. Food and Drug Administration (FDA) has altered clinical trial guidelines,
making antibiotic studies particularly challenging [19]. Trials comparing antibiotics with
placebos are unethical, so studies must show new treatments are not inferior to existing
ones, often requiring large sample sizes and high costs [19,20]. This complexity makes
antibiotic development unprofitable and unattractive. Although small businesses have
stepped into phase 3, clinical trials remain prohibitively complex and expensive [20].

4. What Is the Solution?

The use of bacteriophages and the endolysins produced by them, such as new antimi-
crobials, is one strategy that shows promise. At the end of the phage’s lytic cycle, these
proteins naturally degrade the peptidoglycan (PG) of the bacterial host cell. This action
causes rapid osmotic lysis of the host, leading to cell death and the release of progeny
phages [21].

5. Bacteriophages

Bacteriophages, or phages, are viruses that specifically infect bacteria [22]. Phages
have co-evolved with their bacterial hosts, maximizing their ability to proliferate within
the host cell and their method of external release. Double-stranded DNA phages express
virion-associated peptidoglycan hydrolase (VAPGH) proteins, which attach to cell surface
antigens with high specificity and degrade the bacterial cell wall, allowing the phage to
inject its DNA into the host cell [23,24]. For nearly a century, these bacteriophages have
been used to treat bacterial infections [25].

5.1. Phage Therapy

The first clinical research with phages was conducted in 1921, involving direct phage
application to six patients who have Staphylococcal boils [26]. Numerous clinical phage
experiments against a range of pathogens, such as Salmonella typhimurium, E. coli, Klebsiella
pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa, have been reported so far.
There are numerous phage-therapy-related businesses in different nations that produce
commercial products [27]. As a result, phage therapy presents new perspectives and
methods for the effective bio-controlling of a variety of antibiotic-resistant bacteria without
causing any negative effects on humans. The rising prevalence of antibiotic-resistant
bacteria over the past 20 years has renewed the interest in using phages and phage-derived
proteins to combat “superbugs” [28,29].

5.2. How About Using Phages Alone?

Endolysins have shown excellent benefits in experimental settings; thus, one may
wonder why a clinician would not just use the parental phage. It may seem inefficient
to clone the endolysin protein and use it in a recombinant expression system when it is
naturally present in the phage. However, endolysins provide several advantages over
phages, despite the challenges associated with genetic modifications.
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6. Endolysins

Peptidoglycan hydrolases encoded by phages are called endolysins. These enzymes
and a related holin protein accumulate inside the host cell without the virion’s assistance.
Holins create pores in the cytoplasmic membrane that help endolysins access the bacterial
peptidoglycan, as endolysins lack their signal sequences [4]. This coordinated action of
holins and endolysins is necessary for the successful lysis of a bacterial cell. Recently,
endolysins have drawn attention as potential antimicrobials due to their exogenous lytic
actions. Figure 2 illustrates the challenges of endolysins
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Figure 2. Challenges of endolysins.

Endolysins are particularly effective against Gram-positive bacteria which lack an
outer membrane for protection [29]. While their use against Gram-negative bacteria is more
challenging due to the outer membrane, it is not entirely precluded.

6.1. Endolysins and Associated Phage Proteins

The main phage-encoded proteins associated with the function of lysins are holins,
signal peptides, and spanins [21]. Main barrier of gram negative bacteria that prevents
endolysins has been highlighted in Figure 3.

Holins

Holins are membrane proteins that assist the transport of lysins across the cytoplasmic
membrane and break down the peptidoglycan [21]. These proteins accumulate in the
host bacteria’s cytoplasmic membrane, causing lesions that allow lysins to access the
peptidoglycan [21]. Holins are classified into one of three groups according to the number
of transmembrane domains (TMDs) they possess, which is determined by their membrane
topology [21].
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Figure 3. Endolysin-mediated bacterial cell wall degradation mechanism. (A) The exposed peptido-
glycan layer in Gram-positive bacteria is effectively broken down by endolysins, which causes rapid
cell lysis. (B) In Gram-negative bacteria, the outer membrane functions as a barrier, decreasing the
efficacy of endolysin breakdown by preventing direct access to the peptidoglycan. (C) A detailed
illustration of endolysin activity, highlighting specific enzymatic cleavage sites within the bacterial
cell wall, ultimately leading to its breakdown. This figure has been inspired by [30].

Signal Sequences

Reports have indicated the presence of a signal sequence in the N-terminal region of
lysins [31,32]. Some endolysins posses signal sequences; Sao-Jose et al. provided initial
experimental proof of secretory lysins, showing that the expression of Pneumococcal lysin
Lys4 produced precursor and mature enzyme forms [31]. Furthermore, supporting data
for the Lactobacillus fermentum phage lysin Lyb5 was reported. A chimeric linkage between
the N-terminal of lysin and the nucB gene from S. aureus resulted in the export of NucB
protein into the surrounding environment after gene expression in L. lactis. Additionally,
20 min after induction, the normally rod-shaped E. coli assumed a spherical shape due to
the production of Lyb5 secretory lysin. Thus, it was proposed that lysin export to the cell
wall was the cause of the morphological alteration [33].

Spanins

A third class of lysis proteins, known as spanins, has also been discovered [34]. These
proteins comprise an outer membrane lipoprotein that integrates into the inner membrane
and has a C-terminal transmembrane domain [34]. The most well-characterized spanins are
the lambda Rz and Rz1 proteins [34,35]. Recent research revealed that the spanin complex
of the lambda phage is necessary for the lysis of bacterial cells; lysogens expressing lambda
7oling and endolysin genes, and, importantly, spanin-null mutants did not result in cell
lysis but produced delicate spherical cells. This suggests that spanins play a crucial role in
outer membrane rupture, controlled by the condition of the peptidoglycan layer [35].

6.2. Classification of Phage Lysins

Endolysins are typically classified based on their cleavage sites, including L-alanoyl-D-
glutamate endopeptidases, N-acetylmuramoyl-L-alanine amidases, glycosidases (N-acetyl-
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D-glucosamidases), and lysozymes (N-acetylmuramidases) [36-38]. Endolysins typically
contain one of four N-terminals and a cell wall-binding domain. Figure 4 describes the
sequential improvements of endolysins.

Lysozymes: (N-acetylmuramidases) eliminate microorganisms through targeted hy-
drolysis. Peptidoglycan polymers are linked by ~—1, 4 glycosidic bonds between NAG and
NAM monomers. They catalyze the degradation of the peptidoglycan polymers linked by
hydrolyzing its bonds. This causes an imbalance in turgor pressure, resulting in bacterial
lysis [39].

Glycosidases: (N-acetyl-\-D-glucosamidases) catalyze the hydrolysis of glycosidic
linkages [39].

N-acetylmuramoyl-L-alanine amidases: also known as peptidoglycan amidases, hy-
drolyze the amide link that separates the glycan strand from the stem peptide between
N-acetylmuramic acid and L-alanine residues [39].

L-alanoyl-D-glutamate endopeptidases and interpeptide bridge-specific endopepti-
dases: target peptides containing L-lysine and D-alanine-D-glutamate endopeptidases and
interpeptide bridge-specific endopeptidases [39].
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Figure 4. A timeline that provides an overview of the research effort on endolysin. After so many
efforts from the dedicated researchers, it has come to this present situation and soon, the only goal
will be to improve its efficacy and acceptance [40—49]. This figure has been inspired by Abdelrahman
et al., 2021 [50].

Different endolysins are derived from different genes and sources, or have different
characteristics. Table 1 provides a clear view.
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Table 1. Comparison of the selected phage endolysins.
Effective .
. . . Test Done . ATCC strain : :
. S Antibacterial A t G+ . A 1 MDR s E E
Protein Name Length Gene Or;:r:icsem I;\ttia:if;la g:;:‘é_ In Vitro/In Nlll(l’gleal (YES/NO) or Clinical x\p;;i:‘s)lron xpl_lizssstlon pH Temperature  Reference
Bacteria Vivo Isolate
S. aureus
ATCC 43300
(MRSA),
S. aureus
ATCC 33,591
LysMR-5 495 lysMR-5 S.aureus phage  (MRSA), 5. Gram- In Vitro No YES ATCC ET28a E. coli BL21 7 37°C [51]
Y ¥ MR-5 aureus ATCC positive p
25923
(MSSA), and
S. aureus
ATCC 29,213
(MSSA)
Enterobacteria
phage S13 Gram- 3 Not ; °
LYS_BPS13 91 E (Bacteriophage B. cereus positive In Vitro No available ATCC pET15b E. coli BL21 9.5 42-45°C [52]
S13)
LysB4 262 lysB4 Bacillus phage B4 B. cereus Both In vitro No NOt ATCC ET15b E. coli BL21 8.0-10.0 50 °C [53]
y y phag available P
. Escherichia
Aspergillus . Not Not ; . Not Not y
PlyB 326 plyB nidulans Bacillus available Both Mouse available ATCC pBAD24 (60) C‘le"lC)slt’lia(;n available available [54]
Staphylococcus
aureus
5 (MRSA), d
treptococcus Enterococcus, : Not Clinical pEX an E. coli strain Not o
PlyC 465 orfl1 phage C1 E. coli, and Both In vitro No available Isolate PET-22b BL21 (DE3) available 5t060°C 1551
Gram positive
Lactococcus
lactis
sal a oh Salmonella,
almonella phage Klebsiella, Gram- s Not Not . E. coli o
Lys68 162 Lys68 phi6s Pseudomonas positive In Vitro No available available PET-282 BL21(DE3) 7 4Cto40°C (561
etc.
Staphylococcus Staphylococcus
LysH5 481 LysH5 phage phiH5 Sress o Gram- In Vit N Not Clinical N N 7 37°C [57]
ye ys (Bacteriophage ap Cly[SOCOC’ positive n viro ° available Isolate ° °
phiH5) epidermidis
A. baumannii,
Acinetobacter . Not ET15b- Escherichia
Endolysin 185 ABgp46 phage typhimurium Both In Vitro No available Both RB 16 coli 4.0-10.0 Up to50°C [58]
vB_AbaP_CEB1 LT2, E.coli, gp BL21(DE3)
etc.
E. coli,
: Salmonella, B. .
Putative phage . Streptococcus foria : Not E. coli BL21 o
lysin 245 phi7917_002 phage phi7917 sal;brzzbllzss, g Both Both Mice available Both pSJ2 (DE3) 6.0-9.0 Up to 50 °C [59]

suis
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Table 1. Cont.
Effective .
; . ) Test Done s ATCC strain . .
. Source Antibacterial ~ Against G+ . Animal MDR L Expression Expression
Protein Name Length Gene Organism Activity or G- In \‘fllit:glln Model (YES/NO) orlg;igtl:al Vector Host pH Temperature  Reference
Bacteria
Ribonucleoside-
diphosphate Bacillus phage Gram- s Not Not Not Not Not
reductase, 695 PBC4_057 PBCIA)I B. cereus positive In Vitro No available ATCC available available available available [60]
1.17.4.1
E. faecalis,
. Staphylococ- : 4-10 (At5 4-100 (At 50
CHAP domain VD13_036 Enterococcus Py . E. coli . !
] ; 238 AA AN22 cus aureus, Both In vitro No YES Both pET21a highest highest [61]
protein, Lysin X878_0033 phage VD13 Escherichia BL21(DE3) activity activity
coli DH5&
P. aeruginosa .
4 Galleria ATCC
: g K. Gram 4 pAS008 or Not Not
ST01 protein 96 st01 Escherichia coli preumoniae, negative Both m?llonella YES CIECATRCM pAS047 BL21 (DE3) available available [62]
E. coli arvae
S. aureus,
ClyC/NocO 434 1yC/nocO Nodularia sp. E"}SE?ZZ’“;C”S Gram Both Mouse YES Both ET28a E. coli Not 4-65°C [63]
y-/Noce clyt-/noc LEGE 06071 Bgillie positive © u © P BL21(DE3) available .
cereus
NCIMB
(Aberdeen,
UK), ATCC
Clogtridium (Ma\r}gssas,
: Clostridium species, lactic Gram . ‘ E. coli BL21 Not Not
1 274 hiCTP1_gp2! : d bact vy In vit N YES USA), CECT ET15b N X 64
ysozyme phiCTP1_gp29 phage phiCTP1 ac%ﬂc?lcluesrm, positive vitro one (Va{encia, PET15 (DE3) available available [64]
ceres. Spain), the
BCCM/LMG
(Ghent,
Belgium)
acetylmuramoyl o IR 0110 | phage E. faecali Gram In vit N Not Both DP2 E.coliCG61  4-10pH 10-60 °C 65
L-alanine = phg\/n%Fzz - faecalis positive T vItro one available © p - coit VP 8 651
amidase
- PlyG, GAM- L
_ A . . Escherichia
a“et{h‘lmr?‘moyl 233 MALSUZ0017,  Bacillus phage Bacillus Gram In vitro None YES ATCC pET-19b coli 7 40 [66]
a;iadnal:: MAUSAM_0017 P [BL21(DE3)
) Helicobacter pylori . Gram X Not E. coli
Portal protein 602 AA ORF17 bacteriophage H. pylori negative In vitro None YES ATCC available BL21 (DE3) 5-10 pH 10-55 °C [67]
i ohi National
~ Ra¥ Escherichia ! .
L-alanyl-D phage T5 Escherichia Gram . Collection of Escherichia B
glutamate 137 lys E b . coli negativ In vitro None YES Micro- pT5lys coli 3-10 pH 10-60 °C [68]
peptidase ( ntﬁro a%ena ! cgatve organisms BL21(DE3)
phage T5) IBPM RAS
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Table 1. Cont.
Effective .
. : P Test Done : ATCC strain . .
. Source Antibacterial ~ Against G+ . Animal MDR L Expression Expression
Protein Name Length Gene Organism Activity or G- In \‘fllit:glln Model (YES/NO) orlg;igtl:al Vector Host pH Temperature  Reference
Bacteria
Yersinia Yersinia Gram E. coli
Endolysin 133 elyY enterocolitica enterocolitica, negative In vitro None YES Both pET28-elyY BL21 (DE3) 7 37°C [69]
(type O:9) E. coli &
Culture
N- Collection of
_ ; Antibiotic- Escherichia
acetflnl‘“r?‘m"yl 289 Thymtfylate pnterococeus E. faecalis Gram In vitro None YES Resistant pET21-a(+) coli BL21 pH 5-9 37°C [70]
-a gdrllne synthase phag p Microorgan- (DE3)pLyss
amidase isms i
Korea
dihydrofolate Vibrio phage Vibrio para- Gram : : o :
reductase, 1.5.1.3 169 qdvp001_068 qdvp001 haemolyticus negative In vitro None YES ATCC pET-30a E. coli BL21 8 40°C [71]
Lysozyme, Streptococcus
32.1.17,CP-1 phage Cp-1 Streptococcus Gram . E. coli BL21 o
lysin, Endolysin, 339 CPLL 22 (Bacteriophage pneumoniae positive In vitro None YES ATCC pI7-7 (DE3) 8 37°C (721
Muramidase Cp-1)
Transglycosylase Pseudomonas Escherichia Gram : Not ~ Escherichia o
PHIKZ144 260 gpl44 phage phiKZ coli negative In vitro None available PQE-30 coli 7 40°C 73]
N-acetyl S
Listeria phage L. monocyto- Gram . Not . ° y
N ﬁ;ﬁzr;rﬁli—;a-se 308 PlyPSA PSU-VKH-LP041 genes positive In vitro None YES available pASK-IBA5 E. coli K-12 7 45°C [74]
Listeria phage
L-alanyl-D- pnag .
glutamate 289 ply, ply500 (Ba ct?rSigghage g;fgg:z: p(gsr{aés e In vitro None av;\iIl(;)atbl e ATCC pASK-IBA5 E. coli K-12 7 45°C [75]
peptidase A500)
E. coli, K.
pneumoniae,
P. aeruginosa,
B.
. urkholderia cenocepacia, . PEXP5- Escherichia 2 _E=o
Endolysin 266 VB*BCGM*APS*O(ngphage AP3 S. enterica, Both In vitro None YES ATCC CT/TOPO coli BL21-Al pH 3-10 10-55 °C [76]
Staphylococ-
cus aureus
and S.
epidermidis
Salmonella
: Salmonella phage  typhimurium, Gram- : . E. coli BL21 o
Phage protein 68 SPN1S_0005 SPNlé) Escherichia negative In vitro None YES ATCC pET-28a (DE3) pH 4-10 40°C [77]

coli
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7. Applications of Endolysins
7.1. Application of Endolysins as Human Therapeutics

The decline in the effectiveness has made numerous infections potentially fatal,
prompting research into phage-derived endolysins for treating human systemic and topical
infections [78,79]. Staphylococcus aureus (S. aureus), a Gram-positive pathogen, can cause
serious topical skin and nasal infections [80]. The rise inmethicillin-resistant and multidrug-
resistant S. aureus (MRSA) has reduced the availability of effective treatments, making
recombinant endolysins an essential option for managing S. aureus superbugs in clinical
settings. A prevalent opportunistic pathogen that is present in the nasal mucosa of 20-40%
of people, Staphylococcus aureus is a major contributor to the spread of infections acquired
in hospitals and the community [81].

Gram-negative bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa,
are significant opportunistic pathogens in burn wounds [82]. Artilysins, an engineered
endolysin, was found to be effective against these drug-resistant infections. Briers et al.
(2014) successfully examined the action of novel endolysin LoGT-008 against P. aeruginosa
and A. baumannii in a human neonatal keratin epidermal cell line model [83]. This new
system using phage-derived lysins presents strong evidence to reduce antibiotic resistance
compared to traditional phage cocktail therapy. Applications of endolysins as human
therapeutics have been showed in Table 2.

7.2. Application of Endolysins in the Veterinary Sector

It has been suggested that endolysins are effective agents to combat most diseases
associated with farm animals, including Salmonella species, Clostridium perfringens, Strep-
tococcus suis, and Paenibacillus larvae [84,85]. Endolysins could be a way to combat C.
perfringens, a Gram-positive multidrug-resistant pathogen that causes significant problems
in poultry and can infect up to 95% of hens [86,87]. Anthrax, a serious zoonotic disease, has
been targeted with PlyG endolysin from a gamma phage, showing therapeutic potential
against Bacillus anthracis [88]. Similarly, clinical trials demonstrate that P128 hydrogel is
effective against methicillin-resistant Staphylococcus pseudointermedius (MRSP). Table 2 have
clarified these.

7.3. Endolysins in Food and Other Sectors

Food animals like pigs, cattle, and chickens, along with their products, can harbor
drug-resistant infections [79]. Endolysin exhibits significant lytic activity against antibiotic-
resistant gram positive and gram negative bacteria, inhibiting resistance [89]. Studies show
that adding LysZ5 to soy milk effectively sterilizes it, preventing Listeria monocytogenes
contamination [90]. Hydrostatic pressure combined with phage endolysins PlyP825, PlyP40,
and Ply511 effectively treat L. monocytogenes [91].

Similarly, other endolysins are also found to effective against Streptococcus equi com-
pared to other disinfectants, can sterilize 108 CFU/mL of S. equi culture in 30 min at a
1 ug concentration [92]. Endolysins have also been explored as antibacterial agents to
control lactic acid bacterial (LAB) contaminations in fuel ethanol fermentation [93]. Table 2
provides a clear view.
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Table 2. This table shows the different applications of endolysins in human, veterinary treatments,
food, and other sectors.

Application of Endolysins as Human Therapeutics

Infection Species Antibiotics Resistance Endolysin Reference
LysK
. . ClyS
Skin é.md respiratory Staphylococcus aureus (MRSA) Methicillin CF-301 [94-101]
infections
MR-10
Staphefekt
Corneal infections Staphylococcus simulans Doxycycl} ne, MV-L [102,103]
tetracycline
Rifamycin,
fluoroquinolones,
Endocarditis, sepsis Staphylococcus epidermidis gentamicin, MV-L [102,104]
tetracycline,
clindamycin
Urinary tract infections, Penicilli
hemolytic-uremic ce hzrllz)csl érl}ins
syndrome, neonatal Escherichia coli cg hampcins ! MV-L [102,105-108]
meningitis, hemorrhagic caIr)ba eillems’
colitis P
PlyV12
EFAP-1,
EFAL-1
1 . Enterococcus . IME-EF1
Nosocomial infections faecalis Vancomycin EE-P10 [109-116]
EC300
Lys170
LysEF-P10
Strep throat, pneumonia, erpﬁ,{}igﬂiréh
skin rlrrllgelicllolr;fé and S. pneumoniae cla};ithrom};cir{, Cpl-1 [47,117-121]
& ceftriaxone
Hospital-acquired
pneumonia, .
community-acquired , Cephalosporin,
pneumonia, Acinetobacter carbaper}em, LysAB2 [122-130]
Community-acquired bawmannii lgeftagldlmg, PlyF307
pneumonia, Bloodstream tprotioxacin
infections
Carbapenem,
Malignant external otitis, aminoglycosides
endophthalmitis, . (gentamicin,
endocarditis, meningitis, P aeruginosa tobramycin, amikacin, OBPgp279 [126,130,131]
pneumonia, and septicemia neomycin, plazomicin,
streptomycin)
Recurrent urinary tract
infections (rUTI), . .
pneumoni(a, an c% Klebsiella pneumoniae Carbapenem LysPA26 [79,132,133]
bloodstream infections
Application of Endolysins in the Veterinary Sector
Necrotic enteritis and L . . . . CP25L
sub-clinical disease Clostridium perfringens Tetracycline, bacitracin Pom [134-140]
Anthrax Bacillus anthracis Streptomycin PlyG [141-144]
Equine strangles Streptococcus equi. Vancomycin PlyC [145-148]
Arthritis, meningitis,
septicemia, and Streptococcus suis Penicillin, ampicillin LySMP [149-152]

endocarditis
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Table 2. Cont.
Application of Endolysins as Human Therapeutics
Infection Species Antibiotics Resistance Endolysin Reference
Vancomycin,
lincomycin,
bambermycin,
Bloodstream infection bac1t(1;?;£,ﬂt(c;e;;accizchne,
intra-abdominal . .
infection E”ter%“’“usf.”m”m erythromyein, PlyV12 [110,140]
bacteremia - faecalis kanamycin, penicillin,
endocarditis tylosin, streptomycin,
vancomycin,
gentamycin,
streptogramins,
avilamycin
Endolysins in Food and Other Sectors
After 15 min of endolysin
treatment, viable MRSA
levels decreased in .
LysSA11 experimentally contaminated S. aureus Milk Products [153,154]
ham and pasteurized
products.
This endolysin, with a novel
enzyme structure and
N-acetylmuramidase lysis
Gp110 domain, exhibited Salmonella spp. Sea Foods [155,156]
exceptional in vitro activity
against Salmonella and other
Gram-negative pathogens.
Peptidoglycan from
Gram-positive and
Gram-negative bacteria from
LysCs4 six distinct genera could be Milk powders, herbal
SPN1S broken down by the refined C. sakazakii teas, and other dried [56,157-159]
Lys68 lysozymes, which could also products.
lyse C. sakazakii that had an
outer membrane
permeabilized.
Endolysins effectively
combat 24 B. cereus and B.
PlyBa thuringiensis strains,
Ply12 contaminating food. 52 53 160
Ply21 Endopeptidase exhibits B. cereus Dairy Products [ 1 61,] !
LysBPS13 bactericidal activity against
LysB4 Gram-positive bacteria,
including B. cereus, B. subtilis,
and monocytogenes.
It is also shown that these 1
enzymes were active against In poultry, clostridial
Clostridium acetobutylicum species are linked to
and C. tyrobutyricum using ff)Od spoilage.
the turbidity assay and fresh . Germinated Clostridium
bacterial cells, indicating that CZOS“’ZC‘%W;”,S jorogenes, SPg;’ngﬂES, and
ostridium ostridium
(élszféll]f Jf[hei’, Cloﬁ)l,ld be used f.s a acetobutylicum, tyrobutyricum have the  [83,162,163]
p %en 1a A1110 }I):*eser\:f ive_ mn Clostridium potential to produce
cheese. Another endolysin tyrobutyricum gases and acids in the

that was recovered from a
virulent phage was also
described by the same family;
however, this enzyme’s host
range was more constrained.

dairy sector that alter
the structural and
sensory characteristics
of cheeses.

8. Administration Routes

The successful administration of any therapeutic agent to the target infection site

requires an appropriate administration route and delivery method that maintain the treat-
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ment’s stability and activity [164]. Currently, there are several ways to provide phage-
derived enzymes such as transnasal, vaginal, and oral delivery methods; topical treatments
(like creams, ointments, and gels); and injections (intravenous and intraperitoneal) [165,166].
Different administration routes have been showed in Table 3.

The oral administration of phage endolysins is challenging due to harsh gastric condi-
tions. Encapsulation has been proposed to preserve enzymatic activity [166]. A preliminary
human phase trial of SAL200 (recombinant version of phage endolysin SAL-1 derived from
phage SAP-1) demonstrated the safety and efficacy of endolysin, with minor side effects
like headaches and fatigue [167]. Pharmacokinetics and pharmacodynamics data following
intravenous injection suggest that SAL200 effectively infects multiple Staphylococci species,
including MRSA and vancomycin-resistant S. aureus (VRSA) [168,169].

Table 3. The selection of some endolysins and how they should be administered.

Target Enzyme Activity (Mode of Administration
Pathogen Phage (Endolysin) Action) Route References
Amidase and Intravenous and
MRSA GHI5 LysGH15 endopeptidase Intraperitoneal [170,171]
Streptococcus ) g Intriavenousl, nasa&, [ ,
; Cpl Cpl-1 Muramidase oral, aerosols, an 120,172-175
preumoniae Intraperitoneal
Amidase and Intraperitoneal,
MRSA MRI1 MV-L endopeptidase nasal [102]
St;eyp;;gzgus MGAS5005 prophage PlyPy Endopeptidase Intraperitoneal [176]
phiSH2 prophage,
phiP68, phiWwMY, phiSH2, P68, Amidase and
MRSA phi80«, phill LysWMY, 80aLyt2, on. dol e;s)ii dase Intraperitoneal [177]
2854, prophage phill, 2638A, LysK p
K
Artilysin®
Pseudomonas Engineered : :
: - 1
aeruginosa phage PVP-SE1 Endolysin-Based Muramidase Oral and topical [165]
(PVP-SE1gp146)
Streptococcus Endopeptidase Intravaginal, oral
agalactiae NCTC11261 PlyGBS and Muramidase and intranasal [178]
Pseudomonas . : -
aeruginosa P. aeruginosa phage PlyPa03 Muramidase Topical [179]
Streptococcus CpP-7 Cpl-7 Muramidase Immersion [180]
pneumoniae
Acinetobacter RL-2015 PlyF307 Muramidase ~ ntraperitonealand [129]
baumannii Topical
Enterococcus faecalis E.f Lii%é{%%}fage LysIME-EF1 Endopeptidase Intraperitoneal [181]
Abcgztfqioaliﬁffr SS3e LysSS Muramidase Intraperitoneal [182]
Streptococcus C1 PlyC Amidase Oral, nasal [46]
pyogenes
aiﬁ%ﬁ; Y-phage PlyG Amidase Intraperitoneal [100]

9. Functional Improvements

Various protein engineering techniques have been employed to enhance the activity
and specificity of endolysins. These techniques include domain swapping and shuffling,
endolysin mutagenesis, and other modifications leading to the active translocation of
endolysins, and are comprehensively summarized in the following table. Table 4 could be
very useful for improving the functional activity of endolysins.
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Table 4. Potential approaches for molecular engineering and their potential applications.
Endolysin Improvements Assets Activity Against References
Full-length enzyme Enhanced solubility Methicillin-resistant
CHAPk truncation and catalytic activity Staphylococcus aureus [183]
Combination of EADs
(enzymatically-active . L .
Clys domain) and CWBDs (cell Improved’solublht'y Methicillin-resistant S. [97]
wall-binding domain) from and catalytic potential aureus (MRSA)
several endolysins
A random peptide was fused N B-lactamase-resistant E. coli,
Art-Bp7e6 with the phage endolysin Tg;é%?tiﬁl ﬁ?ﬁgﬁrlc Salmonella enterica serovar [184]
BpZe Yy y Enteritidis
Combination of CWBD of . .
EC300 endolysin with Enhanced effectiveness Vancomycin-resistant [65]
virion-associated lysin Enterococcus faecalis
Proteins with switched :
SA2-E-Lyso-SH3b, specificity are produced Enha.nged catalytic Cephalosporins-resistant
SA2-E-LysK-SH3b when distinct-origin CWBDs efficiency and Listeria monocytogenes [147]
Y and EADs are combined expanded lytic range g
OBPgp279 Combining endolysin and Improved capacity to teggg?czligé{r;:s?gtgnt
PVP-SE1g-146 OMP e(}(;;;;ts;l-gﬁezﬁgrane combatbGri\m'-negatlve Pseudomonas aeruginosa and [165]
p acteria. Acinetobacter baumannii
AMP (antimicrobial Enhanced ability to Methicillin-resistant
Art-175 peptide)-mediated endolysin  combat Gram-negative Staphylococcus aureus [165]
fusion bacteria (MRSA)
PIVG Co&n‘l/)vig%t;of?oc;fl]ig]g:ﬁnd Ability to manage the Clindamycin-resistant C. [138]
Y endolysins temperature perfringens
Site-directed mutagenesis as Colistin-resistant A.
LysAB2 well as truncation Improvement of AMP baumannii [185]

9.1. Domain Swapping and Shuffling

The modular structure of lysins endows them with the potential for domain swapping
and shuffling [138]. For example, a chimeric Pneumococcal lysin, created by linking the cat-
alytic domain of one variant with the cell wall binding domain (CWBD) of another, showed
increased bactericidal activity [186,187]. Conversely, a chimeric lysin from Clostridium
sporogenes and Clostridium difficile domains had reduced lytic efficiency against Clostridium
tyrobutyricum compared to the parent lysin [164]. Replacing the CWBD of Clostridium
perfringens lysin with a thermophilic phage created a thermostable lysin [138]. Similarly;,
combining the CWBD of Staphylococcal phage lysin with the catalytic domain of Enterococcal
phage resulted in an improved solubility of Staphylococcal phage lysin, along with broad lytic
activity against Staphylococci, Streptococci, and Enterococci [188,189]. Domain shuffling can
also affect lysin-binding properties. For instance, substituting the CWBD of Listeria lysin
Ply118 with that of PIlyPSA abolished lytic activity toward Listeria serovar 1/2 but enhanced
activity toward serovar 4 [147]. This demonstrates the potential to create chimeric lysins
with enhanced or specialized functions through domain swapping and shuffling, though
outcomes vary depending on the domains combined.

9.2. Mutagenesis

Mutagenesis studies have also been employed to improve lysin activity. For example,
substituting 15 amino acids in the CWBD of Pneumococcal phage lysin Cpl-7 enhanced
its bactericidal activity and changed its net charge at neutral pH from —14.93 to +3 [190].
Conversely, deleting the CWBD has shown variable effects on lytic activity; in some cases,
it improved lysis, while in others, it reduced or abolished activity. These effects are likely
due to changes in the truncated lysin [190]. By employing mutagenesis, researchers can
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enhance or modify the activity of lysins, tailoring them to be more effective against specific
bacterial targets.

9.3. Lysin Translocation

Protein engineering studies have focused on the active translocation of lysins across
bacterial membranes. The signal peptide in the N-terminal region is vital for the translo-
cation of lysin following expression [191]. Gaeng et al. demonstrated that attaching the
Lactobacillus brevis S-layer protein’s signal peptide to Listeria monocytogenes phage lysin A511
enabled its active translocation within Lactococcus lactis host cells evident by creating an
inhibition zone around the recombinant L. lactis in an agar medium with heat-inactivated L.
monocytogenes [192]. A similar approach enabled the translocation of Clostridium perfringens
lysin CP25L, which lysed C. perfringens cells in simulated gastrointestinal tract conditions
without affecting other gut microflora [193].

Codon optimization is another promising avenue to enhance secretion efficiency, lead-
ing to a higher bactericidal activity of secreted lysin [176]. Rodriguez-Rubio and coworkers
demonstrated increased activity of secreted lysin through codon optimization based on
L. lactis codon usage [194]. By engineering lysins for active translocation, researchers
can enhance their effectiveness in targeting and controlling specific bacterial pathogens,
potentially leading to more effective antimicrobial therapies.

10. Synergism with Antibiotics

While endolysins have demonstrated efficacy as antimicrobials in numerous circum-
stances, lysins have also been employed in combination with other antimicrobial classes to
achieve a synergistic impact against infection [97]. This synergy enhances therapeutic effi-
cacy by significantly reducing the minimum inhibitory concentration (MIC) of antibiotics
and the required dosage.

A study showed synergy between a chimeric lysin and a conventional antibiotic
against methicillin-resistant S. aureus (MRSA). The chimeric lysin ClyS, combining the
catalytic domain of phage lysin phiNM3 and the cell wall-binding domain of another S.
aureus endolysin, was effective against various S. aureus strains. Combining ClyS with
oxacillin in an MRSA septicemia model improved survival rates from 13% (control) to 80—
82% (treated) [97]. Similarly, combined treatment with SAL200 and standard-of-care (SOC)
antibiotics, including vancomycin and nafcillin, showed significant reductions in S. aureus
concentration and antibiotic MIC in mouse and Galleria mellonella models [140]. SAL200
restored the sensitivity to nafcillin and vancomycin in strains approaching resistance,
improving survival rates in infected models [176].

Letrado et al. demonstrated that Cpl-711 combined with antibiotics like amoxicillin,
levofloxacin, vancomycin, and cefotaxime effectively treats multidrug-resistant Streptococ-
cus pneumoniae strains. The combination showed strong synergistic associations, likely due
to the antibiotic-induced degradation of the peptidoglycan cell wall, increasing vulnerabil-
ity to endolysins. More recently, Kashani et al. used vancomycin in combination with the
catalytic domains of endolysin LysK, CHAP, and amidase to treat MRSA, resulting in an
eight-fold reduction in vancomycin MIC due to synergism [195].

11. Conclusions and Future Directions

With the global rise in multidrug-resistant bacterial infections, endolysins have drawn
attention as a novel therapeutic strategy. Endolysins offer a promising alternative due
to their lytic potential against various bacterial species in both human and veterinary
medicine, as well as benefits in agriculture and biotechnology fields. Current research on
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multidrug resistance, safety, immunogenicity, and synergy with antibiotics has advanced
the field of endolysins.

Endolysins are particularly effective against Gram-positive bacteria, but their activity
against Gram-negative bacteria is limited by the outer membrane barrier. Nevertheless,
they hold the potential to replace or enhance antibiotics in combating antimicrobial re-
sistance. Engineering novel characteristics can enhance endolysins’ effectiveness equally
against Gram-negative bacteria. As more endolysins are biochemically and structurally de-
fined, our ability to design new enzymes improves, expanding our arsenal of lytic weapons.
However, several hurdles must be overcome before this technology can be broadly utilized
by practitioners and industries. While many researchers have isolated and character-
ized endolysin in vitro, determining their in vivo efficacy and operating parameters for
human clinical use, food protection, animal husbandry, and environmental applications
will be critical in the coming years. Additionally, the cost-effective scale-up of endolysin
manufacturing is needed, as it is currently a major impediment to deployment.

In spite of having a lot of advantages, endolysins also have some disadvantages.
Endolysins are more efficient against bacteria in the log-growth phase than bacteria in
stationary phase; endolysins need to be stable during production, storage, and adminis-
tration; endolysins have a short half-life in vivo because of the inflammatory response of
cytokines and neutralizing antibodies; endolysins have not been adequately studied in
clinical settings; there are no established norms and restrictions for endolysins; there are
concerns about large-scale industrial manufacture of endolysins; and endolysins have been
poorly studied in vivo.

To explore the potential of endolysins as a viable therapeutic alternative to antibiotics,
future research should focus on several key areas. Firstly, comprehensive studies on the
safety and efficacy of endolysins in human clinical trials are essential. Secondly, research
should aim to understand the mechanisms of endolysins’ antibacterial action and their
spectrum of activity against various pathogens. Investigating the development of resistance
to endolysin and strategies to mitigate this risk will also be crucial. Thirdly, optimizing
the delivery methods and formulations to enhance the stability and bioavailability of
endolysins will be necessary for their successful application in clinical settings.

Novel approaches are required to overcome these immune reactions to endolysins,
produce universal chimeric lysins, and penetrate the outer membrane of Gram-negative
bacteria. Endolysins are showing promise as potential treatments, but further investigation
is needed to evaluate how best to formulate and manufacture them for clinical trials. With
continued research and technological advancements, endolysins could play a crucial role in
combating antibiotic-resistant bacterial infections and improving public health outcomes.
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