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Abstract: In this study, to better understand the mechanisms of the profound impact of
alcohol consumption on drug pharmacokinetics, efficacy, and toxicity, we characterized
the alcohol-induced changes in the ensemble of drug-metabolizing enzymes and trans-
porters (DMETs) in the human liver by performing global proteomic analysis of human
liver microsomes from 94 donors. DMET protein levels were analyzed concerning alcohol
consumption, smoking history, and sex using non-parametric tests, which were further
strengthened by correlational analysis. To this end, we used a provisional index of alcohol
exposure formulated based on the relative abundances of four marker proteins best correlat-
ing with the level of alcohol consumption. Alcohol-induced changes in the cytochrome P450
pool include significant increases in CYP2E1, CYP2B6, CYP2J2, and NADPH-cytochrome
P450 reductase levels and the lowering of CYP1A2, CYP2C8, CYP2C9, CYP4A11, and
cytochrome b5. Changes in UDP-glucuronosyltransferase (UGT) abundances comprise
elevated UGT1A6, UGT1A9, and UGT2A1, and reduced UGT1A3, UGT1A4, UGT2B7,
UGT2B10, and UGT2B15 levels. Tobacco smokers showed elevated CYP1A2, UGT1A6,
and UGT2B4 and reduced FMO3, FMO4, and FMO5 levels, while in females, CYP1A2,
UGT2B17, and UGT2B15 levels were lower, and UGT2A3 and STS were higher compared
to males. The alcohol-induced changes in the DMET ensemble at the protein level reported
herein provide deep insights into how alcohol impacts drug and xenobiotic metabolism.

Keywords: drug metabolism; human liver microsomes; cytochromes P450; alcohol
consumption; tobacco smoking; proteomics; alcohol–drug interactions

1. Introduction
Alcohol and tobacco are widely used worldwide. In 2021, 60 million Americans

reported excessive alcohol consumption, while 11.3 million smoked at least a pack of
cigarettes per day [1]. Together, these substances ranked among the top ten risk factors for
global disease burden, contributing to over 10 million combined deaths in 2019 [2,3]. A
significant portion of alcohol-related fatalities are associated with drug–alcohol interactions.
There are numerous known examples of changes in drug pharmacokinetics and pharmaco-
dynamics due to both chronic and acute alcohol exposure, which can dramatically affect
optimal dosing [4–9]. Therefore, consideration and prediction of alcohol–drug interactions
(ADIs) are crucial for practical pharmacotherapy. While life-threatening ADIs with acute
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alcohol consumption are often highlighted in fatal co-intoxications with substances such
as benzodiazepines and opiates [10–12], many drug interactions related to chronic alcohol
exposure may remain unidentified.

The mechanisms governing the effects of alcohol on drug metabolism are not fully
understood. Significant increases in cytochrome P450 2E1 (CYP2E1) observed in both
alcoholics and moderate alcohol consumers represent one of the most notable effects of
alcohol on protein expression [13,14]. However, the role of CYP2E1 in ADIs is gener-
ally considered insignificant due to its minor contribution to drug metabolism, except
acetaminophen [4,15,16]. Nevertheless, the impact of alcohol-induced CYP2E1 on drug
metabolism and other functions of cytochrome P450 enzymes (P450s) appears to be under-
estimated. For instance, CYP2E1 interactions with other P450s likely explain the alcohol-
induced increase in the metabolism of CYP3A substrates such as diazepam and doxycy-
cline [17,18], as well as phenytoin, tolbutamide, and warfarin [19,20], primarily metabolized
by CYP2C9. Our studies provide evidence of a direct cause-and-effect relationship between
the alcohol-dependent induction of CYP2E1 and its effects on CYP3A4, CYP1A2, and
CYP2C19 activities [21,22].

Tobacco smoke contains over 7000 chemicals [23,24], which enter the lungs and sub-
sequently make their way to the liver, where they are metabolized and can induce drug
metabolizing enzyme (DME) expression [25]. Consequently, various drug interactions
may occur in tobacco users [26]. Additionally, sex can also contribute to differences
in drug-metabolizing and transporter (DMET) protein levels, with recent findings that
UDP-glucuronosyltransferase (UGT) 2B17 levels are 2.6 times greater in males than in
females [27].

In this study, the impact of alcohol and tobacco use is investigated, as well as sex, on
DMET protein abundance in the human liver. Using high-throughput quantitative pro-
teomics, we quantified DMET proteins in human liver microsomes (HLMs) from 94 donors
with documented alcohol consumption and tobacco smoking histories. Large-scale studies
of the DMET proteome in postmortem liver samples are scarce, typically limited in sample
size, and often lack information on the effects of sex and lifestyle factors [28,29]. With our
findings, we aim to contribute to a clinically translational understanding of the changes in
the levels of proteins involved in drug metabolism and distribution, ultimately facilitating
optimal dosing for precision medicine.

2. Materials and Methods
2.1. Chemicals and Reagents

Liquid chromatography−mass spectrometry (LC−MS)-grade acetonitrile, methanol,
chloroform, and formic acid were procured from Fisher Scientific (Fair Lawn, NJ, USA),
while acetone was obtained from Sigma-Aldrich (St. Louis, MO, USA). Ammonium bicar-
bonate (98% pure), dithiothreitol, iodoacetamide, and MS-grade trypsin were purchased
from Thermo Fisher Scientific (Rockford, IL, USA). The bicinchoninic acid (BCA) kit was
obtained from Pierce Biotechnology (Rockford, IL, USA).

2.2. Human Liver Microsomes

The majority of the liver samples used in this study (n = 88) were sourced from
biobanks established in the Prasad and Lazarus Laboratories. Additionally, six liver tissue
samples from moderate-to-heavy alcohol consumers were procured from BioIVT Corpora-
tion (Westbury, NY, USA). The primary inclusion criterion was a documented history of
alcohol intake. One aim of selection was to identify and include donors with a history of
heavy alcohol consumption while excluding those with illicit substance use as potential
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confounders where possible. The demographic characteristics of our study population are
summarized in Table 1.

Table 1. Characteristics of study population *.

Females Males

N = 94 33 61
Median Donor Age (Years) 62 (18–81) 68 (28–84)

Alcohol History

Non-drinkers 13 (39%) 23 (38%)
Light Intake 2 (6%) 8 (13%)
Social Intake 12 (36%) 16 (26%)

Moderate Intake 5 (15%) 8 (13%)
Heavy Intake 1 (3%) 6 (10%)

Smoking Status

Never Smokers 13 (39%) 15 (25%)
History of Smoking 12 (36%) 29 (47%)

Light smoking (<1 PPD) 2 (6%) 3 (5%)
Moderate Smoking (1–2

PPD) 5 (15%) 9 (15%)

Heavy Smoking (>2 PPD) 1 (3%) 5 (8%)

Race/Ethnicity

White non-Hispanic 29 (88%) 59 (97%)
White Hispanic 3 (9%) 2 (3%)

African American 1 (3%) 0
* Values are expressed as the median and range or absolute numbers and percentages.

Microsomes from 71 liver specimens from the Lazarus Laboratory were prepared
via differential centrifugation, as described previously [30]. Preparation of microsomal
fractions from 17 liver specimens from Prasad Laboratory was performed, as described
by Nelson et al. with minor modifications [31]. Frozen liver tissue specimens (0.5–1 g)
were covered with 0.1 M potassium phosphate buffer, pH of 7.4, containing 0.125 M KCl,
0.25 M sucrose, and 1.0 mM EDTA (Buffer A) at room temperature and allowed to thaw.
After decanting the buffer, the tissue was minced with scissors on ice and supplemented
with 2.5 volumes of ice-cold Buffer A containing 0.25 mM phenylmethylsulfonyl fluoride
(PMSF). The mixture was homogenized on ice with ten strokes in a glass homogenizer
using a motorized Teflon pestle. After diluting the homogenate to 7–8 volumes of the
sample weight with ice-cold PMSF-containing Buffer A, it was centrifuged at 10,500× g
for 40 min. The pellet was discarded, and the supernatant was centrifuged at 118,000× g
for 90 min. The upper lipid layer and the supernatant were discarded. The pellet was
resuspended in 0.1 M Na-HEPES buffer containing 60 mM KCl and 0.25 M sucrose, pH of
7.4 (Buffer B), to reach 1.5–2 volumes of the sample weight and centrifuged at 118,000× g
for 90 min. The pellet was resuspended in Buffer B (1 mL per 1 g of tissue) using a syringe
and plastic pestle in a 1.5 mL Eppendorf tube and stored at −80 ◦C.

2.3. Trypsin Digestion and Sample Preparation for Proteomics Analysis

HLMs were analyzed for protein content using a BCA kit according to standard
vendor protocols and then digested following an optimized trypsin digestion protocol
described previously [32]. Briefly, 1 mg/mL protein samples (80 µg) in 100 mM ammonium
bicarbonate, pH of 7.8, were reduced and denatured by adding 250 mM dithiothreitol
and incubating at 95 ◦C for 10 min with gentle shaking. After bringing samples to room
temperature, proteins were alkylated by adding 100 mM iodoacetamide (incubated in the
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dark for 30 min). Protein precipitation was initiated by adding ice-cold acetone at −80 ◦C
for 1 h. Samples were then centrifuged at 16,000× g for 10 min at 4 ◦C and the supernatant
was discarded. Samples were washed with ice-cold methanol followed by another round
of high-speed centrifugation at 16,000× g for 10 min at 4 ◦C. The supernatant was removed,
and the pellet was dried for 30 min at room temperature. The pellet was then resuspended
in 60 µL ammonium bicarbonate buffer (50 mM, pH of 7.8). Protein digestion occurred by
adding 20 µL trypsin (50:1, protein/trypsin ratio) with gentle shaking at 37 ◦C for 16 h and
was quenched with 5 µL of 5% formic acid in water. The sample was then centrifuged at
16,000× g for 10 min at 4 ◦C and stored at −80 ◦C until LC-MS analysis.

2.4. LC-MS Data Acquisition

Global quantitative proteomics analysis was performed using the Easy Spray 1200
series nanoLC coupled with an Orbitrap Q-Exactive Mass Spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA). One µL of protein digest sample (1 µg/µL) was injected
and peptide separation was achieved using a Thermo Scientific Acclaim Pepmap RSLC
C18 25 cm × 75 µm (2 µm, 100 Å) column with a mobile phase consisting of 0.1% formic
acid in water (A) and 80% acetonitrile with 0.1% formic acid (B). The flow rate was set to
300 nL/min with a 35 min gradient as follows: 0–2 min (0–10% B), 2–27 min (10–45% B),
27–28 min (45–100% B), and 28–35 min (100% B).

The eluted peptides were detected in data-independent acquisition (DIA) mode. The
spray voltage was set to 1.7 kV with 300 ◦C capillary heat. The MS1 scan range was set
to m/z 348–1100 with a mass resolution of 60,000, an auto gain control (AGC) target of
3 × 106, and a maximum injection time of 55 ms. MS2 was set to a resolution of 30,000,
AGC of 1 × 106, normalized collision energy of 30, and a maximum injection time of 55 ms.
The DIA had a variable isolation window set to 25 m/z spanning the 350–400 mass range,
20 m/z spanning the 400–870 mass range, and 40 m/z spanning the 870–1110 mass range.

2.5. Proteomics Data Analysis

DIA-NN (version 18.1.1) (https://github.com/vdemichev/DiaNN accessed on 23 Jan-
uary 2025) was used for library-free analysis [33]. Deep learning-based in silico spectral
library generation was enabled with the human FASTA database. The identified peptides
had a maximum number of missed cleavages set to 1 as the default. Fixed modification
included carbamidomethylation and N-terminal methionine excision, while variable modi-
fication included the oxidation of methionine residues and acetylation of protein N termini.
Peptides were identified with a 1% false discovery rate. An unrelated run was selected,
and all other parameters used the default settings.

To account for batch-to-batch or interlaboratory technical variability during the prepa-
ration of subcellular fractions, we normalized DMET proteins to the sum of a set of 75 pro-
teins with known localization in the microsomal membrane or lumen (Supplementary
Table S1). For this normalization, the raw MS intensities (MSI) for each (i-th) protein in
each (j-th) HLM sample were first normalized to the total intensities of all 75 proteins in
that sample, as follows:

MSInorm
i,j =

MSIi,j
75
∑

k=1
MSIk,j

(1)

We employed the total protein approach (TPA) to compare protein abundances be-
tween different treatment groups quantitatively [34]. This method yields accuracy similar to
that obtained by targeted proteomics for protein quantification while allowing for a broader
coverage of proteins detected [32]. Using this approach makes it possible to determine the

https://github.com/vdemichev/DiaNN
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protein concentration (mg individual protein per mg total protein) of individual proteins
within a sample, as follows:

[Protein]i =
MSInorm

i
MSInorm

total × MWi

where MSInorm
i is the normalized MS1 intensity defined as the normalized (see Equation

(1)) sum of the MS1 spectral intensities of all peptides identified to match the sequence of
i-th protein; MSInorm

total is the sum of all normalized MS spectral intensities for all proteins in
a particular sample; and MWi is the molecular weight of the i-th protein. Pathways were
determined using the STRING database (www.string-db.org accessed on 23 January 2025)
with homo sapiens background [35].

2.6. Non-Parametric Statistical Analysis and Data Visualization

To assess alcohol-induced differences in DMET protein abundance, individual-derived
HLMs were classified into the following five groups based on alcohol intake history: (1) non-
drinking control group, including those with a past history of drinking, (2) light alcohol
drinkers, (3) social drinkers, (4) moderate alcohol drinkers, and (5) heavy alcohol drinkers.
Light alcohol consumption was defined as one alcoholic drink or less per day, moderate
as two to three drinks per day, and heavy as more than three drinks per day. The social
alcohol category lacks a definitive quantity consumed and is ordered between the light
and moderate groups. Statistical analysis was performed using GraphPad Prism 8.4.3
(GraphPad Software, La Jolla, CA, USA) which generated Volcano plots and bar charts.
Significant differences in DMET proteins were assessed using the Student’s t-test with
Welch’s correction for unequal variance, with a p-value of <0.05 considered significant.
BioRender (Toronto, ON, Canada) was used to produce figures and InteractiVenn [36] was
used to create VENN diagrams. Pie charts were produced in Microsoft Excel for Microsoft
365 MSO (Version 2402 Build 16.0.17328.20282) 64-bit (Microsoft, Redmond, WA, USA).
Correlation analysis was performed using SpectraLab data analysis software version 3.1.1
(http://cyp3a4.chem.wsu.edu/spectralab.html accessed on 23 January 2025).

2.7. Analysis of Correlations of Protein Abundances with the Level of Alcohol Consumption

In our further analysis of the effects of alcohol exposure on the HLM proteome, we
established an Alcohol Consumption Grade (ACG) scale to numerically assess the level
of alcohol exposure among liver donors. Donors categorized as “non-drinkers”, “former
drinkers”, “light drinkers”, “social drinkers”, “low-to-moderate drinkers”, “moderate
drinkers”, and “heavy drinkers” were assigned grades of 0, 0.5, 1, 1.5, 2, 3, and 4, respec-
tively. These assignments were based on available demographic records for the donors.
This gradation slightly differs from the one used in the initial non-parametric analysis
of the proteomics data; specifically, we grouped former drinkers separately to avoid ex-
aggerating their claims of abstinence and divided moderate drinkers into two groups,
“low-to-moderate drinkers” consuming two drinks per day and “moderate drinkers” con-
suming three drinks per day.

We then focused on a subset of 75 DMETs and endoplasmic reticulum (ER)-stress-
related proteins with known localization in the microsomal membrane or lumen (Supple-
mentary Table S1). This subset included P450s and their interaction partners (cytochrome
b5, CPR, PGRMC1, and heme oxygenases), other microsomal drug-metabolizing enzymes
(UGTs, FMOs, glutathione S-transferases, and esterases such as CES2 and CES3), as well
as proteins involved in the cellular response to ER stress—chaperones HSPA5, HSPA9,
and HSPA90B1, protein disulfide isomerases, ER oxidoreductases ERO1A and ERO1B,
transitional ER ATPase (VCP), and some other relevant proteins (PGRMC2, STS, AADAC,

www.string-db.org
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ABCB6). To evaluate the correlation between the ACG scores and variations in protein
abundances, we calculated vectors of relative protein abundance (VRA) for each of the
75 proteins. For these calculations, we used the MS intensities normalized to the total
intensities of all 75 selected proteins in each sample (see Equation (1) above). After nor-
malization, the averaged normalized intensity for each protein across all 94 HLM samples
was assessed and used to calculate the VRA value for each (i-th) protein in each (j-th) HLM
sample, as follows:

VRAi,j =
94 × MSInorm

i,j
94
∑

k=1
MSInorm

i,k

The resulting 75 VRA vectors, reflecting relative differences in protein abundances
between HLM samples, were used to determine their linear combination approximating the
vector of Alcohol Consumption Grade. In this analysis, we approximated the ACG vector
as a linear combination of several VRAs using the multidimensional linear least-squares
regression algorithm, as described earlier [37]. This algorithm was applied sequentially
to every possible combination of 2–4 proteins to better approximate the ACG vector and
to find a numerical scale best reflecting the apparent alcohol exposure of the liver donors
(Provisional Index of Alcohol Exposure, PIAE). The search algorithm described above was
implemented using our SpectraLab data analysis software. The found PIAE vector was
then used to probe its correlations with VRA for all 75 selected proteins.

3. Results
3.1. Effects of Alcohol Consumption and Tobacco Smoke on Global Proteome

The HLMs from 94 individuals (demographics summarized in Table 1) were strat-
ified by alcohol intake and analyzed using LC-MS, as outlined in Figure 1A. A total of
4198 proteins were detected across all groups. Comparing the global proteomics data
for the non-drinking control group and the heavy drinking group revealed 4162 proteins
with the majority overlapping; over 360 proteins were unique to HLMs from non-drinkers,
while 50 were unique to HLMs from heavy drinkers (Figure 1C). In contrast, when the
non-smoking group was compared to the >1 ppd group, only 128 proteins out of the 4181
detected were unique to the two groups; 108 proteins in the non-smoking control group
and 20 in the smoking group (Figure 1C). As illustrated in Figure 1D, 226 proteins were
significantly upregulated and 136 significantly downregulated (FC ≥ 2) in HLMs from
the heavy drinkers as compared to the non-drinkers (Figure 1D). Overall, just 25 proteins
showed significantly elevated levels in the HLMs of moderate to heavy smokers (>1 ppd)
compared to non-smoking controls, while 62 proteins were significantly downregulated
(FC ≥ 1.5) (Figure 1D).

Notably, the number of significant changes in protein levels decreased with lower
levels of alcohol consumption. When the protein expression in HLMs from moderate
drinkers was compared to non-drinkers, the number of significantly upregulated proteins
was approximately 50% lower, with fewer than 15 significantly downregulated, while less
than 50 proteins exhibited significantly altered levels in either the social or light drinker
groups compared to the non-drinking control group (Supplementary Figure S1A). The
STRING analysis of the significantly upregulated proteins from our dataset revealed path-
ways involved in protein degradation, amino acid maintenance, and energy regulation
that were upregulated with heavy alcohol consumption, while the downregulated path-
ways included those related to liver health, bile acid homeostasis, metabolism of complex
carbohydrates, drug metabolism by P450s, cholesterol homeostasis, and oxidative phos-
phorylation (Supplementary Figure S2).
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Figure 1. Global proteomics analysis of human liver microsomes prepared from 94 individuals with
known alcohol intake histories. (A) Mass spectrometry-based workflow scheme of human liver
microsomes (N = 94, 33 females and 61 males); (B) number of HLM specimens from individuals in
each alcohol and smoking history category; (C) Venn diagrams of proteins detected and overlapping
in non-drinkers vs. heavy drinkers and non-smokers vs. individuals who smoked > 1 ppd; (D) differ-
entially expressed proteins in HLMs derived from 7 heavy drinking individuals and 31 non-drinking
individuals (p-value < 0.05, fold change cutoff of 2.0); (E) differentially expressed proteins in HLMs
from 20 individuals who smoked > 1 ppd and 69 non-smokers (p-value < 0.05, fold change cutoff of
1.5); (F) heatmap of CYP, UGT, and non-P450, non-UGT proteins resulting from label-free quantitative
proteomic analysis of individual-derived human liver microsomes, based on the normalized mean
protein levels for each DMET across the alcohol use categories. Proteins with significantly different
levels of expression in HLMs from the heavy drinkers compared to the non-drinkers are indicated
with an asterisk (p-value < 0.05); (G) differential expression of DMET proteins in individual-derived
HLMs from heavy drinkers as compared to non-drinkers. (p-value < 0.05, fold-change cutoff of 1.25).

3.2. Effects of Alcohol Intake on DMET Proteome Abundance and Composition

To investigate the impact of alcohol consumption on DMET protein expression, we
assessed the absolute amounts of proteins using the TPA approach across each alcohol
intake group compared to the non-drinking control group. A stark difference was evident
when evaluating the number of DMET proteins with significantly altered levels in each
alcohol intake category compared to the non-drinking control group (Figure 1F). While
many DMET proteins showed significantly altered levels in HLMs from heavy drinkers
compared to non-drinking controls, significant changes in the DMET protein levels were
minimal in the HLMs of light, social, and moderate drinkers compared to non-drinkers
(Figure 1F, Supplementary Figure S1B). Consequently, further analyses of the effects of
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alcohol on the liver proteome excluded the light, social, and moderate alcohol intake
groups. Overall, most DMETs with significantly altered protein levels in HLMs from heavy
alcohol drinkers exhibited decreased protein abundance compared to non-drinkers, with
the exceptions of CYP2E1, UGT1A6, UGT1A9, FMO1, and MRP3, which were significantly
elevated with heavy alcohol intake (FC > 1.25) (Figure 1G). The mean protein levels of
P450s, UGTs, and non-P450, non-UGT drug metabolizing enzymes quantified in HLMs
from the non-drinking control and heavy alcohol intake groups are reported with standard
deviations and significance levels in Table 2.

Table 2. TPA-based protein levels of major DMET proteins in HLMs of the study population.

n

Non-Drinkers Heavy Drinkers

p-Value

Non-Smokers Smokers > 1 ppd

p-Value

Males Females

p-Value36 7 69 20 61 33

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

P450 protein levels (pmol/mg protein)

CYP1A1 1.0 ±0.9 0.6 ±0.1 0.013 0.7 ±0.6 1.3 ±1.7 0.10 0.9 ±1.1 0.7 ±0.6 0.43
CYP1A2 31.6 ±13.2 13.5 ±7.1 4.5× 10−5 27.1 ±13.0 39.3 ±22.3 0.02 32.4 ±17.4 24.0 ±12.1 0.007
CYP2A6 67.8 ±32.5 50.5 ±26.1 0.15 66.8 ±28.2 58.9 ±30.5 0.28 59.5 ±27.1 73.5 ±29.4 0.03
CYP2B6 13.8 ±9.4 32.7 ±30.3 0.15 14.0 ±8.5 18.6 ±19.3 0.25 14.7 ±13.9 14.6 ±5.5 0.96
CYP2C8 25.5 ±6.1 20.5 ±13.9 0.39 24.6 ±6.3 25.8 ±9.0 0.77 24.2 ±7.1 25.4 ±6.5 0.44
CYP2C9 91.0 ±25.0 60.9 ±20.0 0.006 89.7 ±23.1 85.5 ±22.8 0.28 89.8 ±22.9 84.1 ±23.5 0.27
CYP2C18 4.8 ±2.6 3.5 ±2.5 0.18 4.7 ±2.4 4.5 ±1.8 0.55 4.6 ±2.2 5.1 ±2.3 0.27
CYP2C19 5.3 ±3.8 4.2 ±3.4 0.47 5.6 ±3.8 6.2 ±4.1 0.66 5.1 ±3.4 6.8 ±4.4 0.054
CYP2D6 28.8 ±17.9 19.7 ±11.2 0.10 27.3 ±15.2 26.5 ±19.7 0.79 25.7 ±13.8 30.2 ±19.5 0.24
CYP2E1 64.0 ±17.2 108.0 ±45.0 0.02 68.5 ±25.3 63.6 ±19.0 0.72 67.9 ±25.5 65.7 ±19.5 0.65
CYP3A4 67.0 ±27.9 84.2 ±62.2 0.25 68.5 ±28.6 65.3 ±45.6 0.79 62.8 ±33.3 74.1 ±30.8 0.10
CYP3A5 7.6 ±14.3 10.0 ±15.3 0.36 8.1 ±13.4 9.6 ±14.0 0.75 8.8 ±13.1 9.0 ±14.5 0.95
CYP3A7 0.9 ±1.6 2.4 ±4.3 0.21 0.9 ±1.8 1.4 ±2.1 0.21 1.1 ±1.9 0.9 ±1.5 0.57
CYP4A11 52.2 ±13.7 31.4 ±8.1 8.6× 10−5 49.9 ±14.5 47.1 ±12.6 0.25 47.9 ±13.5 51.0 ±14.5 0.31
CYP4F2 33.7 ±10.3 28.5 ±10.3 0.25 32.7 ±9.8 33.1 ±9.0 0.97 32.4 ±9.8 33.7 ±8.6 0.49

UGT protein levels (pmol/mg protein)

UGT1A1 28.2 ±11.1 42.3 ±19.4 0.054 27.1 ±11.5 34.6 ±17.4 0.08 28.7 ±14.3 29.5 ±10.9 0.76
UGT1A3 5.8 ±3.7 4.4 ±1.4 0.12 5.3 ±3.9 5.9 ±4.6 0.57 5.7 ±4.4 4.6 ±3.0 0.15
UGT1A4 74.1 ±19.3 56.0 ±14.1 0.014 69.3 ±20.4 75.1 ±20.4 0.32 71.0 ±20.1 67.8 ±21.4 0.48
UGT1A6 98.7 ±24.5 147.4 ±45.9 0.015 96.6 ±29.0 117.7 ±27.1 0.0013 106.5 ±29.2 96.0 ±38.1 0.17
UGT1A9 14.3 ±3.8 19.6 ±3.4 0.005 14.6 ±4.4 15.7 ±4.2 0.22 15.3 ±4.3 15.5 ±6.6 0.85
UGT2A1 1.7 ±1.7 2.2 ±1.8 0.51 1.2 ±1.5 2.0 ±1.7 0.054 1.4 ±1.5 1.4 ±1.6 0.80
UGT2A3 6.8 ±3.0 8.2 ±2.9 0.27 7.0 ±3.1 6.9 ±2.9 0.97 6.3 ±2.7 8.6 ±3.2 0.0010
UGT2B4 45.7 ±10.5 45.0 ±9.6 0.87 42.3 ±9.0 49.8 ±11.4 0.010 42.8 ±9.1 46.1 ±10.9 0.15
UGT2B7 205.2 ±55.5 128.9 ±31.8 0.0002 199.8 ±54.2 195.6 ±64.7 0.62 209.6 ±56.2 177.7 ±48.4 0.005
UGT2B10 15.8 ±5.1 10.8 ±4.9 0.037 15.7 ±4.8 14.7 ±7.0 0.47 15.3 ±5.6 15.2 ±5.3 0.95
UGT2B15 108.4 ±30.6 75.9 ±17.0 0.0006 107.4 ±35.3 105.0 ±43.3 0.67 118.7 ±37.2 86.0 ±21.6 5.7× 10−7

UGT2B17 4.1 ±5.8 4.9 ±6.1 0.75 4.7 ±5.6 5.2 ±5.3 0.74 6.6 ±6.0 1.8 ±2.3 2.8× 10−7

non-P450, non-UGT enzymes (pmol/mg protein)

AADAC 31.4 ±8.0 21.6 ±3.8 7.3× 10−5 30.3 ±7.5 28.6 ±7.9 0.30 27.9 ±6.0 33.4 ±8.9 0.003
CES1 344.0 ±65.9 368.6 ±96.4 0.54 335.7 ±66.6 363.0 ±74.4 0.16 338.8 ±64.3 345.5 ±74.9 0.67
CES2 33.6 ±8.3 28.6 ±11.2 0.30 35.6 ±10.4 33.8 ±11.6 0.40 35.2 ±8.9 35.4 ±12.9 0.93
CES3 0.4 ±0.2 0.4 ±0.1 0.60 0.4 ±0.2 0.4 ±0.1 0.71 0.4 ±0.2 0.5 ±0.1 0.12
FMO1 0.4 ±0.1 0.5 ±0.1 0.003 0.4 ±0.1 0.4 ±0.2 0.22 0.3 ±0.1 0.4 ±0.1 0.05
FMO3 69.9 ±18.1 53.9 ±13.0 0.02 71.9 ±16.3 58.7 ±21.0 0.011 69.1 ±17.6 68.1 ±18.4 0.82
FMO4 2.4 ±0.6 1.9 ±0.3 0.002 2.5 ±0.6 2.1 ±0.7 0.007 2.4 ±0.6 2.4 ±0.7 0.72
FMO5 47.6 ±18.4 19.3 ±3.2 1.0× 10−10 45.3 ±15.7 33.3 ±12.1 0.0002 42.1 ±16.6 42.5 ±13.6 0.90

MGST1 341.6 ±97.4 429.2 ±146.9 0.17 312.6 ±86.1 348.6 ±124.5 0.15 329.9 ±100.2 314.0 ±97.4 0.46
MGST2 129.8 ±27.8 137.3 ±37.3 0.63 125.8 ±26.3 130.6 ±32.9 0.52 125.7 ±28.2 132.4 ±28.8 0.28

STS 0.7 ±0.5 0.5 ±0.1 0.006 0.7 ±0.5 0.7 ±0.4 0.56 0.6 ±0.3 1.0 ±0.7 0.002

Protein levels of metabolizing enzymes and drug transporters in hepatic microsomes from the 94 donors segregated
by alcohol intake, smoking history, and sex (pmol/mg microsomal protein). Data provided as mean ± standard
deviation (SD).

Differential P450 expression was observed in HLMs of heavy drinkers compared to
non-drinkers (Figure 2A, Table 2). Notably, protein levels of CYP1A1 (FC 0.59), CYP1A2
(FC 0.43), CYP2C9 (FC 0.67), and CYP4A11 (FC 0.60) were significantly reduced with heavy
alcohol intake, whereas CYP2E1 protein levels increased significantly (FC 1.7). A decrease
in CYP2D6 levels approached significance (FC 0.68, p-value = 0.10) in heavy drinkers.

As shown in Figure 3A, these significant changes led to a considerable alteration in the
composition of the P450 pool. The fraction of CYP2E1 increased from 12.9% in non-drinkers
to 23% in heavy drinkers, while CYP1A1 and CYP1A2 decreased from 0.2% to 0.1% and
6.4% to 2.9%, respectively. Similarly, CYP2C9 and CYP2D6 decreased from 18.4% and 5.8%
in non-drinkers to 12.9% and 4.2%, in heavy drinkers. CYP4A11 and CYP4F2 levels also
decreased, from 10.6% and 6.8% in non-drinkers to 6.7% and 6.0%, respectively. CYP4F11,
CYP4F3, and CYP8B1 underwent a slight but statistically significant reduction with heavy
alcohol intake, shifting from 1.8 to 1.7%, 2.2 to 1.8%, and 5.6 to 4.6%, respectively.
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Figure 2. Differential DMET protein expression with heavy alcohol intake. (A) Protein levels of major
drug metabolizing CYPs in HLMs from heavy drinkers compared to non-drinkers; (B) UGT protein
levels in HLMs from heavy drinkers compared to non-drinkers; (C) protein levels of major non-P450,
non-UGT enzymes in HLMs of individuals with heavy alcohol intake compared to non-drinkers;
(D) transporter protein levels in HLMs of heavy drinkers compared to non-drinkers. Samples were
analyzed for significance using the Student’s t-test with Welch’s correction for unequal variance.
p-Value * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. Absolute protein concentration for each DMET
protein, expressed as pmol/mg of total HLM protein, was calculated via the TPA method.

Heavy alcohol consumption also significantly altered UGT levels (Figure 2B, Table 2).
Protein levels of UGT1A4 (FC 0.75), UGT2B7 (FC 0.63), UGT2B10 (FC 0.68), and UGT2B15
(FC 0.7) were significantly reduced, while UGT1A6 (FC 1.5) and UGT1A9 (FC 1.4) were
significantly elevated. A reduction in UGT1A1 approaching significance (FC 1.5, p = 0.06)
was also observed.

The alcohol-induced changes in UGT abundances resulted in substantial alterations
in the UGT composition (Figure 3B). In non-drinkers, UGT2B7 accounted for nearly 34%
of all UGTs, followed by UGT2B15 (17.8%), UGT1A6 (16.2%), and UGT1A4 (12.2%). In
heavy drinkers, the UGT1A6 fraction increased by 11% to 27% and the content of UGT2B7
decreased by ~10% to 23.6%, while UGT2B15 and UGT1A4 were reduced to 13.9% and
10.3%, respectively, and UGT1A9 increased from 2.4% in non-drinkers to 3.6% in heavy
drinkers.
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Figure 3. Shifts in the overall composition of proteins related to drug metabolism and disposition
with excessive alcohol intake. (A) CYP protein composition in HLMs from heavy drinkers compared
to non-drinkers; (B) UGT protein composition in HLMs of heavy drinkers compared to non-drinkers.
Absolute protein levels were calculated using the TPA method, and significance was assessed using
the Student’s t-test with Welch’s correction for unequal variance; dashed lines indicate a p-value < 0.05
for altered protein levels in HLMs of individuals with heavy alcohol intake compared to the non-
drinking control group.

The expression pattern of the non-P450 and non-UGT enzymes was also altered by
heavy alcohol intake (Figure 2C, Table 2). Protein levels of AADAC (FC 0.69), FMO3
(FC 0.77), FMO4 (FC 0.78), FMO5 (FC 0.41), and STS (FC 0.65) significantly decreased, while
FMO1 (FC 1.4, p < 0.01) levels increased significantly.

Altered levels of transporter proteins were noted in the HLMs of heavy drinkers
(Figure 2D), the MRP3 levels significantly increased (FC 1.6), and MATE1 levels increased,
approaching significance (FC 1.4, p = 0.07).

Further analysis excluding specimens from individuals who smoked >1 ppd (Supple-
mentary Table S2) showed consistent trends in altered DMET protein expression levels,
except for CYP2C8, which significantly decreased (FC 0.6) in non-smoking heavy drinkers.

3.3. Establishing a Provisional Index of Alcohol Exposure and Its Use for In-Depth Analysis of the
Alcohol Effects on HLM Proteome

Although the analysis of differences between the five categories of donors classified
by alcohol consumption provided valuable results on the effects of alcohol on the HLM
proteome, this approach suffers from approximation due to the voluntary and approximate
reporting of the level of alcohol consumption by liver donors. To improve the gradation of
the liver samples and increase the robustness of our analysis, we sought to establish a scale
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of alcohol consumption based on the abundance of the protein markers of alcohol exposure
in HLMs.

To this end, we selected 75 proteins known to localize in the microsomal membrane or
lumen (Supplementary Table S1) to calculate vectors of relative abundance (VRA) reflecting
the differences in protein abundances among HLM samples. These vectors were then
probed for their correlations with the vector of apparent alcohol consumption grade (ACG),
where the grades from 0 to 4 were assigned according to the reported alcohol intake of the
liver donors (see Materials and Methods).

We assessed the correlation between the ACG with the relative abundance vectors of
each selected protein. The strongest correlation (R2 = 0.23) was found with FMO5, followed
by HSPA5, a chaperone involved in the cellular response to the ER stress (R2 = 0.215), and
VCP, a protein responsible for exporting misfolded proteins from the ER to the cytoplasm
(R2 = 0.21). While the effects of alcohol on VCP and FMO5 have not been documented, the
alcohol-induced increase in HSPA5 is well-established [38–40].

We then explored combinations of two–four proteins to better approximate the ACG
vector. The best two-protein combination, HSPA5 and PDIA3, yielded an R2 of 0.37. The
best three-protein combination (HSPA5, PDIA3, and CES2) had an R2 of 0.44, while the best
four-protein combination (HSPA5, PDIA3, CES2, and P4HB) reached an R2 of 0.50. The
coefficients for the VRAs of these proteins were 5.06, 2.35, −7.8, and 1.19, respectively.

The found combination of proteins contains three known markers of ER stress—
endoplasmic reticulum chaperone HSPA5 and the two protein disulfide isomerases of
P4HB and PDIA3. Notably, despite the widely recognized role of these proteins in the
cellular response to ER stress, no correlation of their abundance with alcohol exposure
has been previously demonstrated. Interestingly, the two disulfide isomerases in this
combination show opposite signs—the contribution of P4HB is positive, whereas that of
PDIA3 is negative. These opposite signs of contributions of two PDIAs may be needed to
distinguish alcohol exposure from other possible ER stress inducers.

The correlation of this combination of four VRAs, which we termed the Provisional
Index of Alcohol Exposure (PIAE), with the ACG is illustrated in Figure 4. Figure 4a
shows the correlation of PIAE with ACG across 94 HLM samples, ordered by the increasing
abundance of HSPA5. Figure 4b depicts the plot of ACG versus PIAE. The correlation
is pronounced, with a p-value of 3 × 10−15, indicating that PIAE effectively correlates
the relative abundances of microsomal proteins with alcohol exposure levels in HLM
donors. The results of this correlational analysis are shown in Table 3, which exemplifies
the microsomal proteins exhibiting the t-test p-value below 0.05.

Although many of the correlations identified in the initial non-parametric analysis
were confirmed by the PIAE strategy, several notable differences emerged between the
results of the two approaches, as illustrated in Table 3. In addition to the upregulation of
UGT1A6 and UGT1A9 observed in the non-parametric analysis, we detected a statistically
significant upregulation of UGT2A1. The PIAE analysis also added UGT1A3 to the list of
downregulated proteins while confirming the downregulation of UGT1A4, UGT2B7, and
UGT2B15. Alongside the upregulation of CYP2E1 detected by both methods, the PIAE
approach identified statistically significant upregulation of CYP2J2 and CYP2B6. Impor-
tantly, it also revealed a significant upregulation of NADPH-cytochrome P450 reductase
(POR) consistent with the results of non-parametric analysis that detected a significant
increase in POR levels (FC 1.5) with heavy alcohol consumption. Furthermore, the PIAE
analysis confirmed the downregulation of CYP1A1, CYP1A2, CYP2C9, and CYP4A11. It
also validated the significant downregulation of CYP7B1 (FC 0.68) and extended the list of
downregulated proteins to include CYP2C8 and CYP4F11. Additionally, it indicated an
alcohol-induced decrease in the abundance of cytochrome b5 (CYB5A), heme oxygenase
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1 (HMOX1), and microsomal glutathione S-transferase MGST1. The PIAE analysis also
confirms the results of non-parametric analysis indicating a significant decrease in MGST3
(FC 0.71) and a significant increase in GSTO1 (FC 1.97) with heavy alcohol consumption.
Table 4 summarizes the alcohol-induced changes in the abundance of UGTs, cytochromes
P450, and their redox partners identified by PIAE analysis.
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Figure 4. Approximation of the apparent alcohol exposure grade (ACG) with the provisional index 
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Figure 4. Approximation of the apparent alcohol exposure grade (ACG) with the provisional index of
alcohol exposure (PIAE). The left panel (a) shows the plots of the grade of alcohol exposure (circles)
and the index of alcohol exposure (solid line) for all 94 HLM samples sorted by increasing the relative
abundance of HSPA5. The right panel (b) shows the same data as a plot of ACG versus PIAE.

Table 3. Microsomal proteins exhibiting a significant correlation between their relative abundance
and the PIAE *.

Protein ID R Student’s t-Test p-Value Protein Name FC a Cellular Location

HSPA5 0.656 7.2 × 10−13 Endoplasmic reticulum chaperone BiP 2.56 ER lumen, cytosol
FMO5 −0.600 1.7 × 10−10 Flavin-containing monooxygenase 5 0.40 ER membrane
POR 0.505 2.1 × 10−7 P450 reductase 1.52 ER membrane
HSPA9 0.491 5.1 × 10−7 Mortalin, Stress-70 protein 1.32 ER membrane
PDIA4 0.478 1.1 × 10−6 Protein disulfide-isomerase A4 1.44 ER lumen
VCP 0.454 4.2 × 10−6 Transitional endoplasmic reticulum ATPase 3.01 ER membrane
P4HB 0.443 7.9 × 10−6 Protein disulfide-isomerase 1.28 ER lumen
CYP4A11 −0.439 9.7 × 10−6 CYP4A11 0.57 ER membrane
HSP90B1 0.437 1.0 × 10−5 Endoplasmin, Heat shock protein 90 1.61 ER lumen
CYP2C9 −0.429 1.6 × 10−5 CYP2C9 0.61 ER membrane
GSTO1 0.426 1.8 × 10−5 Glutathione S-transferase omega-1 2.09 ER membrane
ERO1A 0.382 0.0002 ER oxidoreductase A 3.17 ER membrane
UGT1A4 −0.379 0.0002 UGT1A4 0.70 ER membrane
ERMP1 0.365 0.0003 Endoplasmic reticulum metallopeptidase 1 1.27 ER membrane
CYB5A −0.360 0.0004 Cytochrome b5 0.82 ER membrane
ATP2A2 0.356 0.0004 Phospholipid-transporting ATPase IIA 1.34 ER membrane
UGT2B7 −0.343 0.0007 UGT2B7 0.56 ER membrane
UGT1A6 0.339 0.0008 UGT1A6 1.62 ER membrane
CYP2C8 −0.335 0.0009 CYP2C8 0.73 ER membrane
MGST1 0.335 0.0009 Microsomal glutathione S-transferase 1 1.39 ER membrane
FMO3 −0.333 0.0010 Flavin-containing monooxygenase 3 0.70 ER membrane
HERPUD1 0.323 0.0015 Homocysteine-responsive ER ubiquitin-like domain 1 1.66 ER membrane
CYP1A2 −0.318 0.0018 CYP1A2 0.41 ER membrane
MGST3 −0.317 0.0019 Microsomal glutathione S-transferase 3 0.74 ER membrane
UGT1A9 0.312 0.0022 UGT1A9 1.56 ER membrane
PDIA5 −0.309 0.0024 Protein disulfide-isomerase A5 0.71 ER lumen
AADAC −0.309 0.0024 Arylacetamide deacetylase 0.75 ER membrane
ERAP2 0.307 0.0026 Endoplasmic reticulum aminopeptidase 2 1.57 ER membrane
CYP2J2 0.304 0.0028 CYP2J2 1.46 ER membrane
CYP2E1 0.302 0.0031 CYP2E1 1.52 ER membrane
CYP7B1 −0.293 0.0042 CYP7B1 0.81 ER membrane
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Table 3. Cont.

Protein ID R Student’s t-Test p-Value Protein Name FC a Cellular Location

PDIA6 0.286 0.0051 Protein disulfide-isomerase A6 1.15 ER lumen
HMOX1 0.282 0.0058 Heme oxygenase 1 1.49 ER membrane
UGT2B10 −0.279 0.0065 UGT2B10 0.57 ER membrane
UGT2A1 0.268 0.0090 UGT2A1 2.67 ER membrane
CYP4F11 −0.248 0.0159 CYP4F11 0.91 ER membrane
H6PD 0.241 0.0194 GDH/6PGL endoplasmic bifunctional protein 1.19 ER lumen
CYP2B6 0.232 0.0246 CYP2B6 1.72 ER membrane
UGT2B15 −0.227 0.0275 UGT2B15 0.66 ER membrane
UGT1A3 −0.226 0.0283 UGT1A3 0.51 ER membrane
CYP1A1 −0.223 0.0305 CYP1A1 0.00 ER membrane
ERLEC1 0.223 0.0309 Endoplasmic reticulum lectin 1 1.38 ER lumen

a Arbitrary estimate of fractional change. Calculated as a ratio of averaged protein abundance for HLM samples
with PIAE > 2.5 (n = 8) to that for the samples with PIAE < 1 (n = 35). * The proteins in the table are sorted in the
order of increasing p-value. The positive values of the correlation coefficient are shown in red, while the green
color designates the negative correlation. The proteins with p-value > 0.05 are not shown.

Table 4. Summary of the effects of alcohol exposure on the expression of drug-metabolized enzymes
identified by PIAE analysis *.

Protein Class Upregulated Proteins Downregulated Proteins

Cytochrome P450 CYP2B6, CYP2E1, CYP2J2 CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP4A11,
CYP4F11, CYP7B1

Cytochrome P450 partners POR, HMOX1 CYB5A

UGTs UGT1A6, UGT1A9, UGT2A1 UGT1A3, UGT1A4, UGT2B7, UGT2B10, UGT2B15

Other DMEs GSTO1 AADAC, FMO3, FMO5, MGST1, MGST3

* The identifiers of the proteins revealed in the non-parametric analysis are underlined.

3.4. Effects of Tobacco Smoke on DMET Abundance

Absolute protein concentrations for each DMET protein, expressed as pmol/mg
of total HLM protein, were calculated using the TPA method to assess the impact of
moderate-to-heavy smoking (>1 ppd) on DMET protein expression. In HLMs from >1 ppd
tobacco smokers compared to non-smokers, the CYP1A2 protein levels were upregulated
significantly (FC 1.45) and CYP1A1 protein levels were trending higher (FC 1.7, p = 0.095)
with tobacco use (Figure 5A, Table 2). The expression of several UGTs was significantly
increased, including UGT1A6 (FC 1.2) and UGT2B4 (FC 1.2) in HLMs from >1 ppd tobacco
users compared to non-smokers, while UGT1A1 (FC 1.3, p = 0.08) and UGT2A1 (FC 1.6,
p = 0.065) levels approached significance in tobacco users (Figure 5B, Table 2). Non-P450,
non-UGT enzyme levels showed significant decreases in FMO3 (FC 0.82), FMO4 (FC 0.81),
and FMO5 (FC 0.74) (Figure 5C, Table 2) with smoking. The transporter protein expression
remained stable except for OATP1B1 (FC 0.83), which exhibited a significant decrease in
protein levels with smoking (Figure 5D). When the analysis was performed to account for
the potential confounding effects of alcohol by excluding heavy drinkers, similar trends in
DMET protein levels were observed (Supplementary Table S2).
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Figure 5. Differential DMET protein expression with moderate to heavy tobacco use. (A) Protein levels
of major drug metabolizing CYPs in HLMs from >1 ppd smokers compared to non-smokers; (B) UGT
protein levels in HLMs from >1 ppd smokers compared to non-smokers; (C) protein levels of major
non-P450, non-UGT enzymes in HLMs of >1 ppd smokers compared to non-smokers; (D) transporter
protein levels in HLMs of >1 ppd smokers compared to non-smokers. Samples were analyzed for
significance using the Student’s t-test with Welch’s correction for unequal variance. p-Value * < 0.05,
** < 0.01, *** < 0.001. Absolute protein concentration for each DMET protein, expressed as pmol/mg
of total HLM protein, was calculated via the TPA method.

3.5. Effects of Sex on DMET Abundance

The comparison of P450 expression in HLMs from females and males revealed signifi-
cantly lower CYP1A2 (FC 0.74) protein levels in females, while CYP2A6 (FC 1.2) levels were
significantly higher, and CYP2C19 (FC 1.3, p = 0.054) levels were trending higher in females
(Figure 6A, Table 2). Several UGTs, including UGT2B7 (FC 0.85, p < 0.01), UGT2B15 (FC
0.72), and UGT2B17 (FC 0.27), were significantly lower in HLMs from females compared to
males (Figure 6B, Table 2). Conversely, UGT2A3 (FC 1.35) protein levels were significantly
elevated in females. Analysis of non-P450, non-UGT enzyme levels in HLMs from females
compared to males (Figure 6C, Table 2) revealed significantly elevated protein levels of
AADAC (FC 1.2, p < 0.01), FMO1 (FC 1.15, p < 0.05), and STS (FC 1.7, p < 0.01) in females.
The transporter protein levels in HLMs from females were comparable to those of males
with no significant differences observed (Figure 6D, Table 2).
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Figure 6. Differential DMET protein expression with sex. (A) Protein levels of major drug metab-
olizing CYPs in HLMs from female donors compared to males; (B) UGT protein levels in HLMs
from female compared to male donors; (C) protein levels of major non-P450, non-UGT enzymes in
HLMs from female donors compared to males; (D) transporter protein levels in HLMs from female
donors compared to males. Samples were analyzed for significance using the Student’s t-test with
Welch’s correction for unequal variance. p-Value * < 0.05, ** < 0.01, **** < 0.0001. Absolute protein
concentration for each DMET protein, expressed as pmol/mg of total HLM protein, was calculated
via the TPA method.

4. Discussion
Alcohol and tobacco use are prevalent; however, the knowledge of the effects of both

on the abundance of DMET proteins remains limited. Accurately assessing potential ADI
is critical for establishing a safe and effective drug profile across the population [41–43].
In this study, we employed TPA-based global proteomics to compare the abundance and
composition of DMET proteins in HLM preparations from 94 donors with documented
alcohol consumption and tobacco histories, exploring the effects of these factors on the
human drug-metabolizing system. We detected over 4000 proteins in our HLM samples
and analyzed DMET protein levels concerning alcohol consumption, smoking history, and
sex using non-parametric tests (p ≤ 0.05; >1.25 FC). The examination of alcohol-induced
changes was further enhanced by correlational analysis, using an alcohol consumption
grade (ACG) scaling from 0 to 4 to establish a set of protein markers. We elaborated a PIAE
scale based on the relative abundances of four proteins (HSPA5, PDIA3, P4HB, and CES2)
that best correlated with ACG. This PIAE index was then utilized to find correlations with
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DMET protein abundances, allowing for corroborating and extending the conclusions from
the initial non-parametric analysis.

Our results demonstrate significant alcohol-induced changes in the composition of
the cytochrome P450 pool in HLMs. Consistent with the literature [7,13,14,16,44], we
observed a significant upregulation of CYP2E1 with alcohol consumption, averaging
a 1.7-fold increase in heavy drinkers. In addition to this well-documented effect, our
correlational analysis revealed significant increases in the abundances of CYP2B6 and
CYP2J2, mirroring the significant increase in POR levels, which has not been previously
reported in the literature. The increase in POR levels may, in part, contribute to the
overall enhancement of drug metabolism associated with alcohol consumption, as noted in
several other studies [4,9,20,45]. Notably, we did not detect any alcohol-induced increase in
CYP3A4 or CYP2A6 abundance, contrary to suggestions in the literature based on animal
models and in vitro data [46–48].

Our novel proteomics analysis and PIAE index uncovered a significant decrease in the
levels of CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP4A11, CYP4F11, and CYP7B1 proteins
due to chronic alcohol exposure. The average levels of CYP1A2, CYP2C9, and CYP4A11
were reduced by 2.3-, 1.5-, and 1.7-fold, respectively, in heavy alcohol consumers, which
could significantly impact the pharmacokinetics of various drugs metabolized by these
enzymes. Furthermore, the alcohol-induced decrease in CYP4A11 abundance, which is
involved in the synthesis of eicosanoids, may affect the 20-HETE signaling pathways
and contribute to mechanisms of alcohol-induced hypertension. The observed decrease
in cytochrome b5 levels with alcohol exposure may also have important physiological
implications as interactions between cytochrome b5 with P450s are known to enhance the
coupling of the P450 ensemble and reduce the P450-dependent production of harmful
reactive oxygen species [49–51]. Thus, the alcohol-induced decrease in cytochrome b5 levels
could be implicated in the mechanisms underlying ethanol hepatotoxicity.

Considerable alcohol-induced changes in drug metabolism may also stem from alter-
ations in the abundance and composition of UGTs. We observed significant upregulation of
UGTs 1A6, 1A9, and 2A1; and significant downregulation of UGTs 1A3, 1A4, 2B7, 2B10, and
2B15 with alcohol exposure. Protein levels of UGT1A6 and UGT1A9, which are suggested
to play roles in the non-oxidative metabolism of ethanol [52], were significantly elevated in
HLMs from heavy drinkers compared to non-drinkers, a finding not previously reported.
The effects of alcohol remained consistent even after excluding smokers from the analysis
(Supplementary Table S2).

The expression patterns of important non-P450 and non-UGT enzymes and trans-
porters involved in xenobiotic disposition were also altered by alcohol consumption.
Whereas heavy alcohol intake induced the significant downregulation of AADAC, FMO3,
FMO4, FMO5, and STS, the levels of FMO1 and MRP3 were significantly elevated. While
STS is known for its role in metabolizing endogenous steroids rather than xenobiotics, alter-
ations in STS expression are related to neurodegenerative disorders and hormone-sensitive
cancers and holds clinical relevance as a drug target [53].

These findings somewhat contrast with those from a transcriptomics study of human
liver samples from patients with alcohol-associated hepatitis, which concluded that drug-
metabolizing enzymes were overall downregulated [54]. While our results do show a
decrease in the majority of DMETs reported herein due to chronic alcohol exposure, we
also measured notable increases in several DMETs. It is important to note that the results
of proteomics analysis cannot be compared head-to-head with those of transcriptomics
analysis. Transcriptomics analysis is known to have a higher level of background variability
while quantitative proteomics is generally more reproducible, allowing for detection of
biological effects at lower levels [32,41,55]. Additionally, protein expression often does not
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correlate with mRNA expression as it is regulated by a number of factors, as in the case of
CYP2E1 which undergoes an alcohol-induced increase in protein stability [56].

In HLMs from moderate-to-heavy smokers, we observed a significant upregulation of
CYP1A2, UGT1A6, and UGT2B4 alongside a significant downregulation of FMO3, FMO4,
and FMO5 compared to non-smokers, independent of alcohol consumption. While CYP1A2
is known to be elevated with smoking, the literature on population-based studies into the
potential induction of these enzymes in the liver due to smoking is limited.

Female donors exhibited significantly lower levels of CYP1A2, UGT2B7, UGT2B17,
and UGT2B15, while displaying significantly higher levels of CYP2A6, UGT2A3, AADAC,
FMO1, and STS compared to males. Although the association of UGT2B17 abundance
with sex is well-known, the effect of sex on other clinically significant DMET proteins is a
novel finding.

Limitations inherent to the study design permit only observational analysis and not a
controlled environment. Consequently, confounding factors such as second-hand smoke
could have contributed to elevated CYP1A1 or CYP1A2 levels in some individuals from
the control group. However, the advantages of a population-based study include a realistic
study design and the ability to detect significant changes despite inter-individual variations.

Previously, we provided evidence of an impact on CYP3A4, CYP1A2, and CYP2C19
activity due to the induction of CYP2E1 by alcohol [21,22], indicating the importance of
consideration of the mutual functional effects of multiple enzymes constituting the P450
ensemble. The observed effects of alcohol on the induction or suppression of different P450s
could have additional implications for the functioning of the drug-metabolizing ensemble
as a whole. The use of the Provisional Index of Alcohol Exposure elaborated in this study
for analyzing correlations between alcohol exposure and the function of drug-metabolizing
enzymes in HLMs offers a promising avenue for the further exploration of the effects of
alcohol on the drug-metabolizing system.

To our knowledge, this study represents the first comprehensive investigation of the
effects of alcohol intake, smoking, and sex differences on the protein levels of important
DMET proteins in a large set of human liver samples. Our data showed alcohol-associated
differences in the abundance and composition of vital DMET proteins involved in the
metabolism and disposition of various pharmaceuticals, highlighting the necessity of
considering smoking tobacco and sex as covariates.

Supplementary Materials: The following supporting information can be downloaded: https://
www.mdpi.com/article/10.3390/jox15010020/s1, Figure S1: global and DMET proteome analysis of
HLMs from light, social, and moderate alcohol drinkers; Figure S2: STRING analysis of significantly
upregulated and downregulated proteins from global proteomics; Table S1: list of proteins localized
to the endoplasmic reticulum used for normalizing DMET proteins; Table S2: TPA-based protein
levels of major DMET proteins present in HLMs of heavy drinkers with >1 ppd smokers removed
and smokers with heavy drinkers removed.
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