The Race to Document Archaeological Sites Ahead of Rising Sea Levels: Recent Applications of Geospatial Technologies in the Archaeology of Polynesia
Abstract
:“In coastal regions around the world, we need to accelerate our own efforts to inventory, investigate, and interpret the history of endangered coastal sites … We must pull our heads from the proverbial sand for we are literally racing a rising tide.”[1]
1. Introduction
2. Remote Sensing
2.1. Airborne and Satellite Imagery
2.2. Airborne LiDAR
2.3. Geophysical Survey
2.4. Near-Shore Maritime Survey
3. High-Resolution Documentation
4. Archaeological Site Geodatabases
5. Discussion
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Erlandson, J.M. Racing a Rising Tide: Global warming, rising seas, and the erosion of human history. J. Isl. Coast. Archaeol. 2008, 3, 167–169. [Google Scholar] [CrossRef]
- Jeradino, A. On the origins and significance of Pleistocene coastal resource use in southern Africa with particular reference to shellfish gathering. J. Anthropol. Archaeol. 2017, 41, 213–230. [Google Scholar] [CrossRef]
- What are “Cultural Resources”? Available online: www.npi.org/NEPA/what-are (accessed on 12 January 2018).
- Allison, I.; Bindoff, N.; Bindschadler, R.; Cox, P.; de Noblet, N.; England, M.; Francis, J.; Gruber, N.; Haywood, A.; Karoly, D.; et al. The Copenhagen Diagnosis 2009: Updating the World on the Latest Climate Science; The University of New South Wales Climate Change Research Centre (CCRC): Sydney, Australia, 2009. [Google Scholar]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., et al., Eds.; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Rahmstorf, S.; Perrette, M.; Vermeer, M. Testing the robustness of semi-empirical sea level projections. Clim. Dyn. 2012, 39, 861–875. [Google Scholar] [CrossRef]
- Perrette, M.; Landerer, F.; Riva, R.; Frieler, K.; Meinshausen, M. A scaling approach to project regional sea level rise and its uncertainties. Earth Syst. Dyn. 2013, 4, 11–29. [Google Scholar] [CrossRef] [Green Version]
- Vermeer, M.; Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.; Weuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. Chapter 2: Our changing climate. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J., Richmond, T., Yohe, G., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 19–67. [Google Scholar]
- Bruun, P. Sea-level rise as a cause of shoreline erosion. J. Waterw. Harb. Div. 1962, 88, 117–139. [Google Scholar]
- Leatherman, S.P.; Zhang, K.; Douglas, B.C. Sea level rise shown to drive coastal erosion. EOS Trans. 2000, 81, 55–57. [Google Scholar] [CrossRef]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Chan. 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Fatorić, S.; Seekamp, E. Are Cultural Heritage and Resources threatened by Climate Change? A systematic literature review. Clim. Chan. 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Anderson, D.G.; Bissett, T.G.; Yerka, S.J.; Wells, J.J.; Kansa, E.C.; Kansa, S.W.; Myers, K.N.; DeMuth, R.C.; White, D.A. Sea-level rise and archaeological site destruction: An example from the southeastern United States using DINAA (Digital Index of North American Archaeology). PLoS ONE 2017, 12, e0188142. [Google Scholar] [CrossRef] [PubMed]
- Bird, M.K. The impact of tropical cyclones on the archaeological record: An Australian example. Archaeol. Ocean. 1992, 27, 75–86. [Google Scholar] [CrossRef]
- Rowland, M.J. Climate change, sea-level rise and the archaeological record. Aust. Archaeol. 1992, 34, 29–33. [Google Scholar] [CrossRef]
- Johnson, A.; Marrack, L.; Dolan, S. Threats to Coastal Archaeological Sites and the Effects of Future Climate Change: Impacts of the 2011 Tsunami and an Assessment of Future Sea-Level Rise at Hōnaunau, Hawai‘i. J. Isl. Coast. Archaeol. 2015, 10, 232–252. [Google Scholar] [CrossRef]
- Knott, S.; Szabó, K.; Ridges, M.; Fullagar, R. Vulnerability of Indigenous Heritage Sites to Changing Sea Levels: Piloting a GIS-Based Approach in the Illawarra, New South Wales, Australia. Archaeol. Rev. Camb. 2017, 32, 78–97. [Google Scholar]
- Kvamme, K. Recent directions and developments in geographical information systems. J. Archaeol. Res. 1999, 7, 153–201. [Google Scholar] [CrossRef]
- McCoy, M.D.; Ladefoged, T.N. New developments in the use of spatial technology in archaeology. J. Archaeol. Res. 2009, 17, 263–295. [Google Scholar] [CrossRef]
- Erlandson, J.M.; Fitzpatrick, S.M. Oceans, islands, and coasts: Current perspectives on the role of the sea in human prehistory. J. Isl. Coast. Archaeol. 2006, 1, 5–33. [Google Scholar] [CrossRef]
- Fitzpatrick, S.M.; Rick, T.C.; Erlandson, J.M. Recent progress, trends, and developments in island and coastal archaeology. J. Isl. Coast. Archaeol. 2015, 10, 3–27. [Google Scholar] [CrossRef]
- Rick, T.C.; Erlandson, J.M. (Eds.) Human Impacts on Ancient Marine Ecosystems: A global Perspective; University of California Press: Berkeley, CA, USA, 2008. [Google Scholar]
- Burley, D.; Weisler, M.I.; Zhao, J. High precision U/Th dating of first Polynesian settlement. PLoS ONE 2012, 7, e48769. [Google Scholar] [CrossRef] [PubMed]
- Dye, T.S. Dating human dispersal in Remote Oceania: A Bayesian view from Hawai’i. World Archaeol. 2015, 47, 661–676. [Google Scholar] [CrossRef]
- Kawelu, K.L. Kuleana and Commitment: Working Toward a Collaborative Hawaiian Archaeology; University of Hawaii Press: Honolulu, HI, USA, 2015. [Google Scholar]
- Palmer, G.B. New Zealand archaeology and air photography. J. Polyn. Soc. 1947, 57, 233–241. [Google Scholar]
- Gorbey, K. Aerial photography in New Zealand archaeology. N. Z. Archaeol. Assoc. Newsl. 1967, 10, 167–175. [Google Scholar]
- Jones, K.L. Aerial Photography in New Zealand Archaeology. Aust. Hist. Archaeol. 1996, 14, 25–33. [Google Scholar]
- Newman, T.S. Hawaiian Fishing and Farming on the Island of Hawaii in A.D. 1778; Hawaii Division of State Parks: Honolulu, HI, USA, 1970.
- Ladefoged, T.N.; Graves, M.W.; Jennings, R.P. Dryland agricultural expansion and intensification in the Kohala, Hawai’i Island. Antiquity 1996, 70, 861–880. [Google Scholar] [CrossRef]
- Casana, J.; Cothren, J. The CORONA Atlas Project: Orthorectification of CORONA Satellite Imagery and Regional-Scale Archaeological Exploration in the Near East. In Mapping the Archaeological Landscape from Space; Comer, D.C., Harrower, M.J., Eds.; Springer: Berlin, Germany, 2012; pp. 33–43. [Google Scholar]
- Lipo, C.P.; Hunt, T.L. Mapping the Prehistoric Statue Roads on Easter Island. Antiquity 2005, 79, 158–168. [Google Scholar] [CrossRef]
- Ladefoged, T.N.; Flaws, A.; Stevenson, C.M. The distribution of rock gardens on Rapa Nui (Easter Island) as determined from satellite imagery. J. Archaeol. Sci. 2013, 40, 1203–1212. [Google Scholar] [CrossRef]
- O’Rouke, M.J.E. Archaeological Site Vulnerability Modelling: The Influence of High Impact Storm Events on Models of Shoreline Erosion in the Western Canadian Arctic. Open Archaeol. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Vitousek, S.; Barbee, M.M.; Fletcher, C.H.; Richmond, B.M.; Genz, A.S. Pu’ukoholā Heiau National Historic Site and Kaloko Honokōhau Historical Park, Big Island of Hawai’i Coastal Hazard Analysis Report; National Park Service: Washington, DC, USA, 2009.
- Chase, A.F.; Chase, D.Z.; Fisher, C.T.; Leisz, S.J.; Weishampel, J.F. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Proc. Natl. Acad. Sci. USA 2012, 109, 12916–12921. [Google Scholar] [CrossRef] [PubMed]
- Quintus, S.; Day, S.S.; Smith, N.J. The Efficacy and Analytical Importance of Manual Feature Extraction Using Lidar Datasets. Adv. Archaeol. Pract. 2017, 5, 1–24. [Google Scholar] [CrossRef]
- McCoy, M.D. Geospatial Big Data in Archaeology: Problems and prospects too great to ignore. J. Archaeol. Sci. 2017, 84, 74–94. [Google Scholar] [CrossRef]
- Ladefoged, T.N.; McCoy, M.D.; Asner, G.P.; Kirch, P.V.; Puleston, C.O.; Chadwick, O.A.; Vitousek, P.M. Agricultural potential and actualized development in Hawai’i: An airborne LiDAR survey of the leeward Kohala field system (Hawai’i Island). J. Archaeol. Sci. 2011, 38, 3605–3619. [Google Scholar] [CrossRef]
- McCoy, M.D.; Asner, G.P.; Graves, M.W. Airborne lidar survey of irrigated agricultural landscapes: An application of the slope contrast method. J. Archaeol. Sci. 2011, 38, 2141–2154. [Google Scholar] [CrossRef]
- McIvor, I.H.; Ladefoged, T.N. Intermittent irrigation in the Waimea Field System, Hawai’i Island: A computational fluid dynamics model. J. Archaeol. Sci. Rep. 2018, 17, 335–345. [Google Scholar] [CrossRef]
- Freeland, T.; Heung, B.; Burley, D.V.; Clark, G.; Knudby, A. Automated Feature Extraction for Prospection and Analysis of Monumental Earthworks from Aerial LiDAR in the Kingdom of Tonga. J. Archaeol. Sci. 2016, 69, 64–74. [Google Scholar] [CrossRef]
- Quintus, S.; Clark, J.T.; Day, S.S.; Schwert, D.P. Investigating Regional Patterning in Archaeological Remains by Pairing Extensive Survey with a Lidar dataset: The Case of the Manu’a Group, American Samoa. J. Archaeol. Sci. Rep. 2015, 2, 677–687. [Google Scholar] [CrossRef]
- 2006 FEMA Lidar: Hawaiian Islands. Available online: https://coast.noaa.gov/htdata/lidar1_z/geoid12a/data/1393/2006_HI_fema_metadata.html (accessed on 12 January 2018).
- Irwin, G.J.; Ladefoged, T.N.; Wallace, R.T.; Jones, M.D.; Ross, S.C.; Clout, S.D. Experimental geophysical survey on Motutapu Island 1994–1996. Archaeol. N. Z. 1997, 40, 266–277. [Google Scholar]
- Bickler, S.H.; Low, J.M. “Lies, damned lies and geophysics”: Uses and abuses of remote sensing techniques in New Zealand heritage management. Archaeol. N. Z. 2007, 50, 195–210. [Google Scholar]
- Conyers, L.B.; Connell, S. An analysis of ground-penetrating radar’s ability to discover and map buried archaeological sites in Hawai’i. Hawaii. Archaeol. 2007, 11, 61–76. [Google Scholar]
- Shaw, B.; Jacomb, C.; Walter, R. The potential of the fluxgate gradiometer as a research tool in New Zealand. Archaeol. N. Z. 2008, 51, 121–129. [Google Scholar]
- Pearl, F.B.; Sauck, W.A. Geophysical and geoarchaeological investigations at Aganoa Beach, American Samoa an early archaeological site in Western Polynesia. Geoarchaeology 2014, 29, 462–476. [Google Scholar] [CrossRef]
- McCoy, M.D.; Browne Ribeiro, A.T.; Graves, M.W.; Chadwick, O.A.; Vitousek, P.M. Taro (Colocasia esculenta) farming in ancient Hawaii: Sedimentology and soil nutrient analyses of irrigated pondfield soils. J. Archaeol. Sci. 2013, 40, 1528–1538. [Google Scholar] [CrossRef]
- Clark, G.; de Biran, A. Geophysical investigations at the Pulemelei mound. Archaeol. Ocean. 2007, 42, 60–70. [Google Scholar] [CrossRef]
- Brooks, E.; Jacomb, C.; Walter, R. Archaeological investigations at Wairau Bar. Archaeol. N. Z. 2009, 52, 259–268. [Google Scholar]
- Van Tilburg, H. Underwater archaeology, Hawaii style. In International Handbook of Underwater Archaeology; Ruppe, C.V., Barstad, J.F., Eds.; Kluwer Academic/Plenum Publishing: New York, NY, USA, 2002; pp. 247–266. [Google Scholar]
- Sailors, D.; Honda, S.S. Remote Survey of a Near-Coastal Archaeological Alignment at Kualoa, Hawai’i Using Worldview 2 Satellite, LiDAR and UAV Imagery. 2014. Available online: https://www.academia.edu/16518333/Remote_Survey_of_a_Near-Coastal_Archaeological_Alignment_at_Kualoa_Hawaii_Using_Worldview_2_Satellite_LiDAR_and_UAV_Imagery (accessed on 12 January 2018).
- Pfeffer, M. Distribution and design of Pacific octopus lures: The Hawaiian octopus lure in regional context. Hawaii. Archaeol. 1995, 4, 47–56. [Google Scholar]
- Barber, I.G.; Maxwell, J.J.; Hemi, R. Growing images: Generating 3D digital models to investigate archaeological Moriori carvings on live trees. World Archaeol. 2014, 46, 63–77. [Google Scholar] [CrossRef]
- Mulrooney, M.A.; Ladefoged, T.N.; Gibb, R.; McCurdy, D. Eight million points per day: Archaeological implications of laser scanning and three-dimensional modeling of Pu‘ukohola Heiau. Hawaii. Archaeol. 2005, 10, 18–28. [Google Scholar]
- Johnson, A. Shifting stones and data points: Using terrestrial laser scanning to assess damage to monumental architecture in Hawai‘i. In Proceedings of the Computer Applications and Quantitative Methods in Archaeology Conference, Atlanta, GA, USA, 14–16 March 2017. [Google Scholar]
- Foecke, T.; Ma, L.; Russell, M.A.; Conlin, D.L.; Murphy, L.E. Investigating archaeological site formation processes on the battleship USS Arizona using finite element analysis. J. Archaeol. Sci. 2010, 37, 1090–1101. [Google Scholar] [CrossRef]
- New Zealand Archaeological Association’s ArchSite: Archaeological Site Recording Scheme. Available online: www.archsite.org.nz (accessed on 12 January 2018).
- Mann, T.; Westphal, H. Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data. Remote Sens. 2014, 6, 6961–6987. [Google Scholar] [CrossRef]
- Kvamme, K.L. Integrating Multiple Geophysical Datasets. In Remote Sensing in Archaeology James Wiseman; El-Baz, F., Ed.; Springer: New York, NY, USA, 2006; pp. 345–374. [Google Scholar]
- Howey, M.C.L.; Brouwer Burg, M. Assessing the state of archaeological GIS research: Unbinding analyses of past landscapes. J. Archaeol. Sci. 2017, 84, 1–9. [Google Scholar] [CrossRef]
- McIvor, I.H.; Ladefoged, T.N. A multi-scalar analysis of Māori land use on Ahuahu (Great Mercury Island), New Zealand. Archaeol. Ocean. 2015, 51, 45–61. [Google Scholar] [CrossRef]
- Foody, G.M.; See, L.; Fritz, M.; van der Velde, M.; Perger, C.; Schill, C.; Boyd, D.S. Assessing the Accuracy of Volunteered Geographic Information arising from Multiple Contributors to an Internet Based Collaborative Project. Trans. GIS 2013, 17, 847–860. [Google Scholar] [CrossRef]
Elevation (m asl) | Archaeological Sites (n = ) | Archaeological Sites (% Total Sites) | Map Symbol |
---|---|---|---|
Less than 0 | 4208 | 6.1% | Red |
0–1 | 1096 | 1.6% | Orange |
1–2 | 995 | 1.5% | Yellow |
2–3 | 951 | 1.4% | Yellow-Green |
3–4 | 1043 | 1.5% | Light Green |
4–5 | 1137 | 1.7% | Green |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCoy, M.D. The Race to Document Archaeological Sites Ahead of Rising Sea Levels: Recent Applications of Geospatial Technologies in the Archaeology of Polynesia. Sustainability 2018, 10, 185. https://doi.org/10.3390/su10010185
McCoy MD. The Race to Document Archaeological Sites Ahead of Rising Sea Levels: Recent Applications of Geospatial Technologies in the Archaeology of Polynesia. Sustainability. 2018; 10(1):185. https://doi.org/10.3390/su10010185
Chicago/Turabian StyleMcCoy, Mark D. 2018. "The Race to Document Archaeological Sites Ahead of Rising Sea Levels: Recent Applications of Geospatial Technologies in the Archaeology of Polynesia" Sustainability 10, no. 1: 185. https://doi.org/10.3390/su10010185
APA StyleMcCoy, M. D. (2018). The Race to Document Archaeological Sites Ahead of Rising Sea Levels: Recent Applications of Geospatial Technologies in the Archaeology of Polynesia. Sustainability, 10(1), 185. https://doi.org/10.3390/su10010185