Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm
Abstract
:1. Introduction
2. Constructing an Evaluation Criteria System of Power Grid Construction Projects
2.1. Evaluation Criteria System Construction
2.1.1. Initially Determining Evaluation Criteria
2.1.2. Evaluation Criteria Selection
2.1.3. Criteria System Construction and Criteria Weights Calculation
2.2. Criteria Description
2.2.1. Economy
2.2.2. Technology
2.2.3. Society
2.2.4. Environment
3. Methodology
3.1. The TOPSIS Improved by the Grey Incidence Analysis
3.2. The LSSVM Optimized by the MFOA
3.2.1. The LSSVM
3.2.2. The MFOA
3.2.3. The MFOA-LSSVM
4. Case Study
4.1. Case Study for Improved TOPSIS
4.2. Case Study for MFOA-LSSVM
5. Conclusions
- In this paper, we construct the criteria system of the sustainability evaluation of power grid construction projects from four dimensions of economy, technology, environment and society.
- The grey incidence analysis, which reveals the similarity between the evaluated objects and ideal objects, is used to improve the traditional TOPSIS, which reveals the nearness of the evaluated objects and ideal targets, so we can make it analyze the evaluated objects from the aspects of similarity and nearness. By this method, we rank these objects according to their comprehensive relative closeness scores.
- We optimize two key parameters of the LSSVM using the MFOA. Based on the evaluation results of improved TOPSIS, the MFOA-LSSVM model is used to evaluate the sustainability of power grid construction projects, which simplifies the process of expert scoring and computation to help in rapid and accurate evaluation of a large number of similar projects.
- We proposed combining the classical evaluation methods with heuristic methods. This model we have developed has wide applicability on evaluation problems.
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
No. | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.0126 | 0.0130 | 0.0116 | 0.0137 | 0.0075 | 0.0090 | 0.0087 | 0.0125 |
2 | 0.0151 | 0.0086 | 0.0156 | 0.0101 | 0.0068 | 0.0102 | 0.0148 | 0.0124 |
3 | 0.0151 | 0.0151 | 0.0100 | 0.0079 | 0.0101 | 0.0116 | 0.0124 | 0.0125 |
4 | 0.0128 | 0.0140 | 0.0130 | 0.0082 | 0.0121 | 0.0047 | 0.0089 | 0.0124 |
5 | 0.0148 | 0.0130 | 0.0086 | 0.0089 | 0.0074 | 0.0076 | 0.0100 | 0.0124 |
6 | 0.0136 | 0.0140 | 0.0099 | 0.0117 | 0.0113 | 0.0062 | 0.0105 | 0.0125 |
7 | 0.0141 | 0.0151 | 0.0110 | 0.0128 | 0.0089 | 0.0043 | 0.0138 | 0.0125 |
8 | 0.0114 | 0.0130 | 0.0129 | 0.0122 | 0.0102 | 0.0117 | 0.0131 | 0.0125 |
9 | 0.0137 | 0.0162 | 0.0145 | 0.0123 | 0.0113 | 0.0056 | 0.0146 | 0.0125 |
10 | 0.0117 | 0.0151 | 0.0085 | 0.0132 | 0.0100 | 0.0046 | 0.0141 | 0.0125 |
11 | 0.0138 | 0.0162 | 0.0100 | 0.0114 | 0.0063 | 0.0075 | 0.0154 | 0.0124 |
12 | 0.0152 | 0.0119 | 0.0098 | 0.0099 | 0.0122 | 0.0064 | 0.0152 | 0.0125 |
13 | 0.0109 | 0.0086 | 0.0144 | 0.0071 | 0.0085 | 0.0049 | 0.0152 | 0.0125 |
14 | 0.0120 | 0.0162 | 0.0089 | 0.0136 | 0.0118 | 0.0045 | 0.0114 | 0.0124 |
15 | 0.0138 | 0.0097 | 0.0146 | 0.0135 | 0.0080 | 0.0099 | 0.0105 | 0.0125 |
16 | 0.0116 | 0.0130 | 0.0130 | 0.0092 | 0.0090 | 0.0046 | 0.0130 | 0.0124 |
17 | 0.0112 | 0.0119 | 0.0099 | 0.0134 | 0.0047 | 0.0082 | 0.0155 | 0.0124 |
18 | 0.0130 | 0.0119 | 0.0126 | 0.0120 | 0.0113 | 0.0129 | 0.0120 | 0.0124 |
19 | 0.0109 | 0.0097 | 0.0111 | 0.0102 | 0.0127 | 0.0046 | 0.0141 | 0.0124 |
20 | 0.0158 | 0.0130 | 0.0102 | 0.0075 | 0.0063 | 0.0113 | 0.0114 | 0.0125 |
21 | 0.0107 | 0.0162 | 0.0138 | 0.0134 | 0.0124 | 0.0141 | 0.0100 | 0.0125 |
22 | 0.0111 | 0.0086 | 0.0089 | 0.0093 | 0.0104 | 0.0130 | 0.0128 | 0.0124 |
23 | 0.0124 | 0.0130 | 0.0083 | 0.0086 | 0.0065 | 0.0079 | 0.0116 | 0.0125 |
24 | 0.0154 | 0.0130 | 0.0130 | 0.0080 | 0.0068 | 0.0110 | 0.0102 | 0.0124 |
25 | 0.0152 | 0.0130 | 0.0135 | 0.0129 | 0.0072 | 0.0123 | 0.0090 | 0.0125 |
26 | 0.0118 | 0.0162 | 0.0128 | 0.0085 | 0.0047 | 0.0130 | 0.0097 | 0.0124 |
27 | 0.0135 | 0.0086 | 0.0115 | 0.0119 | 0.0118 | 0.0036 | 0.0082 | 0.0125 |
28 | 0.0130 | 0.0140 | 0.0120 | 0.0095 | 0.0060 | 0.0135 | 0.0111 | 0.0124 |
29 | 0.0122 | 0.0151 | 0.0126 | 0.0100 | 0.0050 | 0.0116 | 0.0135 | 0.0125 |
30 | 0.0133 | 0.0108 | 0.0110 | 0.0061 | 0.0067 | 0.0040 | 0.0082 | 0.0124 |
No. | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 0.0127 | 0.0131 | 0.0094 | 0.0081 | 0.0083 | 0.0139 | 0.0120 | 0.0112 | 0.0064 |
2 | 0.0089 | 0.0121 | 0.0115 | 0.0077 | 0.0071 | 0.0097 | 0.0133 | 0.0123 | 0.0075 |
3 | 0.0058 | 0.0107 | 0.0095 | 0.0080 | 0.0095 | 0.0094 | 0.0136 | 0.0096 | 0.0091 |
4 | 0.0072 | 0.0102 | 0.0120 | 0.0075 | 0.0085 | 0.0141 | 0.0091 | 0.0094 | 0.0075 |
5 | 0.0053 | 0.0106 | 0.0107 | 0.0074 | 0.0088 | 0.0096 | 0.0107 | 0.0094 | 0.0086 |
6 | 0.0127 | 0.0114 | 0.0109 | 0.0076 | 0.0069 | 0.0090 | 0.0097 | 0.0092 | 0.0099 |
7 | 0.0095 | 0.0103 | 0.0106 | 0.0080 | 0.0090 | 0.0091 | 0.0086 | 0.0121 | 0.0084 |
8 | 0.0085 | 0.0068 | 0.0106 | 0.0068 | 0.0088 | 0.0126 | 0.0111 | 0.0105 | 0.0105 |
9 | 0.0130 | 0.0114 | 0.0094 | 0.0081 | 0.0073 | 0.0133 | 0.0084 | 0.0102 | 0.0080 |
10 | 0.0104 | 0.0122 | 0.0116 | 0.0094 | 0.0090 | 0.0142 | 0.0132 | 0.0116 | 0.0102 |
11 | 0.0135 | 0.0091 | 0.0114 | 0.0077 | 0.0084 | 0.0124 | 0.0111 | 0.0110 | 0.0104 |
12 | 0.0121 | 0.0098 | 0.0117 | 0.0094 | 0.0092 | 0.0143 | 0.0122 | 0.0127 | 0.0065 |
13 | 0.0050 | 0.0074 | 0.0111 | 0.0078 | 0.0084 | 0.0127 | 0.0132 | 0.0128 | 0.0097 |
14 | 0.0094 | 0.0072 | 0.0100 | 0.0090 | 0.0073 | 0.0119 | 0.0092 | 0.0146 | 0.0072 |
15 | 0.0109 | 0.0128 | 0.0102 | 0.0089 | 0.0074 | 0.0097 | 0.0089 | 0.0106 | 0.0082 |
16 | 0.0048 | 0.0101 | 0.0106 | 0.0079 | 0.0076 | 0.0136 | 0.0119 | 0.0142 | 0.0058 |
17 | 0.0107 | 0.0077 | 0.0120 | 0.0085 | 0.0087 | 0.0099 | 0.0085 | 0.0143 | 0.0072 |
18 | 0.0130 | 0.0124 | 0.0105 | 0.0089 | 0.0088 | 0.0118 | 0.0117 | 0.0092 | 0.0088 |
19 | 0.0127 | 0.0113 | 0.0095 | 0.0080 | 0.0094 | 0.0125 | 0.0097 | 0.0102 | 0.0073 |
20 | 0.0090 | 0.0086 | 0.0105 | 0.0093 | 0.0088 | 0.0129 | 0.0128 | 0.0114 | 0.0055 |
21 | 0.0073 | 0.0088 | 0.0120 | 0.0096 | 0.0079 | 0.0104 | 0.0118 | 0.0138 | 0.0070 |
22 | 0.0096 | 0.0130 | 0.0105 | 0.0094 | 0.0091 | 0.0124 | 0.0108 | 0.0144 | 0.0094 |
23 | 0.0058 | 0.0115 | 0.0110 | 0.0084 | 0.0096 | 0.0094 | 0.0112 | 0.0137 | 0.0066 |
24 | 0.0094 | 0.0099 | 0.0113 | 0.0087 | 0.0071 | 0.0115 | 0.0132 | 0.0131 | 0.0093 |
25 | 0.0086 | 0.0114 | 0.0097 | 0.0075 | 0.0073 | 0.0109 | 0.0102 | 0.0121 | 0.0062 |
26 | 0.0073 | 0.0091 | 0.0109 | 0.0081 | 0.0070 | 0.0107 | 0.0092 | 0.0107 | 0.0091 |
27 | 0.0108 | 0.0121 | 0.0098 | 0.0071 | 0.0076 | 0.0093 | 0.0116 | 0.0122 | 0.0090 |
28 | 0.0087 | 0.0126 | 0.0117 | 0.0082 | 0.0077 | 0.0113 | 0.0122 | 0.0108 | 0.0097 |
29 | 0.0105 | 0.0133 | 0.0107 | 0.0088 | 0.0081 | 0.0138 | 0.0107 | 0.0105 | 0.0093 |
30 | 0.0071 | 0.0123 | 0.0117 | 0.0082 | 0.0092 | 0.0129 | 0.0088 | 0.0115 | 0.0073 |
References
- Zhou, X.; Yi, J.; Song, R.; Yang, X.; Li, Y.; Tang, H. An overview of power transmission systems in China. Energy 2010, 35, 4302–4312. [Google Scholar] [CrossRef]
- Dzonzi-Undi, J.; Li, S. SWOT analysis of safety and environmental regulation for China and USA: Its effect and influence on sustainable development of the coal industry. Environ. Earth Sci. 2015, 74, 6395–6406. [Google Scholar] [CrossRef]
- Xu, Z.; Cheng, G.; Chen, D.; Templet, P.H. Economic diversity, development capacity and sustainable development of China. Ecol. Econ. 2002, 40, 369–378. [Google Scholar] [CrossRef]
- Mayyas, A.; Qattawi, A.; Omar, M.; Shan, D. Design for sustainability in automotive industry: A comprehensive review. Renew. Sustain. Eng. Rev. 2012, 16, 1845–1862. [Google Scholar] [CrossRef]
- Shiau, T.A.; Liu, J.S. Developing an indicator system for local governments to evaluate transport sustainability strategies. Ecol. Indic. 2013, 34, 361–371. [Google Scholar] [CrossRef]
- Shin, D.; Curtis, M.; Huisingh, D.; Zwetsloot, G.I. Development of a sustainability policy model for promoting cleaner production: A knowledge integration approach. J. Clean. Prod. 2008, 16, 1823–1837. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Gheewala, S.H. Environmental sustainability assessment of bio-ethanol production in Thailand. Energy 2009, 34, 1933–1946. [Google Scholar] [CrossRef]
- Chen, Y.H.; Niu, D.X.; Peng, Z. The comprehensive evaluation of sustainable development effect in regional electricity enterprises. Adv. Mater. Res. 2012, 524, 482–484. [Google Scholar] [CrossRef]
- Peruzzini, M.; Germani, M.; Marilungo, E. Product Lifecycle Management for Society; Springer: Berlin/Heidelberg, Germany, 2013; pp. 100–109. [Google Scholar]
- Adefarati, T.; Bansal, R.C. Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources. Appl. Energy 2017, 206, 911–933. [Google Scholar] [CrossRef]
- Huang, T.C.; Zhang, Y.J. Reliability evaluation of microgrid considering incentive-based demand response. In Proceedings of the 2nd International Conference on Energy Materials and Applications (ICEMA), Hiroshima, Japan, 10–12 May 2017. [Google Scholar]
- Song, Y.; Hill, D.J.; Liu, T.; Zheng, Y. A distributed framework for stability evaluation and enhancement of inverter-based microgrids. IEEE Trans. Smart Grid 2017, 8, 3020–3034. [Google Scholar] [CrossRef]
- Luna, A.C.; Meng, L.X.; Diaz, N.L.; Graells, M.; Vasquez, J.C.; Guerrero, J.M. Online energy management systems for microgrids: experimental validation and assessment framework. IEEE Trans. Power Electron. 2017, 33, 2201–2215. [Google Scholar] [CrossRef]
- Williams, N.J.; Jaramillo, P.; Taneja, J. An investment risk assessment of microgrid utilities for rural electrification using the stochastic techno-economic microgrid model: A case study in Rwanda. Energy Sustain. Dev. 2018, 42, 87–96. [Google Scholar] [CrossRef]
- Nosratabadi, S.M.; Hooshmand, R.A.; Gholipour, E.; Rahimi, S. Modeling and simulation of long term stochastic assessment in industrial microgrids proficiency considering renewable resources and load growth. Simul. Model. Pract. Theory 2017, 75, 77–95. [Google Scholar] [CrossRef]
- Edinger, R.; Kaul, S. Humankind’s detour toward sustainability: Past, present, and future of renewable energies and electric power generation. Renew. Sustain. Energy Rev. 2000, 4, 295–313. [Google Scholar] [CrossRef]
- Farfan, J.; Breyer, C. Structural changes of global power generation capacity towards sustainability and the risk of stranded investments supported by a sustainability indicator. J. Clean. Prod. 2017, 141, 370–384. [Google Scholar] [CrossRef]
- Katz, R.L.; Shirkhoda, A. Sustainability assessment of power generation in combination with lng evaporation: A comparison of lca methods and exergy analysis. Technol. Policy Manag. 2013, 55, 1995–2000. [Google Scholar]
- Rodríguez-Serrano, I.; Caldés, N.; Rúa, C.D.L.; Lechón, Y. Assessing the three sustainability pillars through the Framework for Integrated Sustainability Assessment (FISA): Case study of a Solar Thermal Electricity project in Mexico. J. Clean. Prod. 2017, 2, 179. [Google Scholar] [CrossRef]
- Inoussah, M.; Adolphe, M.; Daniel, L. Assessment of sustainability indicators of thermoelectric power generation in cameroon using exergetic analysis tools assessment of sustainability indicators of thermoelectric power generation in cameroon using exergetic analysis tools. Energy Power Eng. 2017, 9, 22–39. [Google Scholar] [CrossRef]
- Wu, Y.N.; Chen, J.; Liu, L.R. Construction of China’s smart grid information system analysis. Renew. Sustain. Energy Rev. 2011, 15, 4236–4241. [Google Scholar] [CrossRef]
- Feron, S.; Heinrichs, H.; Cordero, R.R. Sustainability of rural electrification programs based on off-grid photovoltaic (PV) systems in Chile. Energy Sustain. Soc. 2016, 6, 32. [Google Scholar] [CrossRef]
- Zhao, H.; Li, N. Performance evaluation for sustainability of strong smart grid by using stochastic AHP and fuzzy TOPSIS methods. Sustainability 2016, 8, 129. [Google Scholar] [CrossRef]
- Hwang, C.; Yoon, K. Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; pp. 132–158. ISBN 9783540105589. [Google Scholar]
- Deng, J.L. Introduction to Grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Deng, J. The Grey Control System, 2nd ed.; Huazhong University of Science & Technology Press: Wuhan, China, 1993; pp. 10–135. ISBN 9787560906799. [Google Scholar]
- Liu, S.F. Grey Information: Theory and Practical Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 85–132. ISBN 1849969930. [Google Scholar]
- Liu, S.F.; Xie, N.M.; Forrest, J. On new models of grey incidence analysis based on visual angle of similarity and nearness. Syst. Eng.-Theory Pract. 2010, 30, 881–887. [Google Scholar]
- Cherkassky, V. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1995; pp. 988–999. ISBN 9780387987804. [Google Scholar]
- Suykens, J.A.; Lukas, L.; Van Dooren, P.; De Moor, B.; Vandewalle, J. Least squares support vector machine classifiers: A large scale algorithm. In Proceedings of the European Conference on Circuit Theory and Design, Stresa, Italy, 29 August–2 September 1999; 1999. [Google Scholar]
- Suykens, J.A.; Brabanter, J.D.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 2002, 48, 85–105. [Google Scholar] [CrossRef]
- Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Smola, A.; Scholkopf, B. On a Kernel based method for pattern recognition, regression, approximation and operator inversion. Algorithmica 1998, 22, 211–231. [Google Scholar] [CrossRef]
- Zhu, S.M.; Yang, M.; Han, X.S. Short-term generation forecast of wind farm using SVM-GARCH approach. In Proceedings of the IEEE International Conference on Power System Technology, Auckland, New Zealand, 30 October–2 November 2012. [Google Scholar]
- Wang, J.; Song, Z.; Ran, R. Short-term photovoltaic power generation rolling forecast based on optimized SVM. Proc. CSU-EPSA 2016, 28, 9–13. [Google Scholar]
- Malvoni, M.; Giorgi, M.G.D.; Congedo, P.M. Data on support vector machines (SVM) model to forecast photovoltaic power. Data Brief 2016, 9, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Xian, G. Data fitting experiments of LS-WSVM. Comput. Eng. Appl. 2008, 44, 36–38. [Google Scholar]
- Li, G.C.; You, J.C.; Liu, X.W. Support Vector Machine (SVM) based prestack AVO inversion and its applications. J. Appl. Geophys. 2015, 120, 60–68. [Google Scholar] [CrossRef]
- Zughrat, A.; Mahfouf, M.; Thornton, S. Performance evaluation of SVM and iterative FSVM classifiers with bootstrapping-based over-sampling and under-sampling. In Proceedings of the IEEE International Conference on Fuzzy Systems, Istanbul, Turkey, 2–5 August 2015. [Google Scholar]
- Jiang, X.; Lu, W.X.; Zhao, H.Q.; Yang, Q.C.; Chen, M. Quantitative evaluation of mining geo-environmental quality in Northeast China: Comprehensive index method and support vector machine models. Environ. Earth Sci. 2015, 73, 7945–7955. [Google Scholar] [CrossRef]
- Chen, G.Y.; Xie, W.F. Pattern recognition with SVM and dual-tree complex wavelets. Image Vis. Comput. 2007, 25, 960–966. [Google Scholar] [CrossRef]
- Wu, Y.C.; Lee, Y.S.; Yang, J.C. Robust and efficient multiclass SVM models for phrase pattern recognition. Pattern Recognit. 2008, 41, 2874–2889. [Google Scholar] [CrossRef]
- Wang, A.; Yuan, W.; Liu, J.; Yu, Z.; Li, H. A novel pattern recognition algorithm: Combining ART network with SVM to reconstruct a multi-class classifier. Comput. Math. Appl. 2009, 57, 1908–1914. [Google Scholar] [CrossRef]
- Pan, W.T. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowl.-Based Syst. 2012, 26, 69–74. [Google Scholar] [CrossRef]
No. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rank | Rank | Rank | Rank | Rank | ||||||
1 | 0.5705 | 2 | 0.5658 | 8 | 0.5627 | 9 | 0.5596 | 10 | 0.5625 | 7 |
2 | 0.5663 | 12 | 0.5599 | 13 | 0.5556 | 12 | 0.5513 | 12 | 0.5743 | 5 |
3 | 0.5684 | 5 | 0.5524 | 15 | 0.5418 | 16 | 0.5311 | 16 | 0.4328 | 26 |
4 | 0.5676 | 9 | 0.5277 | 25 | 0.5011 | 25 | 0.4745 | 25 | 0.5390 | 13 |
5 | 0.5652 | 16 | 0.5040 | 29 | 0.4633 | 29 | 0.4225 | 29 | 0.5876 | 4 |
6 | 0.5640 | 19 | 0.5470 | 17 | 0.5357 | 17 | 0.5243 | 17 | 0.4751 | 22 |
7 | 0.5640 | 18 | 0.5416 | 19 | 0.5267 | 19 | 0.5117 | 18 | 0.6536 | 1 |
8 | 0.5599 | 27 | 0.5605 | 11 | 0.5609 | 10 | 0.5613 | 9 | 0.6005 | 3 |
9 | 0.5674 | 10 | 0.5774 | 3 | 0.5840 | 3 | 0.5906 | 3 | 0.5151 | 16 |
10 | 0.5643 | 17 | 0.5638 | 9 | 0.5634 | 8 | 0.5630 | 8 | 0.5619 | 8 |
11 | 0.5679 | 7 | 0.5686 | 6 | 0.5691 | 6 | 0.5696 | 6 | 0.5073 | 17 |
12 | 0.5662 | 13 | 0.5686 | 5 | 0.5703 | 5 | 0.5719 | 5 | 0.3614 | 29 |
13 | 0.5611 | 25 | 0.5178 | 27 | 0.4889 | 27 | 0.4600 | 27 | 0.4470 | 24 |
14 | 0.5658 | 14 | 0.5425 | 18 | 0.5270 | 18 | 0.5115 | 19 | 0.4909 | 18 |
15 | 0.5591 | 28 | 0.5519 | 16 | 0.5472 | 15 | 0.5424 | 15 | 0.5353 | 15 |
16 | 0.5602 | 26 | 0.5220 | 26 | 0.4965 | 26 | 0.4710 | 26 | 0.4711 | 23 |
17 | 0.5684 | 6 | 0.5404 | 20 | 0.5217 | 22 | 0.5031 | 22 | 0.5539 | 11 |
18 | 0.5557 | 30 | 0.5850 | 1 | 0.6046 | 1 | 0.6242 | 1 | 0.5549 | 10 |
19 | 0.5582 | 29 | 0.5380 | 23 | 0.5245 | 20 | 0.5111 | 20 | 0.4808 | 21 |
20 | 0.5637 | 22 | 0.5388 | 22 | 0.5223 | 21 | 0.5057 | 21 | 0.6124 | 2 |
21 | 0.5673 | 11 | 0.5808 | 2 | 0.5899 | 2 | 0.5989 | 2 | 0.5448 | 12 |
22 | 0.5628 | 24 | 0.5601 | 12 | 0.5584 | 11 | 0.5566 | 11 | 0.5703 | 6 |
23 | 0.5657 | 15 | 0.5137 | 28 | 0.4790 | 28 | 0.4443 | 28 | 0.5611 | 9 |
24 | 0.5640 | 20 | 0.5557 | 14 | 0.5502 | 14 | 0.5447 | 14 | 0.4882 | 20 |
25 | 0.5721 | 1 | 0.5622 | 10 | 0.5556 | 13 | 0.5490 | 13 | 0.4167 | 27 |
26 | 0.5689 | 3 | 0.5396 | 21 | 0.5200 | 23 | 0.5004 | 23 | 0.3923 | 28 |
27 | 0.5631 | 23 | 0.5283 | 24 | 0.5051 | 24 | 0.4818 | 24 | 0.5364 | 14 |
28 | 0.5685 | 4 | 0.5663 | 7 | 0.5648 | 7 | 0.5634 | 7 | 0.4893 | 19 |
29 | 0.5637 | 21 | 0.5709 | 4 | 0.5756 | 4 | 0.5804 | 4 | 0.4346 | 25 |
30 | 0.5677 | 8 | 0.4961 | 30 | 0.4483 | 30 | 0.4006 | 30 | 0.3290 | 30 |
No. | MFOA-LSSVM | LSSVM | |||
---|---|---|---|---|---|
Training Results | Relative Error (%) | Training Results | Relative Error (%) | ||
1 | 0.5627 | 0.5652 | 0.0044 | 0.5640 | 0.0023 |
2 | 0.5556 | 0.5478 | 0.0141 | 0.5486 | 0.0127 |
3 | 0.5418 | 0.5340 | 0.0145 | 0.5348 | 0.0130 |
4 | 0.5011 | 0.4957 | 0.0108 | 0.4940 | 0.0141 |
5 | 0.4633 | 0.4711 | 0.0169 | 0.4704 | 0.0152 |
6 | 0.5357 | 0.5416 | 0.0110 | 0.5362 | 0.0010 |
7 | 0.5267 | 0.5229 | 0.0073 | 0.5244 | 0.0044 |
8 | 0.5609 | 0.5531 | 0.0139 | 0.5538 | 0.0126 |
9 | 0.584 | 0.5762 | 0.0134 | 0.5769 | 0.0121 |
10 | 0.5634 | 0.5593 | 0.0073 | 0.5563 | 0.0126 |
11 | 0.5691 | 0.5626 | 0.0114 | 0.5620 | 0.0124 |
12 | 0.5703 | 0.5625 | 0.0137 | 0.5632 | 0.0124 |
13 | 0.4889 | 0.4962 | 0.0149 | 0.4959 | 0.0144 |
14 | 0.527 | 0.5348 | 0.0149 | 0.5341 | 0.0134 |
15 | 0.5472 | 0.5550 | 0.0142 | 0.5543 | 0.0130 |
16 | 0.4965 | 0.5043 | 0.0157 | 0.5036 | 0.0143 |
17 | 0.5217 | 0.5263 | 0.0088 | 0.5287 | 0.0134 |
18 | 0.6046 | 0.5968 | 0.0129 | 0.5975 | 0.0117 |
19 | 0.5245 | 0.5323 | 0.0149 | 0.5316 | 0.0135 |
20 | 0.5223 | 0.5301 | 0.0150 | 0.5294 | 0.0136 |
21 | 0.5899 | 0.5845 | 0.0092 | 0.5841 | 0.0099 |
22 | 0.5584 | 0.5516 | 0.0121 | 0.5513 | 0.0126 |
23 | 0.479 | 0.4868 | 0.0164 | 0.4860 | 0.0147 |
24 | 0.5502 | 0.5547 | 0.0083 | 0.5508 | 0.0011 |
25 | 0.5556 | 0.5478 | 0.0141 | 0.5485 | 0.0128 |
No. | MFOA-LSSVM | LSSVM | |||
---|---|---|---|---|---|
Test Results | Relative Error (%) | Test Results | Relative Error (%) | ||
1 | 0.5200 | 0.5278 | 0.0151 | 0.5475 | 0.0528 |
2 | 0.5051 | 0.5080 | 0.0058 | 0.5437 | 0.0764 |
3 | 0.5648 | 0.5570 | 0.0139 | 0.5777 | 0.0229 |
4 | 0.5756 | 0.5761 | 0.0008 | 0.5848 | 0.0160 |
5 | 0.4483 | 0.4561 | 0.0174 | 0.4670 | 0.0418 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, D.; Li, Y.; Dai, S.; Kang, H.; Xue, Z.; Jin, X.; Song, Y. Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm. Sustainability 2018, 10, 231. https://doi.org/10.3390/su10010231
Niu D, Li Y, Dai S, Kang H, Xue Z, Jin X, Song Y. Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm. Sustainability. 2018; 10(1):231. https://doi.org/10.3390/su10010231
Chicago/Turabian StyleNiu, Dongxiao, Yan Li, Shuyu Dai, Hui Kang, Zhenyu Xue, Xianing Jin, and Yi Song. 2018. "Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm" Sustainability 10, no. 1: 231. https://doi.org/10.3390/su10010231
APA StyleNiu, D., Li, Y., Dai, S., Kang, H., Xue, Z., Jin, X., & Song, Y. (2018). Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm. Sustainability, 10(1), 231. https://doi.org/10.3390/su10010231