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Abstract: The sustainable energy consumption in northeast Asia has a huge impact on regional
stability and economic growth, which gives price volatility research in the energy market both
theoretical value and practical application. We select China’s fuel oil futures market as a research
subject and use recurrence interval analysis to investigate the price volatility pattern in different
thresholds. We utilize the stretched exponential function to fit the pattern of the recurrence intervals
of price fluctuations and find that the probability density functions of the recurrence intervals in
different thresholds do not show the scaling behavior. Then the conditional probability density
function and detrended fluctuation analysis prove that there is short-term and long-term correlation.
Last, we use a hazard function to introduce the recurrence intervals into the (value at risk) VaR
calculation and establish a functional relationship between the mean recurrence interval and the
threshold. Following this result, we also shed light on policy discussion for hedgers and government.

Keywords: sustainable development; recurrence interval; probability distribution; memory effect;
risk estimation

1. Introduction

With regard to sustainable development in northeast Asia, the utilization and depletion of energy
is always a problem for each country [1]. With the rapid development of emerging nations such as
China, energy will increasingly become an important factor affecting regional stability and economic
growth. Among many energy sources, fuel oil occupies a prominent position and maintains a country’s
economic lifeline and livelihood development [2]. However, for a long time, the fuel market in a
country like China has mainly been built by agreement pricing, which lacks a buffer mechanism
to maintain the endogenous stability of this system [3,4]. The long-term contract pricing of these
agreements will make China and entire northeast Asia suffer losses in the international fuel price
fluctuations. In 2004, China followed the example of West Texas Intermediate (WTI) and Brent and
set up its energy futures market [5], hoping to stabilize the market price and futures expectation of
domestic primary fuel consumers and to achieve a more balanced and sustainable development.

Fuel oil is a downstream product of oil and China is a significant fuel oil importing country in
the world as well as the largest consumer of fuel oil in northeast Asia considering its Gross Domestic
Product (GDP) scale. Although China’s enormous oil demand has had a significant impact on the
international oil market supply and demand pattern, its role in the global oil price has been negligible
owing to lack of impactful oil futures [6]. Therefore, in case of sharp fluctuations in international oil
prices, China needs an oil futures market to reflect the supply and demand to determine the “Chinese
oil price” in line with China’s interests and thus ensure oil security and economic stability. Hence,
research of the fuel oil futures market is of necessity, not only allowing regulators to efficiently judge
and understand the market capitalization in time and adopt reasonable and adequate control measures
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but also allowing market participants to make use of the two primary functions—price discovery and
hedging—of fuel oil futures for decision-making.

To sum up, the study of the fuel oil futures market has theoretical value and practical implications.
From a macro perspective, the participants’ behaviors directly determine a resource allocation of the
fuel oil futures and spot markets. If the market fails, then the resources mismatch and efficiency decline
in the futures and spot markets will directly affect the normal operation of the macroeconomy. From a
micro perspective, the normal process of the futures market directly affects the hedging performance
of market participants. Though the fuel oil futures market also has some speculative behaviors,
its primary function is to preserve value as a financial hedging instrument. If the futures market
fails, it will make enterprises or investors suffer massive losses, and then the price volatility will have
become a source of economic and financial fluctuations in China. This paper, by using recurrence
interval analysis (RIA), will investigate the price volatility pattern of fuel oil futures and estimate
the risk.

The remaining sections of this paper are arranged as follows: Section 2 reviews current research.
Section 3 briefly describes the approach and gives the basic statistics of the data set. Section 4 conducts
empirical research, including probability distribution function, scaling properties, memory effect and
risk estimation. Section 5 discusses implications of the study and Section 6 concludes.

2. Literature Review

2.1. Energy Futures Market

For studies about energy futures market, researchers mainly focus on the price discovery
mechanism between the prices of futures and spot [7–9]. For example, Bekiros and Disks [10]
used a cointegration method to confirm that there may be an asymmetric GARCH (Generalized
Autoregressive Conditional Heteroscedasticity) effect between WTI futures and spot. If asymmetric
effects are taken into account, the lead-lag relationship between futures and spot markets will change
over time. Chen et al. [11] investigated the impact of structural breaks on the relationship between
WTI futures and New York Mercantile Exchange (NYMEX) crude oil spot by a cointegration test.
The results show that the lead–lag relationship between WTI futures and NYMEX crude oil spot will
change with time across both regimes. The situation in China was complicated. China’s earliest energy
futures appeared in 1993 when the Shanghai Petroleum Exchange launched an oil futures contract,
followed by several futures exchanges listing oil futures contracts. However, as a result of the change
in national policies, the initially implemented “two-track system” of crude oil and refined oil price was
halted and the mechanism in which price was formed automatically by market supply and demand
no longer existed. Oil futures with only one-year life were forced to stop trading. For an extended
period, the domestic oil futures market was kept under vacuum. Ten years later, on 25 August 2004,
another energy futures—fuel oil futures—was listed on the Shanghai Futures Exchange, and domestic
scholars have begun to study the issues regarding the Chinese oil market. For example, Li et al. [12]
examined the relationship between fuel oil spot, fuel oil futures, and energy stock market in China
and pointed out that the correlations are weaker than those in U.S. market due to China’s oil price
regulation and control policy. Ji and Fan [13] found that China’s oil markets were related to domestic
and international commodity markets. Additionally, the impact of China’s fuel oil futures market on
other local commodity markets was high (small) when the oil price was high (low).

Since the early emergence of the energy futures market outside China, a lot of research has been
done on the function of price discovery. China’s research in this area mainly focuses on the impact
of price discovery on the domestic and international futures markets. Also, the current study on
oil futures still put different oil markets or related petroleum and related industries together. In the
context of financialization in the international oil market, the capital market plays an increasingly
important role in the oil futures market with an increasingly significant influence on the oil futures
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market, especially on the price discovery function of the oil futures market. Hence, the research in this
area should be strengthened.

2.2. Recurrence Interval Analysis

Recurrence interval is a measurement to estimate extreme events—events that do not occur
frequently but do so with a high magnitude. In the natural environment, extreme events include
earthquakes, tsunamis, hurricanes, floods, etc, while in the social environment extreme events include
violent conflicts, acts of terrorism, industrial accidents, financial and commodity market crashes, etc.
In the long run, extreme events are presumed to be spontaneous. In other words, they are mutually
uncorrelated. However, studies have shown that the occurrence of extreme events is not independent,
but instead, they congregate together, occurring in relatively short periods of time [14–16]. Therefore,
recurrence interval can be applied to estimate the magnitude of price volatility of China’s fuel oil
futures here.

Recurrence interval analysis (RIA) is a time series method for volatility forecast with
high-frequency data, which is widely used in many areas [17–19] including stock and exchange
rate markets [20–24]. RIA is frequently applied to risk analysis, assuming that the probability of future
volatility is constant and independent of the volatility of the past. Also, the problem of insufficient
data can also be solved by finding the scaling behavior of different scale events [25]. At present, the
recurrence interval between volatility in the energy market has been widely studied [26–29]. For
example, Xie et al. [30] used RIA to investigate four NYMEX energy futures and showed that the
long-term correlations have resulted in clusters of recurrence intervals. Suo et al. [31] compared
the CSI 300 spot and futures market with RIA and found that futures market has a lower (higher)
risk than that in the spot market during volatile (regular) periods. However, to the best of our
knowledge, there are insufficient studies on price volatility of China’s fuel oil futures by RIA with
current high-frequency data.

Therefore, our research has made the following contributions. First, we investigate the price
volatility of China’s fuel oil futures from a new perspective by using RIA. So far, this is one of the
few articles on China’s fuel oil futures with RIA. Second, different from previous research using the
daily data of China fuel oil futures, we use one-minute high-frequency data that can reveal more price
information, providing a new perspective for the study of China’s energy derivatives market in the
view of high-frequency trading. Third, we focused on the price volatility of fuel oil futures instead of
the relationship between fuel oil futures market and other markets.

3. Materials and Methods

We here select fuel oil futures as research subject which was listed on Shanghai Futures Exchange,
and Table 1 shows the contract specifications. The data here is obtained from Tongdaxin Database and
the sample period covers from 1 January 2015 to 30 December 2016. We have collected 70,635 price
observations after removing the days without trading. The return of time series is measured by the
logarithmic difference of the price:

r(t) = ln p(t + ∆t)− ln p(t), (1)

where ∆t = 1 due to the data being 1-min frequent and p(t) is the closing price of the tth time. By taking
logarithm difference, the data magnitude is reduced for subsequent calculations. The logarithmic
returns of fuel oil futures are shown in Figure 1 and, the statistics is summarized in Table 2.
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Table 1. Contract specifications of the fuel oil futures.

Trade Category Fuel Oil

Trade unit 50 ton
Price quotation unit yuan per ton

Tick size 1 yuan per ton
Limit up/down ±6% of settlement price on the previous trading day
Contract Months Monthly (excluding the spring festival)

Trading hours 9:00 am–11:30 am, 1:30 pm–3:00 pm
Last trading day The last trading day of the month before the delivery month

Delivery day Five consecutive business days after the last trading day
Delivery grade 180CST fuel oil or other fuel oil of better quality than this standard

Delivery location The locations designated by exchange
Margin requirement 8% of the contract value
Settlement method physical settlement
Transaction code FU

Exchange Shanghai Futures Exchange
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Table 2. Statistics of the logarithmic returns of fuel oil futures.

Average Maximum Minimum Standard Deviations Skewness Kurtosis Nobs

5.2675× 10−6 0.0677 −0.0783 0.0028 0.0850 131.7101 70634

From Figure 1, we can see that the fluctuations in the different periods have different magnitudes.
For example, a massive volatility like A has a much larger scale than that of a small fluctuation like B.
Furthermore, volatilities with similar level tend to cluster with each other. It can be seen in Figure 1
that a large fluctuation tends to follow significant volatility while a small one tends to follow a small
one, which indicates the long-term memory effect [32,33]. Also, the X-axis in Figure 1 is from 5 January
2015 to 30 December 2016, hence the more significant fluctuations are approximately concentrated
in the second half of 2015 and the first half of 2016. Such fluctuation periods may be related to the
events occurring in the international oil market during that period, like Russia bombing Syria, four
oil-producing nations reaching cut consensus, the lifting of Iran’s oil ban, the Canadian wildfires
leading to disruption of oil sands, Nigeria cutting off supply, and the British Brexit vote (see a–f
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in Figure 1, respectively). We can also find that a volatile period when large volatilities cluster is
accompanied with short and dense recurrence intervals. In contrast, the recurrence intervals during
the less volatile period are long, few and far between. In Figure 2, we magnify two sections in Figure 1
to represent the period of large and small volatilities, respectively, to present these characteristics.
Figure 2a shows the volatility from June 2015 to October 2015, and Figure 2b shows the fluctuations
from June 2016 to October 2016. We can see that for a given r(t), assuming 0.02, the properties of
recurrence are in accordance with our discussion above.Sustainability 2018, 10, 261 10.3390/su10010261  5 of 13 
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Figure 2. Logarithmic returns of fuel oil futures in different periods. (a) Large volatilities; (b)
small volatilities.

In Table 2, the statistics of the logarithmic returns are not normally distributed but the skewness
is near symmetrical, and the kurtosis is leptokurtic, which is also consistent with the findings in most
studies on the probability distribution of returns in stock and futures markets [34–37]. Therefore,
by using RIA, we hope to promote the risk estimation in the energy futures market by describing the
volatility of the fuel oil futures and estimating the time intervals between fluctuations, e.g., what is the
probability of the next significant volatility after a larger one?

Considering the recurrence interval τ at the threshold q, the mathematical expression of recurrence
interval could be derived as follows:

τ(t) = min
{

t− t′ : R(t)〈q, t〉t′, q < 0
}

. (2)

Most studies [38–41] have pointed that stretched exponential distribution can better fit the
recurrence intervals of fluctuations:

Pq(τ) = ατe−(βττ)γ

. (3)

Equation (3) means that Pq(τ) is the probability distribution of recurrence interval τ at the
threshold q, where τ is the average recurrence interval and will change when threshold q is different,
and α, β, γ are the parameters.

4. Results

4.1. Probability Density Function

Before applying RIA, we need to normalize the time series r(t) by dividing the standard deviation
as follows:

R(t) =
r(t)

[Er(t)2 − E2r(t)]
1/2 , (4)

where [Er(t)2 − E2r(t)]
1/2

is the standard deviation of r(t). For a threshold q, we can get the
coresponding set of recurrence interval τ, then calculate the occurance probability of each τ. In
this paper, the threshold q is set to a negative value (q < 0) because a slump tends to attract more
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interest to the market participants than a surge. In Figure 3, we draw the empirical (color symbols)
and theoritical values (color curves) of the probability distribution function (PDF) Pq(τ) of recurrence
intervals between returns at different threshold q. In addition, Table 3 shows the parameters for
theoritical PDFs of each threshold q.
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Table 3. Estimates of the coefficients of stretched exponential functions.

q ff fi fl

−1.0 2.004 × 10−3 7.994 × 10−3 0.415
−1.2 1.841 × 10−3 7.343 × 10−3 0.390
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We can see from Figure 3 that when |q| rises, in the whole period, for the same probablility, larger
volatilities tend to have larger interval, while for the same interval, larger volatilities will occur more
likely than small volatilities, which also means that for large volatilities the time interval between two
consecutive events has a higher probability to increase than decline. Combining the observation from
Table 3 and Figure 3, it is found that all the curves are in similar shape which leads us to investigate
the scaling behavior between these PDFs.

With this question, after observing the behavior of PDFs in Figure 3 and how they may depend on
the threshold q, we can see that for different q, the corresponding PDF is not the same and cannot be
described by a single distribution as for irrelevant data. To understand the q dependence, the method
in Yamasaki et al. [42] is introduced:

fq(τ/τ) = Pq(τ)τ, (5)

where Pq(τ)τ is scaled PDF and τ/τ is scaled recurrence interval. With an increasing threshold |q|,
τ will change in the same direction, i.e., (dτ)/(d|q|) > 0, indicating that as the volatility increases,
the average length of recurrence interval increases, too. If there exists scaling behavior, fq(τ/τ)

will be independent of the threshold q. Namely, the discrepancy between PDFs of recurrence
invervals at different threshold q can be eliminated by calculating Pq(τ)τ. Additionally, the scaling
behavior can be demonstrated if fq(τ/τ) converges to a single curve f (τ/τ), which is given by:
fq(x) = f (x), q = 1.0, 1.2, 1.4, 1.6, 1.8. Figure 4 displays the scatter diagram with x-ray as τ/τ and
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y-ray as Pq(τ)τ. We can see clearly that Pq(τ)τ do not converge into one curve when threshold q is
different. This suggests that the scaling behavior does not exist here, that is, when data is insufficient,
we are unable to derive the behavior of large fluctuations from the behavior of small ones.Sustainability 2018, 10, 261 10.3390/su10010261  7 of 13 
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4.2. Memory Effect

In this part, we want to know if there exists a memory effect between recurrence intervals.
Short-term memory refers the correlation between two consecutive recurrence intervals, and long-term
memory means current volatility was affected by fluctuations not only in the recent past but also from
a long time ago, which would cause volatility clusters.

4.2.1. Short-Term Correlation

For recurrence intervals, the short-term correlation will affect the length of one interval after
another interval. In this part, we will calculate the conditional probability density function Pq(τ|τ0) to
study the short-term correlation within the recurrence intervals [42]. Pq(τ|τ0) refers to the probability of
a recurrence interval τ to occur immediately following the last recurrence interval τ0. When short-term
correlation does not exist, Pq(τ|τ0) will be independent of τ0. However, a certain value τ0 may result
in insufficient data, to avoid that, we have selected a range for τ0 to calculate Pq(τ|τ0) rather than a
fixed value τ0.

Each threshold q corresponds to a series of recurrence intervals and the set of all the recurrence
intervals at threshold q is T. We then divide T into four subsets without overlapping, T = T1 ∪ T2 ∪
T3 ∪ T4, where Tm ∩ Tn = φ, m 6= n. In this dividing procedure, the whole recurrence intervals in T
are sorted in an ascending order and then T is turned into subsets with the same size. Hence, the 1/4
smallest recurrence intervals are selected to the first subset T1 and largest quarter goes to the last subset
T4. Therefore, the conditional probability density function is derived as Pq(τ|Tm) = Pq(τ|τ0 ∈ Tm),
and if short-term correlation does not exist, it could be found that Pq(τ|Tm) = Pq(τ|Tn), m 6= n.

Figure 5 shows that Pq(τ|τ0)τ is the function of τ/τ for τ0. Filled symbols indicate τ0 ∈ T1 and
open symbols mean τ0 ∈ T4. It is obvious that Pq(τ|T1) from the smallest subset T1 does not equal to
Pq(τ|T4) from the largest subset T4: Pq(τ|T1) 6= Pq(τ|T4). On the left side of Figure 5, Pq(τ|τ0 ∈ T1)

is bigger than Pq(τ|τ0 ∈ T4) for small τ/τ, while on the right side, Pq(τ|τ0 ∈ T1) is smaller than
Pq(τ|τ0 ∈ T4) when τ/τ increases. This suggests that short τ is more likely to follow short τ0, and long
τ tends to follow long τ0, indicating that short-term correlations do exist in the recurrence intervals, i.e.,
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the probability of a short (long) interval existing after a small (long) one is higher than the probability
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4.2.2. Long-Term Correlation

The volatility clusters in Figure 1 indicate that long-term correlation exists in the time series.
To verify this we employ detrended fluctuation analysis (DFA) method, and the results are shown in
Figure 6. DFA was invented by Peng [43] for determining the statistical self-affinity of a signal. In
addition, DFA has become one robust method for analyzing time series that appear to be long-memory
processes [44–46]. DFA will compute the root-mean-square deviation F(s) from the trend, where s is
the length of time windows. After repeatedly calculating the F(s) for a range of different s, a log–log
figure of F(s) against s is constructed in accord to the form F(s) ∼ sH . H is the Hurst exponent
to determine whether there is long-term correlation in the time series. H greater than 0.5 suggests
that long-term correlations do exist in the time series while H equals to 0.5 means the time sequence
is un-correlated. The results are depicted in Figure 6 and the parameters are in Table 4. As can
be seen, each line has a Hurst exponent more than 0.5, which indicates the long-term correlation
within the recurrence intervals. This is consistent with previous studies on the recurrence interval and
demonstrates the existence of a long-term memory on the recurrence interval in fuel oil futures [47,48],
indicating that the fuel oil futures market in China is an inefficient market and the market shows strong
trend behavior. This means that in one cycle, the former price volatility and historical information will
affect the price fluctuations in the future.
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Table 4. Estimates of exponent H.

q Exponent H

−1.0 0.71526
−1.2 0.70263
−1.4 0.68133
−1.6 0.68407
−1.8 0.69137

4.3. Risk Estimation

For a specific q, we want to know the probability of an interval after another interval. The
hazard probability function Wq(∆t|t) is used here to estimate risk of RIA. Assuming that the last big
fluctuations greater than |q| have passed t units of time, then what is the chance that the next large
fluctuations greater than |q| will happen within ∆t units of time? Based on this, the hazard probability
can be written as:

Wq(∆t|t) =
∫ t+∆t

t Pq(τ)dτ∫ ∞
t Pq(τ)dτ

. (6)

Equation (6) calculates the theoretical value of hazard probability. As we know, each q has a
corresponding stretched exponential function Pq(τ) and the value of parameters can be found in
Table 3. Furthermore, in order to compare the theoretical and empirical values of Wq(∆t|t), we shall
rewrite Wq(∆t|t) as:

Wq(∆t|t) =
count

(
t < τq ≤ t + ∆t

)
count

(
τq > t

) . (7)

For each threshold q, “count
(
τq > t

)
” counts the number of recurrence intervals greater than t

units of time and “count
(
t < τq ≤ t + ∆t

)
” is the number of recurrence intervals between t and t + ∆t

units of time.
The calculation results of Equations (6) and (7) are shown in Figure 7, represented by color symbols

and curves, respectively. In Figure 7, it can be observed that when t is relatively small, the curve is
above the scatter symbols, which means that the theoretical value will overestimate the risk in the
short term, while with the increase of t the difference between the theoretical and empirical value will
gradually decrease. In addition, Wq(∆t = 1|t) decreases when t increases, indicating that the longer
the time interval between the two volatilities, the less likely the next fluctuation will happen instantly,
which confirms that long-term correlations and clustering behavior exist within the recurrence intervals
between volatilities. Additionally, we can calculate the recurrence probability of an extreme event for
each threshold q.
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We here utilize value at risk (VaR) to estimate the risk. To construct a functional relationship
between recurrence interval and VaR, we first define the loss probability at volatility level q:∫ q

−∞
P(R)dR = P∗, (8)

where P∗ defines the loss probability, R(t) is the normalized time series given by Equation (4) and P(R)
is the PDF of R(t). For a given threshold q, the mean recurrence interval is the average value of total

intervals: τq = 1
Nq

τq

∑
i=1

τq,i, where τq is the recurrence interval and Nq is the number of τq. Hence we can

derive that
τq

∑
i=1

τq,i is approximately equal to the total number of returns and Nq + 1 is the number of

returns below threshold q. Then we can construct a relationship between mean recurrence interval
and VaR:

1/τq =
∫ q

−∞
P(R)dR =

number o f R(t) below q
total number o f R(t)

, (9)

where 1/τq is the function of threshold q as shown in Figure 8. The loss probability in the Y-axis
corresponds to the fluctuation degree in X-axis, for example, if the market participants hope to control
the risk level of loss at two percent, the fluctuation degree—i.e., the threshold—q meets 1/τq = 2%
is what they should be aware of. We can also see from Figure 8 that the mean recurrence interval
increases with an increasing |q|, suggesting that the larger the fluctuation, the greater the interval.
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5. Discussion

From the above analysis, it can be seen that there is long-term memory, abnormality, and
autocorrelation in the recurrence intervals of China’s fuel oil futures market, which shows that this
market is mostly a complicated nonlinear system. Therefore, efficient market hypothesis adopting
“linear and normal” as the hypothetical premise can no longer efficiently describe and analyze the
price volatility of the futures markets [49–51]. This conclusion makes it necessary to alter the linear
traditional research paradigm in the futures research when analyzing the energy futures market and
introduce nonlinear theory and methods. It also has significant theoretical and practical significance
by changing from the linear analysis, equilibrium analysis, and static analysis to nonlinear analysis,
evolutionary analysis, and dynamics analysis. Also, long-term memory indicates that the impact of
price volatility of the energy futures market does not disappear immediately. Instead, it can have
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long-term effects. Therefore, based on sufficient historical information and within a specific long-term
memory length, it is possible to measure and predict the price volatility of the energy futures market.

Probability density function analysis shows that the occurrence probability of significant and
minor fluctuations and the degree of risk are different. When new information appears, some
market participants do not respond to the information in time but try to verify the authenticity
of the information and identify the impact of the information by analyzing the relevant information.
For example, when a new policy is promulgated, the participants cannot understand the purpose of
the policymaker in a short period and accordingly decide after some trend is identified after a period.
Such information understanding lag means that the information cannot be digested immediately by
the participants; on the contrary, it will have some degree of cumulative effect. Participants may
react suddenly when some new information arrives continually, or when policymakers’ intentions
are apparent, which will result in sudden and drastic market volatility, resulting in a flock effect and
herd behavior.

At present, China’s fuel oil futures market has been established for more than a decade. As a
big consuming country, it is necessary to establish an oil pricing mechanism with an international
influence to better predict the price and risk. Specifically, the authority can improve the futures market
laws and regulations, increase the futures trading volume, continuously develop new varieties of
futures, and strengthen the domestic oil market. Furthermore, China’s oil futures market should be
integrated into the international oil market, accelerating the pace of oil price adjustment, to reflect the
real-time domestic oil price.

6. Conclusions

The paper utilized RIA to investigate the properties of recurrence intervals of price fluctuations
for different thresholds and to understand the behaviors of large volatilities of fuel oil futures in China
with the mass data collected at one-minute high-frequency.

First, we used the stretched exponential function to fit the probability density distribution of
recurrence intervals at different thresholds and found that the PDFs do not have scaling behavior at
different thresholds. Subsequently, the conditional PDF and DFA respectively confirmed that there
is a short-term and long-term relationship between the recurrence intervals, which indicates that the
intervals are not only affected by the near-term, but also by the long-term effect. Finally, RIA was
used to evaluate the risk for fuel oil futures, which provides a relatively accurate risk estimation and
constructs a relationship between loss possibility and volatility scale.

For those hedgers who want to achieve sustainable development, attention should be paid in
the short term to significant price fluctuations in the energy futures market, and in the long run, they
should make judgments based on specific market conditions to more effectively prevent and mitigate
the risk of price volatility. Also, because the energy futures market in China is relatively short and
not yet mature compared to Western countries, we can consider cultivating domestic institutional
investors and lowering transaction costs. At the same time, we could speed up the opening up of
the market to attract foreign institutional investors and mitigate the risks caused by the fluctuations
through the connection with the international energy market. The government should improve energy
futures market construction and promote risk control to enhance the global influence of China’s energy
futures market. Through strengthening the pricing power of energy pricing, China could contribute to
the sustainable development in China and northeast Asia in the future.
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